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Abstract—In speech processing, endpoint detection in noisy en-
vironments is difficult, especially in the presence of nonstationary
noise. Robust endpoint detection is one of the most important
areas of speech processing. Generally, the feature parameters used
for endpoint detection are highly sensitive to the environment.
Endpoint detection is severely degraded at low signal-to-noise
ratios (SNRs) since those feature parameters cannot adequately
describe the characteristics of a speech signal. As a result, this
study seeks the banded structure on speech spectrogram to
distinguish a speech from a nonspeech, especially in adverse en-
vironments. First, this study proposes a feature parameter, called
band-partitioning spectral entropy (BSE), which exploits the use
of the banded structure on speech spectrogram. A refined adaptive
band selection (RABS) method is extended from the adaptive
band selection method proposed by Wu et al., which adaptively
selects useful bands not corrupted by noise. The successful RABS
method is strongly depended on an on-line detection with minimal
processing delay. In this paper, the RABS method is combined
with the BSE parameter. Finally, a novel robust feature parameter,
adaptive band-partitioning spectral entropy (ABSE), is presented
to successfully detect endpoints in adverse environments. Experi-
mental results indicate that the ABSE parameter is very effective
under various noise conditions with several SNRs. Furthermore,
the proposed algorithm outperforms other approaches and is
reliable in a real car.

Index Terms—Adaptive processing, endpoint detection, multi-
band analysis, spectral entropy.

I. INTRODUCTION

ENDPOINT detection is used to distinguish speech from
noise and is required in many speech applications, such as

speech recognition, speech coding and communication, among
others [1], [2]. In a speech recognition system, for example,
accurate endpoint detection can improve the recognition ratio
under various types of background noise and reduce the com-
puting power waste induced by incorrect speech detection.
Accurate endpoint detection is also used during discontinuous
transmission to save battery power and to control the average
bit rate and the overall coding quality of the speech in a digital
communication system [3].
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A feature parameter that can sufficiently specify the char-
acteristics of a speech and be robust in noisy environments is
urgent. The current algorithms are based on short-time energy
or spectral energy, zero-crossing rate (ZCR), and duration pa-
rameters [4]–[6]. All of these parameters, however, are rather
sensitive to noise and cannot fully specify the characteristics of
a speech signal. For example, the energy-based parameter and
ZCR are not sufficient to distinguish a speech from a noise at low
SNRs. In particular, the ZCR is very sensitive to various types
of noise. Several other parameters have also been proposed, in-
cluding linear prediction coefficients (LPCs), Cepstral coeffi-
cients, and pitch [7]–[9]. Although these parameters are quite
effective in expressing the characteristics of a speech signal, the
performance of endpoint detection using such parameters re-
mains poor in adverse environments. The reliability of the LPCs
has been observed to depend strongly on the noise in adverse
environment. Pitch information can help to detect speech; even
so, extracting the correct pitch in noisy environments is difficult.
Additionally, some algorithms cannot be implemented for prac-
tical applications due to their high computational complexity,
even though they perform well [10]. Among such approaches,
however, Junqua et al. [11] proposed a time-frequency (TF) pa-
rameter to detect speech, which assumes that frequency infor-
mation in the frequency ranges 250–3500 Hz is less contam-
inated by noise. The TF parameter is composed of both fre-
quency energy in the fixed frequency bands and time energy.
Based on the motivation that the frequency energies of various
types of noise are concentrated in different frequency bands, Wu
et al. [12] used the multiband technique to analyze noisy speech
signals, and then proposed an adaptive band selection (ABS)
method to cancel noise effectively by selecting useful bands. An
adaptive time-frequency (ATF) parameter extended from TF pa-
rameter was proposed by them.

Although the ATF-based algorithm outperforms several al-
gorithms commonly used for endpoint detection in the presence
of various types of noise, it cannot be reliably implemented in
practical environments. It is found that the selection of useful
bands depends on the information of an entire recorded signal.
Additionally, the ATF parameter is also energy based, and is,
therefore, less reliable in the presence of nonstationary noise
or a changing level of noise. Shen et al. [13] first used the en-
tropy-based parameter to detect speech signals. Their study in-
dicated that the spectral entropy of a speech segment differed
significantly from that of a noise segment. Subsequently, Huang
[14] integrated both the time energy and spectral entropy to form
a new feature parameter (EE-feature), since the spectral entropy
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Fig. 1. Banded nature displayed on speech spectrogram: (a) A signal waveform of Mandarin digit “eight.” (b) The continuous, striated lines only appearing on a
speech spectrogram of the corresponding signal waveform. (c) Spectral magnitude of a speech segment. (d) Spectral magnitude of a nonspeech segment.

failed under multitalker babble and background music, but the
energy performed well because of its additive property: The en-
ergy of the sum of speech plus noise always exceed the energy of
noise. Although the EE-feature parameter proposed by Huang
improved the endpoint detection under babble noise, it is un-
reliable when the noise level greatly exceeds the speech level.
Additionally, the spectral entropy parameter relies on the vari-
ance of spectral magnitude to distinguish a speech signal from
a noise signal, but the variance of spectral magnitude depends
strongly on the noisy environments.

The inherent characteristic of the banded structure on speech
spectrogram can be modeled by improving the spectral entropy.
In this paper, a multiband analysis is combined with the spectral
entropy parameter. A single band was divided into 32 uniform
bands, since the frequency gap between each peak and valley
of the speech spectrum is observed to be around 125 Hz, which
the resolution is to be enough to distinguish speech from noise
in the spectrum. Multiband analysis not only discards harmful
bands corrupted by noise as noise cancellation, but can enhance
the banded nature on speech spectrogram. The spectral entropy
through multiband analysis is called the band-partitioning

spectral entropy (BSE) feature parameter. The BSE feature
parameter strengthens the boundary between speech and noise
more clearly than the spectral entropy proposed by Shen at
poor SNRs. To make the proposed algorithm perform well in
real environments, a method of adaptive noise cancellation,
which can adaptively select useful bands with time and called
refined adaptive band selection (RABS), is presented in this
study. A novel robust feature parameter, which combines the
BSE parameter with the RABS method, is called the adaptive
band-partitioning spectral entropy (ABSE) parameter and
presented to detecting speech in adverse conditions.

This paper is organized as follows. Section II will introduce
the theory of entropy and the motivation of using the entropy
to detect speech, which describes the banded nature on speech
spectrogram, and it also presents the deviation of the ABSE
parameter. In Section III, an adaptive noise cancellation, called
RABS method, which can adaptively select useful bands
in on line, is derived in detail, and then the procedure for
implementing the proposed ABSE-based endpoint detection
algorithm is outlined. Section IV discusses the performance
of the proposed algorithm under various noise conditions and
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Fig. 2. Inherent characteristic of banded structures only appeared on speech spectrogram. (a) Mixed-signal waveform is composing vehicle noise, multitalker
babble noise, factory noise, and speech signal and white noises in turn. (b) Spectrogram of the corresponding mixed signal.

compares its performance with that of other algorithms. Finally,
Section V summarizes the findings and discusses possible di-
rections for future work.

II. ABSE FEATURE PARAMETER

This section introduces the theory of entropy and then shows
the motivation of using the entropy for detecting speech, which
describes the banded nature on speech spectrogram. A deviation
of the proposed ABSE parameter is also described in this sec-
tion.

A. Motivation

Entropy, first used in information theory by Shannon [18], is
regarded as the amount of information that must be provided
about a random signal in order to specify it uniquely. It mea-
sures the degree of organization (uncertainty) of the signal and
is defined by

(1)

where and is the probability of .
Fig. 1 describes evidently the difference between the spec-

trum of a speech segment and that of a nonspeech segment. The
waveform of a Mandarin digit eight uttered by native speaker is

shown in Fig. 1(a). In speech production, the pitch varies contin-
uously within a speech segment, so the striated lines, shown in
Fig. 1(b), are also continuous. This results in a clear set of stri-
ated lines throughout speech spectrogram, which are called as a
banded nature on speech spectrogram. When such lines exist in
some frequency bands for a long enough time, the speech seg-
ment can be quite certainly presented [19]. So, it is observed
that the banded nature only appears on speech spectrogram.
Fig. 1(c) and (d) shows the spectrum magnitude of a speech seg-
ment obtained by the short-time Fourier transform (STFT) over
a solid-line region in Fig. 1(a) and that of a nonspeech obtained
segment by STFT over a dashed-line region in Fig. 1(a), respec-
tively. The variance (uncertainty) of the spectral magnitude of
a speech segment over all the frequency components is found
to exceed that of a nonspeech segment. Based on the ability of
measuring uncertainty, it is found that the entropy can be ap-
plied to speech spectrum for specifying a speech signal suc-
cessfully. Fig. 2(a) displays the waveform of a mixed signal that
consists of vehicle noise, multitalker babble noise, factory noise,
speech, and white noise in turn. The corresponding spectrogram
is shown in Fig. 2(b). The figure adequately illustrates that using
spectral entropy to characterize the banded nature which only
appear on speech spectrogram can distinguish a speech signal
from a noise. Fig. 3 displays the spectrograms of clean speech
and noisy speech with four kinds of noise (vehicle noise, factory
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Fig. 3. Illustration of the banded nature against various types of noise.

noise, white noise, and multitalker babble) at 0 dB. It is also ob-
served that the banded nature on speech spectrogram is robust
against various types of additive noise.

B. Band-Partitioning Spectral Entropy

Shen et al. [13] first used an entropy-based parameter for end-
point detection under adverse conditions. Their experimental re-
sults reveal that the spectral entropy of a speech signal differs
from that of a nonspeech signal. The procedure for calculating
a spectral entropy parameter is described as follows. The STFT
of a given time frame is given by

(2)

where represents the spectral magnitude of the th fre-
quency bin of the th frame. is the total number of frequency
bins in STFT for each frequency frame ( in the pro-
posed system). is a Hamming window and overlapping
size is 128. The spectral energy of each frame, , is
described as follows:

(4)

Then, the probability associated with each spectral energy com-
ponent can be estimated by normalizing

(5)

Following normalization, the corresponding spectral entropy for
a given frame is defined as follows:

(6)

where is the spectral entropy of the th frame. The fore-
going calculation of the spectral entropy parameter implies that
the spectral entropy depends only on the variation of the spectral
energy but not on the amount of spectral energy. Consequently,
the spectral entropy parameter is robust against changing level
of noise. However, the magnitude associated with each point in
the spectrum is easily contaminated by noise and then the per-
formance of endpoint detection would be degraded at seriously
low SNRs. This study addresses the multiband analysis of noisy
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Fig. 4. Different distribution of band energy with the same entropy value (BSE = 21:9601). (a) Distribution of band energy during a speech segment. (b)
Distribution of band energy during a nonspeech segment.

speech signals to overcome the sensitivity of the spectral mag-
nitude in noisy environments. The band energy of each band for
a given frame is described as follows:

(7)

where is the total band size of each frame , and
represents the band energy of the th band. Conse-

quently, the probability associated with band energy modified
from (5) is described as follows:

(8)

The BSE parameter is represented as follows:

(9)

In fact, the well-known entropy cannot indicate a distribu-
tion (spatial information) of the data sequence. Fig. 4 plots dif-
ferent distributions of band energy with the same entropy. The
distribution of band energy during a speech segment is shown in
Fig. 4(a), which is similar to Fig. 1(d). The distribution of band
energy during a nonspeech segment is presented in Fig. 4(b).
The observation is clearly shown that the original entropy does
not sufficiently specify the organization of the banded nature
on the speech spectrogram. A set of weighting factors
can be further employed to compensate for the above draw-
back and are defined by (10) and (11), shown at the bottom
of the page, where indicates the weight of the th

(10)

for all bands of the th frame

for all bands of the th frame

for all bands of the th frame

(11)
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Fig. 5. Illustration of characterizing speech signals by using entropy-based feature parameter. (a) Waveform of a Mandarin digit “eight.” (b) The corresponding
spectrogram. (c) Contour of SE proposed by J. L. Shen et al. [13]. (d) Contour of the proposed BSE.

band, and means the normalization of band energy
of each band. If the distribution of the band energies from the

th band to the th band is concave or protruding,
then a banded structure appears in these bands for the given
frame. Similarly, if the distribution of the band energies from
the th band to the th band is fairly flat, then this
states that these bands do not include any banded structure. By
using the set of weighting factors , the proposed BSE
parameter is finally represented as follows:

(12)

Fig. 5 clearly indicates that the first proposed BSE parameter,
using the method of band decomposition along with a set of
weighting factors , more sufficiently characterizes the
speech signals than other entropy-based parameter such that SE
parameter proposed Shen et al. [13].

C. Adaptive Band-Partitioning Spectral Entropy

In fact, the frequency energies of difference types of noise
are concentrated on different frequency bands [12], as shown in

Fig. 6. This observation demonstrates that the bands with larger
noisy energy more contaminate the useful frequency informa-
tion than do the other bands. The bands with larger noisy en-
ergy (called the harmful bands) must be discarded accurately to
yield more accurate frequency information. Although the BSE
remains a good feature parameter, the detection sometimes fails
at seriously low SNRs, especially when relatively harmful bands
are involved. How to discard the harmful bands or preserve the
useful bands becomes a serious task. Wu et al. [12] showed that
the number of harmful bands (or useful bands) is related to the
background noise level. A MiMSB parameter proposed in [15]
was used to estimate the varying noise level, which by adap-
tively choosing one band with minimum energy. In this paper,
we must make the number of useful bands closely correlate with
a MiMSB parameter. Regardless of changing level of noise,
a normalized minimum band energy (NMinBE) parameter is
proposed to precisely decide the number of useful bands. An
NMinBE parameter is determined as follows:

(13)
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Fig. 6. Different types of noises focusing on different frequency bands.

where the operator selects the minimum band energy
among all 32 band energies for a given frame, and is the
logarithmic operation. The number of useful bands, , re-
quired to yield reliable information. Fig. 7 displays the relation
between and [see (14), shown at the bottom
of the bottom of the page].

It is observed that a large should be used at a low noise
level (corresponding to a high SNR), and a small should
be used at a high noise level (corresponding to a low SNR). Ac-
cording to (14), for the th frame, the first fre-
quency bands with larger energies are adaptively selected to re-
move noise component. The BSE parameter with an adaptive
band selection method, called the adaptive band-partitioning
spectral entropy (ABSE) parameter, is defined as follows:

(15)

Generally, variation in the background noise level causes
to vary with time. This results in a varying over

an entire signal. To evaluate the efficiency of adaptive band
selection, factory noise was added to a recorded speech signal,
and then the results of ABSE-based method are compared
with that of the BSE-based one. The ABSE parameter can be

Fig. 7. Relation between N and NminBE parameter.

approximately evaluated by manually selecting useful bands
according to the relationship between and noise level,
as described in (14). Fig. 8(a) and (b) plots the waveform of
someone’s saying the Mandarin digit “eight” with increasing
level of factory noise and the corresponding spectrogram,

otherwise

(14)
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Fig. 8. Illustration of the efficiency of NMinBE parameter for applying in BSE parameter. (a) Waveform of the Mandarin digit “eight” at SNR �5 dB with
increasing level of factory noise. (b) The corresponding spectrogram. (c) The contour of logarithmic BSE value under changing level of noise. (d) The NMinBE
parameter proposed in this study. (e) The number of useful bands obtained from the relation between N and NMinBE, as shown in Fig. 7. (f) The contour of
logarithmic ABSE value obtained by manual selecting useful bands.

respectively. The endpoint is not easily detected in an adverse
environment due to that the BSE parameter considers some
harmful bands, as shown in Fig. 8(c). Observing Fig. 8(d), it
is shown that the proposed NMinBE parameter can represent
accurately the variation of noise level and provide the number
of useful bands of corresponding frame, shown in Fig. 8(e).
Fig. 8(f) states that the ABSE with selection of useful bands
can greatly improve the performance of endpoint detection,
especially at low SNRs. In order to make the ABSE-based be
reliable in practical applications, the next section will develops
a procedure for selecting useful bands adaptively for on-line
implementation.

III. ENDPOINT DETECTION ALGORITHM

Generally, endpoint detection is the crucial part in speech
recognition systems. It is required to enable the systems to op-
erate smoothly in a practical test. Although existing endpoint
detection algorithms are extremely accurate, they all depend
on complicated computation and are not reliable in real appli-
cations. For example, Wang et al. [10] proposed a robust al-
gorithm, which is an off-line method. Nemer et al. [17] used
higher-order-statistics (HOS) parameter to detect speech, but
the calculation of this parameter required too much computing
time. Wu et al. [12] suggested an ABS method as a noise can-
cellation to perform ATF-based endpoint detection; however,
their ABS depends on all information of the entire recorded
signals. Although those algorithms are inappropriate for prac-
tical implementation, some ideas related to those algorithms are
adopted herein. The ABS method proposed by Wu et al. [12]
is strong with respect to noise cancellation. The ABS was used
to preserve the useful bands (or discard the harmful bands) for
each frame, but the band selection depends on an entire recorded
signal. The drawbacks of ABS are, thus, as follows.

— First, the decision of band selection is not immediately
determined. Since the method is an off-line strategy,
its decision must be determined by analyzing an entire
recorded signal.

— Second, for practical purposes, the indexes associated
with the harmful bands vary with time for entire recorded
signals; however, Wu et al. did not address this issue.

TheABSismodifiedherein, toovercomethese twodrawbacks,
in the development of RABS. Previous work has shown that ac-
curately selectinguseful bandsgreatly improves the performance
of endpoint detection in noisy environments. Wu et al. [12] as-
sumed that the indexesofharmful bands werefixed; however, this
assumption does not hold. In fact, the indexes of harmful bands
vary with time. How can we detect that when index of harmful
bands vary with time? From the Fig. 8(f), we observe that the se-
lected bands are not contaminated by noise; the entropy value in
nonspeechsegmentsissmallandsmoothlyandslightlyvarieswith
time.Similarly,reviewingFig.8(c),theselectedbandsarecontam-
inated by background factory noise. However, the entropy value
in nonspeech segments is large and its variation is also violent. A
comparison of foregoing two observations reveals that the deter-
minedentropyvalue isquite largeandviolentlyvaryingwhenever
theconsideredbandsincludeharmfulbands.Incontrast, thedeter-
mined entropy value is small and its variation is very smooth if the
considered bands do not include harmful bands. This finding pro-
vides a hint about how to detect whenever the indexes of harmful
bands vary with time.

A. On-Line Detection

In order to detect the indexes of harmful bands immediately,
an algorithm which can be performed in on-line is essential. An
on-linespeechdetectionmethodwhichmaybeworkedinrealtime
with minimal processing delay was implemented in [16]. Owing
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Fig. 9. An on-line detection. (a) Waveform of an utterance of the digit “one.” (b) Detection of speech segments together with the logarithmic ABSE value and
speech thresholds T .

to time-varying noise environments, the detection method sets an
adaptive speech threshold to classify speech or nonspeech. The
adaptive decision can be described as follows. During a short ini-
tializationperiod, themeanandvarianceof the logarithmicABSE
valueisestimatedoverthenonspeechsegments.Theinitialspeech
threshold is computed from the local noise statistics. An adaptive
speech threshold is determined by

(16)

where and are the mean and variance of the logarithmic
ABSE value during the noise-only frame, respectively, and is
an adjustment coefficient by experiment. Then, the threshold
is compared to the value of the most recent frame. Whenever the
difference surpasses a specified threshold, speech is detected.
If a given frame is detected to fall in a nonspeech period, the
speech threshold is updated. During nonspeech period, the
relative mean and variance of the logarithmic ABSE value are
updated as follows:

(17)

(18)

(19)

(20)

where is also experimentally determined.

On the contrary, the speech threshold cannot be updated
during speech period. Fig. 9 depicts an on-line algorithm for
speech detection in an utterance of the Mandarin word for
“one,” together with the logarithmic ABSE value and speech
threshold . The results indicate clearly that the speech
threshold is updated during a nonspeech segment and main-
tained during a speech segment.

B. Refined Adaptive Band Selection

Observing from Fig. 9, we can find that the detection is ro-
bust against a tolerable variation of ABSE. If the contour of
ABSE appears an abrupt peak which is caused by considering
the harmful bands, the on-line detection will fails. According to
the above statement, the occurrence of abrupt ABSE value indi-
cates the possibility of variation of harmful bands. To stand for
possibility of performing band selection on each frame, we pro-
pose a decision of band selection (DBS) parameter. The DBS is
defined as follows:

otherwise
(21)

The DBS parameter can be used to deal with an abrupt change
in contour of ABSE to avoid wrong decision. If DBS is low for a
given frame, it implies that the considered bands do not include
any harmful band and the indexes of frequency bands with noise
power do not vary violently with time. The indexes can be main-
tained from the previous frame to the current frame until DBS
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Fig. 10. Flowchart of the proposed ABSE-based endpoint detection algorithm.

TABLE I
CPU TIME OF RUNNING VARIOUS TASKS IN MATLAB PLATFORM

is high; then, the task of harmful bands detection during low-
ness of DBS period is cancelled to reduce required computing
power. Similarly, if DBS is high for a given frame, then the con-
sidered bands include some harmful bands, which result in an
abrupt change in contour of ABSE. We refer that the indexes
of harmful bands vary violently with time. Therefore, the task
of harmful bands detection is performed in this frame. Table I
lists the CPU time of various tasks performed on a Pentium-4
2.6 G, for 100 frames of a noisy speech. The following obser-
vation shows that the CPU time of RABS is much less than that
of ABS. Although the complexity of computing ABSE param-
eter that is related the information of deciding band selection is
more complicated than that of computing ATF parameter, the
function of the proposed DBS parameter can make the waste
of computing power reduce greatly. The decision of band selec-
tion in RABS method, which is an on-line algorithm and may
be implemented in real time, is only depended on the current
frame, whereas the ABS method is an off-line strategy and its

decision is made from all frames (100 frames). The CPU time of
the ATF-based endpoint detection algorithm is about two times
of that of the ABSE-based one and it increases with the total
frame size. However, the CPU time of the ABSE-based algo-
rithm is less dependent on the frame size.

C. ABSE-Based Endpoint Detection

Flowchart diagram of the proposed ABSE-based endpoint de-
tection algorithm is presented in Fig. 10. The proposed algo-
rithm using RABS is described as follows.

1) Initialization: After an initial period of noise only,
noise level, indexes of harmful bands and initial speech
threshold are calculated in turn.

a) Assuming that the previous five frames contain only
noise, the bands with larger frequency energy are the
harmful bands. The NMinBE parameter determines
the number of useful bands and the indexes of these
harmful bands are discarded. The ABSE parameters
for previous five frames are, thus, obtained by (15).

b) The initial speech threshold is determined by (16),
and and are computed by (22) and (23)

(22)

(23)
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TABLE II
PERFORMANCE BETWEEN THE PROPOSED ABSE-BASED ALGORITHM AND ATF-BASED ONE IN [12] FOR VARIOUS NOISE CONDITIONS

2) Updating of speech threshold: The speech threshold is
updated for each frame in the following manner.

• When the ABSE value determined for a given frame
exceeds , one of two possibilities obtains: the first
is that the segment contain speech, and the other is
that ABSE in error, as occurs when harmful bands are
considered. Moreover, harmful bands must again be
detected. If the determined ABSE remains greater than

, then the speech is detected and is not updated.
• Similarly, if the determined ABSE is less than

last, then the noise characteristics vary too violently
to assume that the frequency bands in which noise is
concentrated are the same as in the previous frame;
then, the mean and variance of the logarithmic ABSE
value are updated by (17)–(20) to form a new speech
threshold .

3) The starting point of speech is detected if the ABSE value
continues to exceed .

4) Finally, the end point of the speech is detected when
ABSE is less than .

IV. PERFORMANCE ANALYSIS

In this section, the performance of the ABSE-based endpoint
detection algorithm is evaluated. The probabilities of correct
and false detection of four kinds of noise (vehicle, multitalker
babble, factory, and white noises) are calculated and compared
with those associated with the ATF-based algorithm at various
SNRs. The speech database used in the experiments includes
a set of isolated utterances of the ten digits in Mandarin,
spoken by 100 speakers. The sampling rate was 8 KHz and the
speech was stored as 16-bit integers. The following metrics
are defined to evaluate the performance of the proposed
algorithm.

— Probability of correctly detecting speech frames, :
Computed as the ratio of correct speech detection to the
total number of hand-labeled speech frames.

— Probability of falsely detecting speech frames, : Com-
puted as the ratio of incorrectly classified speech frames
or noise frames to the total number of frames.

The practical implementation of the ABSE-based endpoint
detection algorithm is also compare to that of others in a real
car environment with musical background noise.

A. Artificially Added Noise

Four noise signals with various SNR levels were used in this
experiment. The four noise signals-vehicle noise, multitalker
babble, factory noise and white noise - were taken from the
NOISEX-92 database. The noise signals were added to the
recorded speech signals with different SNRs including 0, 10,
20, and 40 dB to generate noisy speech signals. Using these
various types of noise and different SNRs, the and of
proposed algorithm were compared with those of the ATF-based
algorithm. Table II compares the performance of ABSE-based
and ATF-based endpoint detection algorithms. The ABSE-based
algorithm is observably superior to the ATF-based algorithm,
especially at low SNRs. At high SNRs, the ATF-based algorithm
performs as well as the ABSE-based one; however, at low SNRs
the ATF parameter related to pure energy-based feature is no
longer effective. Although ABS associated with ATF-based
algorithm can extract useful information, the selected bands
are not always useful for detecting endpoints. Additionally,
in ATF-based endpoint detection, the indexes of the harmful
bands are assumed to be fixed with time. This assumption is
incorrect. Consequently, the performance of the ATF-based
approach is seriously degraded under adverse conditions. In
this study, the entropy is used to capture the banded structure on
speech spectrogram and further classified speech or noise. For
vehicle and white noises, whose frequencies are spread simply
over the spectrum, the ABSE-based algorithm is superior to the
ATF-based one under this case since their spectrograms do not
showobviousabandedstructure.Thefactorynoise isasdescribed
above. Although the multitalker babbling noise, although the
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Fig. 11. Compared performance of endpoint detection using different parameters for an utterance with musical background noise inside a car. (a) Waveform
of an utterance in Chinese: “Guo Li Chiao Tung Da Xue (National Chiao Tung University).” (b) The corresponding spectrogram (c) Contour of spectral energy.
(d) Contour of zero-crossing rate. (e) Contour of ATF. (f) Contour of ABSE.

noise is pronounced by human, the banded nature of speech
spectrumsisweaker thanthat inspeechsignals.Consequently, the
proposed ABSE-based algorithm still successfully outperforms
the ATF-based algorithm under such conditions. The average
probabilityofcorrectdetectionofspeechframesusingtheABSE-
based algorithm exceeds that using the ATF-based algorithm
by around 8.6%. Similarly, the average probability of false
detection speech frames using the ABSE-based algorithm is less
than that using the ATF-based algorithm by around 4.9%, mainly
because the proposed ABSE-based parameter is a robust feature
against noise, which exploits the inherent characteristic of
banded nature on speech spectrogram. Besides, the ABS method
associated with ATF-based algorithm has critical weaknesses
that have been described above.

B. Recordings in a Car

Endpoint detection was performed using recordings of a real
car with musical background noise to evaluate the effectiveness

of the proposed ABSE parameter in a real environment and to
compare it with other parameters. To show the performance of
endpoint detection using different parameters, for an utterance
in Chinese, “Guo Li Chiao Tung Da Xue,” made with musical
background noise in a car in Fig. 11(a). The corresponding
spectrogram shows in Fig. 11(b). It is displayed that the
banded nature appears only in speech spectrogram not in
noise one. Fig. 11(c) and (d) demonstrates that the short-time
energy and ZCR both fail in a car environment. Fig. 11(e)
shows that the ATF parameter outperforms the other two. The
ATF parameter can extract useful frequency information by
selecting proper bands; however, it is still a purely energy-based
parameter. The ATF parameter fails in a rapid increase of
noise. Fig. 11(f) indicates that the ABSE parameter is superior
to the other parameters, especially in a rapid increase of
noise. Although noise level increases abruptly, the ABSE
parameter catches only the banded nature not energy on
speech spectrogram. The banded nature has shown that it
can excellently specify a speech signal and be robust to
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TABLE III
COMPARISON OF THE PROPOSED ABSED-BASED ALGORITHM AND ATF-BASED ONE IN CAR WITH MUSICAL BACKGROUND NOISE

various types of noise in our experiments. In Table III, the
ABSE-based algorithm is compared with the ATF-based one
in [12] testing in a car with musical background noise. The
speech database used in the experiments contains ten isolated
controlled commands in Mandarin Chinese produced by 15
speakers. During the entire process, the car was moving and
its radio was on. It is observed that the total probability of
correct detection of the proposed ABSE-based algorithm is
greater than that of the ATF-based one by about 10.6%,
and the total probability of false detection of the proposed
ABSE-based algorithm is smaller than that of the ATF-based
one by about 5.9%

V. CONCLUSION

The objective of this study is to enhance the banded nature
on speech spectrogram to develop a robust endpoint detection
algorithm in adverse environments. This study has shown
that the frequency energies of various types of noise are
concentrated in different frequency bands and the inherent
characteristic of banded nature is robust to noise. Based on
the above findings, a new feature parameter, BSE, is first
proposed in this study. To select useful bands effectively and
accurately, a new RABS method, which is modified from
ABS, was presented in this study since the indexes and
numbers of harmful bands vary with time. The successful
RABS method is strongly depended on an on-line detection,
which is reliable in practical environment. Finally, the RABS
method incorporated the BSE parameter to form a new
ABSE-based endpoint detection algorithm that is effective
in adverse conditions. Experimental results reveal that the
ABSE-based algorithm performs excellently in the presence
of four types of noise (vehicle, multitalker babble, factory,
and white noise) at various SNRs. It can also be performed
successfully in real cars with musical background noise. The
entropy-based parameter is related only to the variation of
spectral energy but not to the amount of spectral energy,
so the ABSE-based algorithm outperforms the energy-based
algorithm,especiallyinchanginglevelofnoise.TheABSE-based
algorithm achieved a probability of correctly detection that
was about 8.6% greater than that of ATF-based one and
the probability of false detection that was lower by around
4.9%. Given a rapid increase of noise, the ABSE feature
parameter is clearly superior to others, including short-time
energy, ZCR, LPCs, and Cepstral features. Our future work
will apply the proposed endpoint detection algorithm to a
speech recognition system in a real environment, such as in
a car, with a view to achieving a high recognition rate. We
recommend that the endpoint detection algorithm proposed
in this paper be replicated in a voice-controlled environment.

The performance of speech recognition is excellent if an
endpoint detection algorithm is highly reliable in real, adverse
environments. Furthermore, voice-controlled equipment will
become popular with consumers. For example, in KTVs,
singers will be able to order songs using a microphone,
without pushing a button, in an environment with musical
background noise and multitalker babble.
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