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 

Abstract—In recent years, smart devices have become 

ubiquitous. Many of these devices are equipped with global 

positioning system (GPS), Wi-Fi, and other sensors. With their 

high mobility, the idea of “mobile devices as probes” has been 

attracting more and more attention. Mobility and flexibility 

offered by smart mobile devices are what traditional fixed sensors 

lack. However, mobile devices’ power supplies are quite limited. 

Although GPS is accurate, its high power consumption somewhat 

limits its accessibility and sustainability. In contrast, Wi-Fi is less 

power-hungry, but at the same time, less accurate. For the sake of 

sustainability, by adopting Wi-Fi as an alternative to GPS, longer 

operation is attainable at the cost of losing some degree of 

accuracy. In this paper, a Wi-Fi-based algorithm based on 

log-normal probability distribution of distances with respect to 

received signal strength is proposed. It is suitable for an outdoor 

environment where Wi-Fi Access Points (APs) are abundant. 

Simulations are conducted over known AP locations, and results 

show that the proposed algorithm can save, on average, as much 

as 35% more battery power than GPS does; the average 

localization error is about 18 meters, and the average velocity 

estimation error is about 25%. 

 
Index Terms—Mobile phone sensing, Wi-Fi-based localization, 

received signal strength indicator, log-normal distribution, 

positioning algorithm 

 

I. INTRODUCTION 

N recent years, smart mobile devices have become so 

prevalent. With the advent of new technologies, their sizes 

are now smaller and prices also cheaper. Most of them are 

equipped with many kinds of hardware sensors, such as 

accelerometer, global positioning system (GPS), magnetic field 

sensor, et cetera. Different wireless networking standards are 

supported too, for example, general packet radio service 

(GPRS), Wi-Fi, and Bluetooth [1, 2]. People carry their devices 

wherever they go, and help them with lots of their daily routines. 

As a matter of fact, those devices now play a very important 

role in our daily life. The number of smart mobile devices in 

active use today is on the rise. 

Traffic information is of great importance to commuters and 

drivers. Traditionally, traffic condition monitoring relies on 
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stationary roadside sensors which are deployed at some 

predetermined locations. Once deployed, their locations are 

seldom changed. If more road sections are to be monitored, 

more sensors have to be deployed at those locations, which is 

laborious and costly. 

Nowadays, smart devices seem to be ubiquitous. Their 

capabilities offer new opportunities for data collection. The 

idea of “mobile devices as probes” has begun to gain much 

more attention than ever, since the necessary infrastructure, 

such as base stations, wireless access point (AP), and so forth, 

are already in place [3]. End users can write their own programs 

and install them on their devices. Information can then be 

retrieved from devices to perform real-time profiling and data 

collection of the surrounding environment. Large areas can be 

covered while mobile devices are on the move. They form a 

very large wireless sensor network (WSN). Mobility and 

flexibility offered by smart mobile devices are what traditional 

stationary sensors lack [4].  

Power supply is a major concern for most mobile devices. 

Due to their relatively small size and light weight, their power 

supply relies heavily on the battery they carry. Some of the 

on-device sensors consume more battery power than others. If 

used continuously for a prolonged period of time, battery would 

be drained out in no time. GPS is one of those power-hungry 

sensors. Although localization accuracy of GPS is fine, the 

characteristic of high power consumption somewhat limits its 

availability and sustainability. Besides, some devices do not 

come with GPS [5] since it is considered unnecessary. 

Moreover, GPS does not work when inside a building. To make 

it worse, in urban cities where the skyline is made up of lots of 

tall skyscrapers which, to some extent, block the view of the 

sky, also known as “urban canyons [6]”, GPS works poorly.  

Wi-Fi, on the other hand, consumes less power compared 

with GPS. It even works in indoor environments where there 

are Wi-Fi APs around. If coverage area of APs is large, 

localization accuracy can be improved. Years before, Taipei 

City Government had begun to widely deploy Wi-Fi APs all 

over Taipei City [7]. As the number of APs is increasing, these 

APs can be exploited for the purpose of localizing an object. In 

this paper, a Wi-Fi-based algorithm for vehicle localization and 

velocity estimation is proposed. Some accuracy of localization 

and velocity estimation is lost in exchange for keeping mobile 

devices functional longer to collect as much traffic information 

as possible. 

This paper is organized as follows. Section II discusses the 

related work in detail. The proposed algorithm is discussed in 
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Section III. Section IV presents the experiment results. Finally, 

conclusions and future work are given in Section V. 

II. RELATED WORK 

In this section, range-based localization algorithms and 

range-free localization algorithms are discussed in following 

subsections. 

A. Range-based Localization Algorithms 

Range-based localization algorithms require precise 

measurement of distance, angle, or propagation time. 

Commonly-seen methods include: time of arrival (TOA), time 

difference of arrival (TDOA), and received signal strength 

indicator (RSSI) –based. 

 

1) Time of Arrival 

Time of arrival (TOA) measures the travel time of a radio signal 

from a transmitter to a remote receiver. Transmitter-receiver 

separation (radius) can be measured by the time the signal is 

sent from the transmitter and the time it is received by the 

receiver, plus the traveling speed of signal. The target lies on 

the circle centered at the transmitter with radius estimated 

above. Data from three or more transmitters/receivers are 

needed to narrow down the target location. The algorithm to 

localize the target of interest uses geometry to calculate the 

intersection of circles [8], which is called “trilateration [9]” and 

discussed as follows. 

Suppose there are three nodes, A, B, and C, located at (xA, yA), 

(xB, yB), and (xC, yC) respectively. The distance between and the 

target node and each of A, B, and C has been determined to be 

rA, rB, and rC respectively. The trilateration process is to find a 

point (x', y') that minimizes ω by solving Equation (1) [9]. 
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(1) 

By observing Equation (1), one can find out that in order to 

minimize ω, each term in (1) must be zero. Node A, B, and C 

can be thought of as APs, radius rA, rB, and rC the 

transmitter-receiver separation, and the three circles the 

coverage areas of the three APs. If ω equals zero, this implies 

that the three coverage areas intersect at one point P, shown in 

Figure 1(a). 

 

 
Fig. 1.  (a) Three circles intersect at one point P [8], (b) Three circles overlap 
each other [10]. 

However, in reality, this is not always the case. Instead, 

coverage areas overlap each other most of the time, as shown in 

Figure 1(b), since transmitter-receiver separation measurement 

has some inherent errors. The point of interest that minimizes ω 

then lies in the overlapping area. 

GPS, for example, is one of those systems that adopt TOA 

algorithm [11]. TOA requires precise synchronization between 

transmitters and receivers. Dedicated hardware, which has high 

power consumption, is required to perform this task. 

 

2) Time Difference of Arrival 

Time difference of arrival (TDOA) uses the arrival time 

difference (TD) of a signal at some spatially separated receivers 

to determine the target’s location. It can operate in two modes 

which are illustrated in following subsections. 

a) Mode 1 

In Loran-C [12] -like systems, wavelets are sent from three or 

more transmitters (reference nodes). One of those transmitters 

serves as master, and the rest of them as secondaries [13]. The 

receiver (the target of interest, TOI) measures the subtle 

differences in the time it takes for wavelets to be received by 

the receiver. The localization procedure is on the receiver. 

b) Mode 2 

In contrast, in this mode, the target of interest emits a reference 

wavelet to multiple fixed reference nodes. These fixed nodes 

then forward TD information to a centralized controller to run 

the localization procedure. 

Each pair of two fixed nodes can determine a hyperbola to 

which all possible locations of the target that has a constant 

differential distance can be mapped. Location estimation is the 

intersection of all hyperbolas. Like TOA, special hardware and 

power consumption are major drawbacks. [14] is one of those 

systems that adopt TDOA. 

 

3) RSSI-based 

For some localization algorithm, distance measurement is 

required. To obtain an estimated transmitter-receiver separation, 

log-distance path loss model [15] is used in [16]. As 

electromagnetic wave propagates through space, its power 

density reduces routes. According to this model, the received 

signal strength (RSS) in dB at distance d is given by (2), where 

npathloss indicates rate of path loss increase with distance, and D0 

is a reference distance from the transmitter. D0 and 𝑃𝐿𝐷0  are 

often determined empirically. npathloss varies depending on 

surrounding environments. It is determined empirically. Table I 

shows typical values of npathloss in different situations [17, 18]. 


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In fact, even when the distance between transmitter and 

receiver is the same, the RSS might differ. This is the result of 

terrain variation and obstacles in between, also known as 

“shadowing effect [19]”, which is a factor [16] failed to 

consider. Using (2), if RSS is the same, the inferred distance 
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between transmitter and receiver will always be the same. In 

real-life situations, this is not always the case. Experiments 

conducted by John J. Egli [20] showed and it is now widely 

accepted that RSS fluctuates with a log-normal distribution 

(lnƝ(μ,σ)) with respect to distance. Taking shadowing effect 

into account, Equation (2) becomes (3), where Xσis a Gaussian 

random variable with zero mean and standard deviation σ, and 

is determined empirically. 

X
D

d
nPLPL pathlossDd 












0

log 10
0

 
(3) 

 
TABLE I 

VALUES OF PATH LOSS EXPONENT IN DIFFERENT ENVIRONMENTS 

[17] 

Environment VALUE OF NPATHLOSS 

Free space 2 
Urban area cellular radio 2.75 ~ 3.5 

Urban area cellular radio with shadowing effect 3 ~ 5 

Indoor line-of-sight 1.6 ~ 1.8 
Indoor line-of-sight with obstacles 4 ~ 6 

 

Upon receiving signal from a transmitter, RSS can be 

computed. Plug known parameters into (3) and solve the 

equation, distance can be determined for used in other 

localization algorithms. 

B. Range-free Localization Algorithms 

This type of localization algorithms are relatively simple 

compared with range-based ones.  

 

1) Centroid Localization 

Arvind Thiagarajan et al. [5] proposed a traffic delay estimation 

algorithm, in which two algorithms are used to determine user’s 

current location. One algorithm acquires GPS coordinates 

every second to form user’s traveling trace. Velocity can then 

be easily calculated by dividing the distance between two 

sampling points by the time difference between these two 

points. Nevertheless, as mentioned above in Section I, higher 

GPS coordinates acquisition rate often leads to shorter lifetime. 

The other algorithm adopts a range-free scheme. Wi-Fi scan is 

performed continuously with a predefined time interval 

between each scan. Locations of nearby APs observed during 

the scan are looked up in a war driving [21] database 

established in advance. User’s location is approximated by the 

centroid localization (CL) algorithm [22]. 

In CL settings, there are multiple anchor nodes with known 

locations and overlapping coverage. All anchor nodes are 

synchronized so that their beacon signals do not overlap in time. 

The target listens for a fixed time period t, and calculates the 

connectivity metric (CMi), defined in (4), for every anchor node 

it discovers. The target infers its location (x', y') by selecting a 

set of anchor nodes from those discovered whose CMs exceed a 

certain threshold and calculating the center of gravity (Equation 

(5)) of this set of nodes. 
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The CL algorithm has one weakness: It is easily affected by 

one or more APs that are located relatively farther away from 

the rest of the APs, the so-called “outliers” in statistical terms. 

For instance, in Figure 2, if access point H is not taken into 

account, the approximated location is, say, at point P; if H is 

taken into account, the localization result would be drawn 

toward H to P' [23]. The higher localization error of outlier is 

generated by using this algorithm. 

 

 
Fig. 2.  Impact of outliers on localization result [23]. 

 

2) Weighted-Centroid Localization 

Jan Blumenthal et al. [24] proposed a weighted-centroid 

localization (WCL) algorithm which attempt to reduce the 

effect of outliers. Equation (5) can be expressed as Equation (6), 

where every AP has the same weight, 1. But in WCL algorithm, 

each AP is assigned with a different weight. Equation (6) can 

then be re-written as a more general form, as in (7). 
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In [24], the weight is defined by (8). APs that are closer to the 

target are weighted more than those that are farther away from 

the target. Therefore, weight and distance are inversely related. 

In order to further reduce the effect of outlier APs, the distance 

is raised to a power g. 
g
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(8) 

This WCL requires distance estimation. Frii’s free space 

propagation model [25] is used (Equation (9)). In real-life 

environments, this model is not practical, as radio signal is 

interfered [24] by obstacles between transmitter and receiver, 

multipath, shadowing effect, diffraction at edges, absorption of 

electromagnetic radiation, reflection, etc. 
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3) APIT 

APIT [26] is an area-based localization algorithm. It performs a 

point-in-triangulation (PIT) test to narrow down possible area 

in which the target lies. PIT test is conducted as follows. First, 

arbitrarily select three nodes from candidate anchor nodes 

(nodes discovered by scanning) and check if the target is inside 

the triangle formed by these three nodes. After exhausting all 
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3

APn
 triplets of nodes, APIT estimates the target’s location 

to be the center of gravity of the intersection of all triangles. 

A perfect PIT test is not feasible in real situation, therefore 

approximate PIT (APIT) test is used instead. In APIT test, if a 

node P is inside △ ABC, when none of P’s neighboring nodes 

are closer to/further from (the departure test) all three vertices 

at the same time, P is inside the triangle; otherwise P is outside 

the triangle. The assumption that the longer the distance the 

weaker the RSSI is also made in inside/outside decision making 

of departure test. In order to improve inside-outside accuracy, 

more neighboring nodes must be taken into account. Therefore, 

APIT has higher demand on the number of nodes required to 

perform localization. Also the computation overhead is high as 

the number of neighboring nodes grows. 

III. A WI-FI-BASED ALGORITHM FOR VEHICLE LOCALIZATION 

AND VELOCITY ESTIMATION 

A localization algorithm which makes use of the public Wi-Fi 

infrastructure is proposed in order to overcome the drawbacks 

of traditional fixed traffic monitoring system. It is detailed in 

this section. 

A. Problem Definition 

Real-time traffic information is of great value to commuters, 

driver, and traffic operators. Data collected can be used in many 

applications, just to name a few (Table II). 

 
TABLE II 

REAL-TIME TRAFFIC INFORMATION APPLICATIONS 

Application Purpose 
Desired Time 

Frame 

Incident 
detection 

Notify traffic operators of incidents 
to which they can respond.  

Instantaneous 

Traffic 

management 

Provide information for operators 

to control the timing traffic signals 
to improve traffic performance.  

Instantaneous / 

real-time 

Traveler 

information 

Provide information about traffic 

congestion, route planning, travel 
time estimation, etc.  

Real-time 

Performance 

analysis 

Enable operators to quantify the 

performance of the network over 
time for analysis and improvement.  

Historic 

 

As mentioned earlier in Section II, the traditional stationary 

traffic monitoring system is not flexible enough. The emerging 

opportunities of “mobile devices as probes” seem like potential 

alternatives. Many researchers have been exploiting this idea 

and propose many applications that make use of GPS or Wi-Fi. 

GPS has high accuracy. It requires dedicated electronics that 

have high power consumption, making it less suitable for 

mobile devices to operate for a prolonged period of time. 

Sampling GPS coordinates continuously with a very short time 

interval between each sampling drains out the battery in no time. 

On the contrary, Wi-Fi is less power-hungry. Its localization 

accuracy is not as good as that of GPS, but still within 

acceptable range. Like many other algorithms, Wi-Fi is used for 

localization in this paper. It can operate much longer than GPS 

does, but at the cost of accuracy. Devices that have sustained 

power supply are out of the scope of this paper. 

B. The Proposed Localization Algorithm 

The proposed localization algorithm is elaborated in detail in 

this section. 

 

1) Model Building 

Due to shadowing effect [19], RSSI varies even at the same 

location. According to [20], RSSI fluctuates with a log-normal 

distribution instead of a uniform distribution. If log-distance 

shadowing model (Equation (3)) is used to infer the 

transmitter-receiver separation, sometimes the inferred distance 

could be somewhat unreasonable (the probability, with RSSI 

fixed, is too small). If the inferred distances are used in WCL 

[24], the corresponding APs would be over weighted (when the 

inferred distance is very close) or underweighted (when the 

inferred distance is too far away). That is the reason why 

probability is taken into consideration in the proposed 

localization algorithm to augment weight determination. 

Like [27], log-normal distribution models of different RSSIs 

must be built for every AP in the WSN. The probability density 

function (PDF) is defined in Equation (10) [28]. 
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To build the model for different RSSIs, there are two 

parameters that need to be determined, that is, mean μ and 

standard deviation σ. To begin with, APs’ locations must be 

identified. Then, at every distance, the receiver scans for nearby 

APs and records their RSSI values. The receiver also rotates 

about APs to record RSSI values in order to accommodate 

environmental variations. This process should be repeated for 

every AP in the network to build a complete profile (database) 

of the environment for later use in the localization procedure. 

 

2) Localization Algorithm 

The proposed localization algorithm has three steps. 

a) Step 1 

After scanning for nearby APs, suppose n APs are discovered. 

Their respective RSSIs r1, r2, …, rn are recorded. Each AP is 

assigned with a weight wi according to the weight function (11), 

where di is the estimated distance between the i-th AP and the 

target, RSSIip ,  is the probability that the distance between 

the i-th AP and the target is di when RSSI is fixed at γ. Distance 
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di is estimated using (3). To calculate RSSIip , , the 

corresponding parameters μ and σ must be looked up in the 

database created in advance (Section III.B.1). If n = 2, WCL 

with weight function (11) is used instead as the final estimation 

result, and there is no need to go through Step 2 and 3. 
g
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b) Step 2 

Arbitrarily select n-1 APs (AP1, AP2, …, APj-1, APj+1, …, APn , j 

= 1, 2, …, n) from those discovered in Step 1, and then 

“multilateration” [29] is applied on these n-1 APs. Trilateration 

is merely a special case of multilateration. Equation (1) can be 

rephrased as a more general form, as in (12). After 

multilateration, the resulting point (x'j , y'j) is assigned with a 

weight w'j, as defined in (13). 
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c) Step 3 

According to [23], the closer the anchor points are to the target, 

the better the approximation. After exhausting all 



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



1n

n
 

n-1–tuples, there will be n points which are closer to the target 

than those APs discovered in Step 1. The target’s real location 

can be narrowed down to a smaller region. Then WCL with 

weight function (13) is applied on these n points to arrive at the 

final estimation result. 

 

3) Discussion 

Range-based localization algorithms require dedicated 

hardware that usually have high power consumption; 

range-free algorithms are simple, but they can only narrow 

down possible location of TOI to a smaller region. The 

proposed algorithm adopts a fingerprint-like hybrid method 

(Figure 3). Probabilities are included to reduce the unfavorable 

effect of outliers. Thus, the proposed algorithm can achieve 

better approximation of TOI, and does not consume as much 

battery power as GPS does. 

 
 

Mobile Device 
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Network) 

(Lookup) (Localization) 

Location 

(Velocity) 

 
Fig. 3.  Architecture & data flow. 

 

However, the proposed algorithm has some inherent 

constraints. It requires that APs be abundant and their locations 

be known, and log-normal models be built in advance; radio 

transmission may be interfered more severely in indoor 

environment than in outdoor environment, so the proposed 

algorithm is more suitable for outdoor environment. Although 

its localization accuracy is not as good as that of GPS, it is still 

acceptable in outdoor environment and velocity estimation 

since vehicles are on the move and their velocity keeps 

changing too. 

IV. SIMULATIONS & RESULT ANALYSES 

In order to evaluate the accuracy of localization and velocity 

estimation, a simulation environment is built. This section 

gives out the detail of the simulation environment and analysis 

of the results. 

A. Simulation Settings 

Simulation settings, parameters, localization algorithms to be 

compared with, platforms, and programming languages used in 

this paper are described as follows. Performance metrics are 

also defined in this section. 

 

1) Basic Assumptions 

The proposed algorithm requires that APs’ locations be known 

and log-normal models be built in advance and both of them be 

stored in database. This database is stored on the device. If this 

algorithm is deployed on a metropolitan scale, the size of the 

database could be very large, making it not suitable for being 

stored on mobile devices due to their limited resources and 

capabilities. In this situation, the database and localization 

procedure might be offloaded to a centralized server. 

Nevertheless, this would require that mobile devices be 
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connected to a network to communicate with the server. More 

processing overheads as a result of communications with the 

server are needed, and thus consume more battery power. This 

is out of the scope of this paper. 

In addition, each AP’s radio transmission pattern, once 

determined and stored in database, is assumed to be constant 

across time and fluctuates with a log-normal distribution. 

 

2) Simulation Design 

In order to simulate radio transmission of APs, experiments 

(Section III.B.1) are conducted on Nation Chiao Tung 

University campus to collect data. A tablet PC is used to record, 

at every distance, RSSI values of APs whose locations have 

been identified. The tablet is also rotated about APs to 

accommodate environmental variations. The parameters, i.e. 

mean and standard deviation, of log-normal probability models, 

plus the Gaussian random variable X σ  and the path loss 

exponent npathloss in Equation (3), are determined based on the 

collected data. 

Theoretically speaking, Xσ has a zero mean. The path loss 

exponent that makes the mean of the distribution closest to zero 

is chosen as npathloss (Figure 4). In the experiment, these two 

parameters are determined to be npathloss = 3.219 and Xσ ~ 

Ɲ(-0.00387252905148583, 7.998845433145), and are used in 

later simulation. Figure 5 shows the frequency and the PDF of 

the corresponding normal distribution. 

 

 
Fig. 4.  PDFs of different path loss exponents. 

 

 
Fig. 5.  Frequency of △RSSI2 and PDF. 

The t-test [30] with H0 (null hypothesis): μ= 0 and H1 

(alternative hypothesis): μ ≠ 0 is also performed. With 

confidence level α=5%, the t-statistics t = -0.082770267 does 

not lie in the rejection region | t | > tα=5%, n→∞, so H0 is not 

rejected. 

With the same set of data, log-normal models of different 

RSSIs with respect to distances can be built, as shown in Figure 

6. 

 

 
Fig. 6.  PDFs of distances for different RSSIs. 

 

After determining those parameters, RSSI can be generated 

by using a method often appears in genetic algorithms called 

“fitness proportionate selection [31]”. The method is described 

as follows. At first, a random sample location is generated. The 

distance di’s between this sample location and each AP are 

calculated using surface distance [32]. Then, at distance di, a 

vertical plane is drawn to get a cross-section of probabilities 

(
iRSSIip , ) of this distance at different RSSI levels (Figure 7). 

Next, these probabilities are normalized and then sorted in 

ascending order. A random number r is generated. Finally, the 

interval in which this random number r falls is found (as 

illustrated in Figure 8, interval I4) by calculating the cumulative 

probabilities, and the RSSI value corresponding to this interval 

is chosen as the received RSSI value from this AP. 

 

 
Fig. 7.  Cross-section of probabilities. 

 

 
Fig. 8.  Fitness proportionate selection example [33]. 

 

…. 
…… 

0 1 

I1 I2 I3 I5 I4 In In-1 

r ∊ [0, 1) 
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The g values in the weight function (8) and (11) must ensure 

that APs which are far away are still effective [24]. A large g 

would make APs with relatively longer distances ineffective in 

location approximation. Estimation result would be drawn to 

the closest AP. A small g would, on the other hand, make every 

AP has similar weight. Outlier APs thus have greater impact on 

the localization result. To determine the optimal g value in (8) 

and (11), different values of g are tested in the simulated WSN. 

Optimal values are selected for four different scenarios 

(random/uniform distribution & homogeneous/heterogeneous 

APs). 

As shown in Appendix A, in uniform distribution 

environment, the difference between weights of every AP 

should be relatively small, which can be achieved by a smaller 

g value. For example, suppose the weights of two APs are 0.1 

and 0.0001 respectively. Let’s say if g = 1, the first AP weights 

a thousand times more than the second. Now if g = 1 10⁄  , their 

weights become 794.01.0 10

1

  and 398.00001.0 10

1

  

respectively. The first AP now weights only about 2 times more 

than the second. In random distribution settings, outliers should 

be weighted less. The value of g should not be too large 

(decrease the impact of relatively far away APs) or too small 

(increase the impact of outliers). Values of g used in the 

simulation are summarized in Table III. 

 
TABLE III 

SUMMARY OF OPTIMAL g VALUES 

AP         AP type  

Distribution 
Homogeneous Heterogeneous 

Uniform 
WCL: 1 4.5⁄  WCL: 1 8⁄  

The proposed: 1 4.5⁄  The proposed: 1 8⁄  

Random 
WCL: 1 2⁄  WCL: 1 3.5⁄  

The proposed: 1 2⁄  The proposed: 1 3.5⁄  

 

To measure the lifetime of a specific localization algorithm, 

a program is developed and installed on the device. For GPS, 

coordinate information is acquired every second. For 

Wi-Fi-based localization algorithms, a Wi-Fi scan is performed 

every second, followed by the localization process. The battery 

is fully charged before each test. Since the device screen goes 

off after idling for a while, it is kept on for convenience of 

observation. No need to press the Power button to check 

whether the device is down due to low battery level or just 

idling. 

 

3) Platforms & Programming Languages 

The simulation environment is built on a computer with 

Windows 7 Professional SP1 64-bit operating system, Intel®  

Core™ i3 2.93 GHz CPU, 4 GB of memory. Localization 

simulation and velocity estimation programs are written in Java 

language. 

A Samsung Galaxy Tab, 4000 mAh battery, 512 MB of 

memory, Samsung Exyons 3110 ARM Cortex A8 1.0 GHz 

CPU, upgraded to Android 2.3.3 system, is used for data 

collection to build models (Section III.B.1). It is equipped with 

GPS, Wi-Fi 802.11 b/g/n, Bluetooth 3.0, GSM/GPRS/EDGE, 

et cetera. All data recorded are stored in SQLite databases on 

the device. Battery power consumption tests are also conducted 

on this device. Android systems support Java language, as well 

as C language. With a view to improve performance (the time 

required to give out a localization result), the 

computation-intense localization procedures are written in C 

language. Other Wi-Fi-related code uses Android’s standard 

APIs. 

 

4) Case Design 

The proposed localization algorithm is compared with the 

following algorithms mentioned in previous sections. 

i. CL (Section II.B.1) 

ii. WCL (Section II.B.2) with distances determined using 

(3)  

iii. Trilateration (Section II.A.1) with distances 

determined using (3) 

iv. APIT (Section II.B.3) 

The localization simulation is built on a 100 by 100 m2 area. 

Two scenarios are studied: i) All APs are assumed to be 

homogeneous. That is, they all have the same log-normal 

models with respect to distances. ii) APs are heterogeneous. 

Their log-normal models differ in mean and variance. 

Besides, APs are scattered in two ways (Figure 9): 

 

 

 
Fig. 9.  AP distributions: (a) Random, (b) Uniform. 
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i. Random: APs are scattered at random in the 

simulation area, as in [23]. 

ii. Uniform: The simulation area is divided into 25 cells 

(5 by 5). APs are placed at the center of each cell. 

Therefore, there are a total of four cases, i.e. uniform 

distribution + homogeneous APs (uni_homo), uniform 

distribution + heterogeneous APs (uni_hetero), random 

distribution + homogeneous APs (rand_homo), and random 

distribution + heterogeneous APs (rand_hetero).  In velocity 

estimation, these four cases are studied, too. 

On the grounds that real traffic condition is too complicated 

to be expressed as a mathematical model, traffic simulation 

software is used to generate sample locations of vehicles. 

VISSIM [34] is one of the best known microscopic multi-modal 

traffic flow simulation software in the world, and it is the 

simulation software used in this paper. 

As for locations of APs, with a view to be more realistic, 

known AP locations are used in the random distribution cases. 

They are obtained from a provider, Qon [35]. The selected road 

section is shown in Appendix B, on which a simulated traffic 

flow is built. Some of the traffic simulation parameters are 

listed in Table IV. AP distributions are shown in Figure 10. 

 
TABLE IV 

SOME PARAMETERS OF THE TRAFFIC SIMULATION 

Parameter Value 

Period 3600 Simulation second 

Random Seed 1114 

Simulation Resolution 1 time step(s)/Sim.sec. 
Driving Behavior Urban (motorized) 

Signals 

 

 

 
Fig. 10.  AP distribution in velocity estimation. 

 

5) Performance Metrics 

To evaluate how well each localization algorithm performs, 

some performance metrics are defined below. 

a) Localization accuracy 

It can be defined as the average distance (Equation (14) [32]) 

between a random sample location and the location given by a 

specific localization algorithm. 

b) Velocity estimation accuracy 

It is measured by calculating the mean absolute percentage 

error (MAPE), defined by (15). 
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c) Battery power consumption 

It is defined as the ratio of lifetime (Equation (16)) of a specific 

localization algorithm, i , to that of the benchmark scheme, 

Benchmark , which performs no localization. 

%100= lifetime of ratio 
Benchmark

i




 

(16) 

B. Experiments and Simulation Results 

1) Localization 

This section discusses, compares, and analyzes the localization 

simulation results of all of the localization algorithms 

mentioned above in Section IV.A.3, as well as the algorithm 

proposed in this paper. 

a) CL 

This algorithm is very simple. It does not distinguish between 

homogeneous or heterogeneous APs, and every AP is treated 

the same way. Localization is done by averaging latitude and 

longitude of every observed AP. This characteristic makes it 

more easily affected by outlier APs, as stated earlier in Section 

II.B.1. This makes sense that, generally, CL performs better in 

uniform distribution scenario. It can be seen in Figure 11 that 

when the number of APs are not large, localization in both 

scenarios are poor. As the number of APs grows, uniform 

scenario begins to show an edge. 

 

Amber Red Green 

Amber Red Green 

0 5 25 60 Sec.  

70 0 5 35 
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Fig. 11.  Localization of CL. 

 

b) WCL 

Unlike CL which treats every AP the same way, WCL gives 

different weights to every AP. Outlier APs are weighted less 

than others. The experiment results are showed in Figure 12. 

WCL are hence less susceptible to impact of outliers. However, 

weight function (8) of WCL relies solely on estimated distance. 

Distance estimation using path loss models could be erroneous, 

as (2) and (9) do not take into consideration shadowing effect. 

Besides, in heterogeneous settings, variations also exist among 

APs, making distance estimation less accurate than in 

homogeneous settings. 

 

 
Fig. 12.  Localization of WCL. 

 

c) Trilateration 

It relies heavily on transmitter-receiver separation. 

Nevertheless, precise transmitter-receiver separation 

measurement is very difficult in real life, making it highly 

susceptible to unfavorable effect of erroneous distance 

measurement. The experiment results are showed in Figure 13. 

Like WCL, variations among APs make the situation even 

worse. As for the distribution of APs, the difference between 

random and uniform distributions is not so significant. 

Trilateration works slightly better in uniform distribution. 

d) APIT 

As the number of observed APs is small, localization error is 

high due to the fact that the number of triangles formed is not 

large enough. To perform AIPT test, neighboring node 

information is used to determine node movement. With only a 

finite number of neighbors, APIT could consequently make 

incorrect decisions. This could happen when the target is near 

the edge of the triangle while some of its neighbors are outside 

the triangle and lies further away from the others [36, 37], 

known as the “edge effect”.  It also assumes that the longer the 

distance, the weaker the RSSI. Yet shadowing effect is 

neglected, and in heterogeneous settings, AP variations too 

make the departure test less accurate. These reasons exacerbate 

the localization result. That’s why APIT is better in 

homogeneous settings. As the number of APs increases, it has 

higher chances to make wrong decision due to erroneous 

departure test (edge effect) resulting from heterogeneous APs. 

From Figure 14, homogeneous and heterogeneous settings 

begin to go in opposite directions when the number of APs 

rises. 

 

 
Fig. 13.  Localization of trilateration. 

 

 
Fig. 14.  Localization of APIT. 

 

e) The proposed algorithm 

The proposed algorithm uses probability to reduce the effect of 

erroneous distance estimation in WCL. Suppose the log-normal 

model of a specific RSSI value has a high variance, distances 

that are relatively close or far away would have higher 

probabilities than if the model has small variance. However in 

WCL, longer distances are always weighted less than closer 

distances, regardless of their probabilities. In Figure 15 at both 

ends of PDFs, the log-normal model with large variance has 

higher probabilities than the one with small variance. The 

proposed algorithm also uses a two-phase method to narrow 

down anchors to a smaller area to better approximate the 

target’s location (Figure 16). For these reasons, the proposed 

algorithm can better deal with environmental variations. 
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Fig. 15.  PDFs with the same mean and different variances. 

 

 
Fig. 16.  Localization of the proposed algorithm. 

 

By combining Figure 11 to Figure 14 and Figure 16, an 

overall view of the four cases can be generated (Figure 17). 

Generally speaking, trilateration itself in essence is accurate 

enough, but with erroneous distance estimation, its accuracy 

decreases as a result. APIT seems to experience turbulence in 

heterogeneous settings when the number of APs rises, since the 

chance of edge effect rises at the same time. Finally, when the 

number of APs is small, accuracy of CL, WCL, and the 

proposed algorithm is not so good. The difference between 

them is not so significant. As the number of APs goes up, the 

proposed algorithm begins to show an edge, since it can better 

accommodate environmental variations in all four settings. 

 

2) Velocity Estimation 

Traffic data generated by VISSIM are used to evaluate how 

well each Wi-Fi-based localization algorithm is at measuring 

vehicle velocity, and the results are shown in Table V. 

 
TABLE V 

PERFORMANCE METRIC OF VELOCITY ESTIMATION 
AP     AP type  

Distribution 
Homogeneous Heterogeneous 

Uniform 

CL:  31.10 % CL:  31.10 % 

WCL:  32.69 % WCL:  31.44 % 

Trilateration:  51.09 % Trilateration:  51.44 % 
APIT:  40.60 % APIT:  43.86 % 

The proposed:  28.22 % The proposed:  28.68 % 

Random 

CL:  36.85 % CL:  36.85 % 

WCL:  35.09 % WCL:  35.15 % 

Trilateration:  59.59 % Trilateration:  60. 23 % 

APIT:  40.82 % APIT:  44.32 % 

The proposed:  25.39 % The proposed:  25.96 % 

 

Precise velocity estimation relies on accurate localization. 

The results in Table V are similar to that of Figure 17. CL is 

prone to unfavorable effect of outliers, and WCL somewhat 

reduces the effect experienced by CL. Trilateration and APIT 

are influenced by wrong distance estimation and edge effect 

respectively. 

 

3) Battery Power Consumption 

To test the power consumption of every localization algorithm, 

a program is developed and installed on a device. For the 

purpose of benchmarking, a case in which no localization is 

performed is also tested. Table VI and Figure 18 give out the 

experiment results. 

 
TABLE VI 

BATTERY POWER CONSUMPTION 
Localization 

Algorithm 

Sampling 

Frequency 

Battery Lifetime 

(hour : minute : second) 
% 1 

None 2 --- 12：37：23 (45443 sec.) 100.00 % 

GPS 3 
continuous/1 

sec. 
6：13：23 (22403 sec.) 49.30 % 

Centroid (CL) 4 
continuous/1 

sec. 
10：54：42 (39282 sec.) 86.44 % 

Weighted centroid 

(WCL) 4 
continuous/1 sec. 

10：

51：45 

(39105 

sec.) 

86.05 

% 

Trilateration 4 continuous/1 sec. 

10：

40：49 

(38449 

sec.) 

84.61 

% 

APIT 4 continuous/1 sec. 

10：

32：17 

(37937 
sec.) 

83.48 

% 

The proposed 
algorithm 4 

continuous/1 sec. 

10：

38：06 

(38286 

sec.) 

84.25 
% 

 

 
Fig. 18.  Battery power consumption of different algorithms in comparison with 
a benchmark scheme. 

 

It can be told from Table VI that the proposed algorithm has 

a slightly shorter lifetime by as much as 3% compared with CL, 

WCL, and trilateration, since it requires more computation. On 

the other hand, compared with GPS, its lifetime is significantly 

longer, by about 35%. Therefore, LBSs that acquire location 

 
1  : Lifetime of every localization approach divided by the benchmark 

scheme lifetime.  
2 : Benchmark scheme in which no localizations are performed.  
3 : Acquire location information every second.  
4 : Perform Wi-Fi scan and then localization every second.  
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information frequently using GPS seems to be an inefficient 

solution [38].  

To get a view of cost (power consumption) per unit 

(localization), the following calculation is performed. Suppose 

the battery capacity is c Joules. For the benchmark scheme, its 

cost 𝑏𝑁𝑜𝑛𝑒  per second is bNone=c/45443. Cost of GPS is 

bGPS+bNone=c/22403. Cost of CL is bCL+bNone=c/39282. The 

ratio bCL/bGPS is about 0.15250403, which means that cost per 

unit of CL is about 15% of that of GPS. Similar calculations are 

done for other localization algorithms. The ratios of  bGPS  to 

cost per unit of other algorithms are listed in Table VII. 

Apparently, using Wi-Fi for localization is less power-hungry; 

cost per localization is over 80% less than that of GPS. 

 
TABLE VII 

RATIOS OF COST PER UNIT 

Method Ratio 

CL 0.15250403 
WCL 0.157595441 

Trilateration 0.176874116 

APIT 0.192384146 
The proposed algorithm 0.181766869 

 

C. Summary 

In this paper, different combinations of uniform / random 

distributions and homogeneous / heterogeneous APs are tested. 

Generally speaking, although the proposed algorithm is a little 

bit more complicated than CL, WCL, and trilateration, and 

hence consumes just a little bit more battery power, it is still far 

less power-hungry than GPS. In terms of localization accuracy, 

the proposed algorithm is robust in all four settings. 

Table VIII compares different aspects of these algorithms to 

wrap up this section. 

 
TABLE VIII 

COMPARISON OF LOCALIZATION ALGORITHMS 

 CL WCL Trilateration APIT 

The 

proposed 

algorithm 

Simplicity Good Good Fair Fair Fair 

Impact of 

outliers 
Strong Fair Fair Fair Weak 

Localization Fair Good Fair Fair Good 

Vel. Estimation Fair Fair Fair Fair Good 

Novelty Fair Fair Fair Good Good 

Prevalence Good Good Good Fair --- 

 
Fig. 17.  An overall view of localization algorithms in different situations 

  



2169-3536 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2530806, IEEE Access

C.H. Chen et al.: Vehicle Localization and Velocity Estimation Based on Mobile Phone Sensing 

 

12 

V. CONCLUSIONS AND FUTURE WORK 

Conclusions are drawn in the following section. Problems that 

remain to be solved in the future are also discussed briefly. 

A. Conclusions 

Nowadays, smart devices are almost ubiquitous. Their 

capabilities offer new opportunities for data collection. The 

idea of “mobile devices as probes” has begun to gain much 

attention. Mobility and flexibility offered by smart mobile 

devices are what traditional stationary sensors lack.  

Power supply is a major concern for most mobile devices. 

GPS is one of the on-board hardware that is quite power-hungry. 

Therefore, this paper proposes a new localization algorithm 

which consumes less battery power while the localization 

accuracy remains acceptable. Using the proposed algorithm, it 

can save as much as 35% more battery power than GPS, 

localization error is about 18 meters, and velocity estimation 

error is about 25%.  

While battery lifetime improves by adopting Wi-Fi-based 

localization schemes, localization accuracy decreases. This is a 

major tradeoff between accuracy and sustainability faced by 

many. In this paper, the purpose is to provide approximated 

real-time traffic information to operators, thus the more data 

collected, the better. Sustainability is of greater value than 

accuracy. 

B. Future Work 

The proposed algorithm adopts a “fingerprint-like” method in 

the model-building phase. It is assumed that radio transmission 

patterns are constant across time, and fluctuate with a 

log-normal distribution. However, in real-life situation, radio 

transmission patterns are not constant, and may fluctuate with 

other kinds of distribution, e.g. random or normal distribution, 

which means these models used in the localization process need 

to be calibrated on a regular basis to reflect current state of play 

and improve accuracy.  

If the proposed algorithm is deployed on a metropolitan scale, 

the database would be very large, making it not suitable for 

being stored on mobile devices. Thus the localization process 

should be offloaded to a centralized server with fast 

computation speed to reduce the burden of mobile clients. 

Nevertheless, in this case, mobile devices are required to be 

connected to a wireless network in order to communicate with 

the server, which incurs extra communication overheads that 

would consume more battery power. 
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APPENDIX A: OPTIMAL VALUES OF g 

A. The proposed algorithm 
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APPENDIX B: THE SELECTED ROAD SECTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 


