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SUMMARY

Several Jacobi–Davidson type methods are proposed for computing interior eigenpairs of large-scale
cubic eigenvalue problems. To successively compute the eigenpairs, a novel explicit non-equivalence
de�ation method with low-rank updates is developed and analysed. Various techniques such as locking,
search direction transformation, restarting, and preconditioning are incorporated into the methods to im-
prove stability and e�ciency. A semiconductor quantum dot model is given as an example to illustrate
the cubic nature of the eigenvalue system resulting from the �nite di�erence approximation. Numeri-
cal results of this model are given to demonstrate the convergence and e�ectiveness of the methods.
Comparison results are also provided to indicate advantages and disadvantages among the various
methods. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: cubic eigenvalue problem; cubic Jacobi–Davidson method; non-equivalence de�ation;
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1. INTRODUCTION

A cubic eigenvalue problem of order n can be de�ned as

A(�)F ≡ (�3A3 + �2A2 + �A1 + A0)F=0 (1)

where �∈C, F∈Cn, and Ai ∈Rn×n for i=0; 1; 2; 3. In applications, a set of the eigenvalues
embedded in the interior of the spectrum of a large-scale eigenvalue problem are often of
interest. For example, a semiconductor quantum dot model with non-parabolic band structure
described by the three-dimensional (3D) Schr�odinger equation [1–3] can result in a cubic
eigenvalue problem of (1) with order up to 211 400 from the �nite di�erence approximation
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(see Section 3). And we are concerned only with several smallest positive real eigenvalues
(energy states) and their associated eigenvectors (wave functions). Motivated by this model,
various methods based on the Jacobi–Davidson (JD) and explicit de�ation techniques are
proposed here for calculating the interior eigenpairs of the cubic eigenvalue problem (1).
A classical approach that can be used for computing the solutions of (1) is to consider the

linearization of (1),
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This enlarged linear eigenvalue problem can then be solved by various Lanczos or Arnoldi
methods [4]. These methods are well established in many aspects of numerical algorithms,
convergence properties, and stability analysis [5–7]. However, disadvantages of such an
approach still exist. First of all, the order of the matrix is tripled and its condition number may
increase signi�cantly since the set of admissible perturbations for (2) is larger than that of
(1) [8]. Secondly, the performance of these methods may be reduced for the enlarged problem
in terms of convergence, e�ciency, and accuracy. Thirdly, Lanczos and Arnoldi methods re-
quire the use of the shift-and-invert technique for such a large sparse eigenvalue problem since
the desired eigenpairs are located in the interior of the spectrum of the problem. Consequently,
the computational cost for solving linear system is excessive.
Another approach is a direct solution of (1) by means of the JD method. Although this

method has been developed for linear and quadratic eigenvalue problems [4, 9–12], it is far less
studied than its classical counterpart. To our knowledge, there appears no numerical algorithms
or computational experiences being reported in the literature for the cubic eigenvalue problems.
In this paper, we extend the JD method presented in References [4, 9–12] to solve the cubic
problems and propose various forms of the method to improve stability and e�ciency in
calculating the interior eigenpairs.
In order to compute the interior eigenpairs successively, it is necessary to incorporate the

JD method with some de�ation techniques. For linear eigenvalue problems, it is well known
that a combination of JD and implicit de�ation techniques based on the Schur form can lead
to e�ective algorithms (see e.g. Reference [4, Sections 4.7 and 8.4]). For quadratic eigen-
value problems, Meerbergen [13] proposes a JD method by using the locking and restarting
scheme based on the Schur form of the linearized problem. This method illustrates the es-
sential ingredients for the extension of the JD method from the linear case to the quadratic
case. Furthermore, Guo et al. develop a de�ation method for large sparse quadratic eigenvalue
problems [14] and examine several de�ation strategies for analytic non-defective matrix func-
tion [15]. Ruhe [16] suggests using the smallest eigenvalue as an initial guess for computing
the second eigenvalue and using the sum of the �rst two eigenvalues as an initial guess for
the third eigenvalue in Newton’s method.
However, it is not clear how to incorporate an implicit de�ation scheme with the JD

method for the cubic eigenvalue problems since the Schur form is not de�ned for a cubic
matrix pencil in general. We propose here a cubic version of the JD method and an explicit
non-equivalence de�ation method with low-rank updates to deal with these problems. Several
algorithms are then given to illustrate various modi�cations of these two methods. The main
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procedure of the algorithms is as follows. The standard cubic JD (CJD) method is �rst used
to �nd the �rst smallest eigenpair. The current eigenvalue is then de�ated to in�nity and a
new (de�ated) cubic eigenvalue problem is subsequently formed. The CJD method itself or
its variant is applied again for the next eigenpair. This procedure is repeated until all the
desired eigenpairs are found.
The main results of this paper are brie�y summarized as follows:

• The explicit non-equivalence de�ation method is proved to de�ate the computed eigen-
values to in�nity while all other unknown eigenvalues remain unchanged.

• Several variants of the CJD method are developed for the de�ated cubic eigenproblem
to improve the stability and e�ciency of the method in cases that the two consecutive
eigenvalues are too close to each other and that the computational cost is expensive due
to the accumulative low-rank updates as de�ations increase.

• Among all the CJD methods, we �nd that the combination of the CJD, the locking, and
the explicit de�ation �o (see Section 2) is shown numerically to be most robust and
e�cient in terms of accuracy and computational cost.

This paper is organized as follows. In Section 2, we �rst present the cubic Jacobi–Davidson
method and a primitive locking technique based on Reference [13] for computing the desired
eigenvalues. An explicit non-equivalence de�ation method is then given and analysed for
the rest of the desired eigenpairs. The variants of the CJD method for the de�ated cubic
eigenproblem are also given in this section. In Section 3, the quantum dot model is described
and discretized by the �nite di�erence method using non-uniform grids. A brief derivation
of the resulting cubic eigenvalue problem (1) from the discretization then follows. Numerical
results are given in Section 4. Some concluding remarks are made in Section 5. Note that
throughout the paper, when we specify the order of an eigenpair such as the smallest (�rst)
positive eigenpair, we mean the smallest positive eigenvalue and the associated eigenvector.

2. CUBIC JACOBI–DAVIDSON AND EXPLICIT DEFLATION METHODS

In this section, we �rst present the CJD method incorporated with a locking technique for the
desired eigenpairs in Section 2.1. The explicit non-equivalence de�ation method is presented
and analysed in Section 2.2. The de�ation method is then generalized to deal with more
practical situations to improve its stability and e�ciency in Section 2.3. We summarize and
compare all the proposed algorithms in Section 2.4.

2.1. A CJD method for desired eigenpairs

We �rst propose a CJD method incorporated with a simple locking technique in Algorithm 2.1.
The algorithm adopts the same framework of the quadratic JD method presented in References
[17, 18]. The locking technique used here is similar to the techniques suggested in Reference
[13] for quadratic eigenvalue problems. However, our locking scheme is rather primitive in the
following sense. Unlike the schemes in Reference [13], we do not perform the reordering of
the partial Schur form. We simply append the convergent eigenvectors into the trial subspace
V =[Vini] as shown in Steps (2.3) and (2.4) of Algorithm 2.1.
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Algorithm 2.1 (CJD-Lk).

CJD method with locking for cubic eigenproblem.

(0)Given A(�)=
∑3

i=0 �
iAi and the number k of desired eigenvalues.

(1) Choose an n-by-m orthonormal matrix V =[Vini] and set VF =[].
(2) For ‘=1; : : : ; k
(2.1) Compute Wi=AiV and Mi=V ∗Wi for i=0; : : : ; 3.
(2.2) Iterate until convergence

(i) Compute the eigenpairs (�; s) of (
∑3

i= 0 �
iMi)s=0

by using QZ algorithm [6] for solving the generalized linear
eigenproblem⎡
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(ii) Select the desired (target) eigenpair (�; s) with ‖ s ‖2 = 1:
(iii) Compute u=Vs, p=A′(�)u, r=A(�)u:
(iv) If (‖r‖2 ¡ �), Set �‘= �, F‘= u, Goto Locking Steps

(2.3) and (2.4).
(v) Solve (approximately) for t ⊥ u from(

I − pu∗

u∗p

)
A(�)(I − uu∗)t= − r

(vi) Orthogonalize t against V , v= t=‖t‖2:

(vii) Compute wi=Aiv, Mi=

[
Mi V ∗wi

v∗Wi v∗wi

]
for i=0; : : : ; 3.

(viii) Expand V =[V; v] and Wi=[Wi; wi]

(2.3)Orthogonalize F‘ against VF ; Compute F‘=F‘= ‖ F‘ ‖;
Update VF =[VF;F‘].

(2.4) Choose an orthonormal matrix Vini ⊥ VF ; Set V =[VF; Vini].
End for

(3)Output the approximated eigenpairs (�‘;F‘) for ‘=1; : : : ; k.

It is worth mentioning following practical considerations. As suggested in
References [11, 12], the correction equation

(
I − pu∗

u∗p

)
A(�)(I − uu∗)t= − r (3)

needs to be solved. Since the vector t is supposed to be orthogonal to the vector u, Equation
(3) can be rewritten as

A(�)t= − r + �p (4)
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with

�=
u∗A(�)−1r
u∗A(�)−1p

In Step (2.2.v) of Algorithm 2.1, the correction equation (3) is solved approximately by
choosing a preconditioner MA ≈ A(�) so that the vector t is approximated by

t ≈ −M−1
A r + �M−1

A p (5)

Since t is ideally orthogonal to the vector u, the scalar � can be obtained by

�=
u∗M−1

A r
u∗M−1

A p
(6)

In Section 4, we give some suggestions on how to choose the preconditioner MA for the
model problem. The numerical results show that the algorithm can be very e�cient if the
preconditioner is suitably chosen.

2.2. An explicit non-equivalence de�ation method

After the smallest, or a few smallest, positive eigenpairs have been computed, we proceed to
compute the rest of eigenpairs by an explicit non-equivalence de�ation method in a consecutive
manner. This method is modi�ed from that of Reference [14].

Let (�; VF)∈Rr×r × Rn×r be an eigenmatrix pair of A(�) with V TF VF = Ir and 0 =∈�(�),
where �(�) denotes the spectrum of �. In other words, we have

A3VF�3 + A2VF�2 + A1VF�+ A0VF =0 (7)

Now we de�ne a new de�ated cubic eigenvalue problem by

Ã(�)F=(�3Ã3 + �2Ã2 + �Ã1 + Ã0)F=0 (8)

where

Ã0 =A0

Ã1 =A1 − (A1VFV TF + A2VF�V TF + A3VF�2V TF )
Ã2 =A2 − (A2VFV TF + A3VF�V TF )
Ã3 =A3 − A3VFV TF

(9)

Note that the superscript tilde is used to denote the variant coe�cient matrices associated
with the de�ated cubic eigenvalue problem. In the following we �rst prove a useful lemma
and then, in Theorem 2, we show that the computed eigenvalues � are de�ated to in�nity in
the new de�ated cubic eigenproblem Ã(�) while the rest of the unknown eigenvalues remain
unchanged.

Lemma 1
Let A(�) and Ã(�) be cubic pencils given by (1) and (8), respectively. Then it holds

Ã(�)=A(�)(In − �VF(�Ir − �)−1V TF ) (10)
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Proof
Using (9) and (7), and the fundamental matrix calculation, we have

Ã(�) =A(�)− �(�2A3VFV TF + �A2VFV TF + �A3VF�V TF + A1VFV TF
+A2VF�V TF + A3VF�

2V TF )

=A(�)− �(A3VF(�Ir − �)3(�Ir − �)−1V TF
+3A3VF�(�Ir − �)2(�Ir − �)−1V TF + 3A3VF�2(�Ir − �)(�Ir − �)−1V TF
+A2VF(�Ir − �)2(�Ir − �)−1V TF + 2A2VF�(�Ir − �)(�Ir − �)−1V TF
+A1VF(�Ir − �)(�Ir − �)−1V TF )

=A(�)− �{[A3VF(�3Ir − �3) + A2VF(�2Ir − �2) + A1VF(�Ir − �) + A0VF
−A0VF ](�Ir − �)−1V TF }

=A(�)− �[A(�)VF(�Ir − �)−1V TF ]

=A(�)[In − �VF(�Ir − �)−1V TF ]

Theorem 2
Let (�; VF)∈Rr×r × Rn×r be an eigenmatrix pair of A(�) as in (7) with V TF VF = Ir . Then
(i) the new de�ated cubic pencil Ã(�) in (8) has the same eigenvalues as those of A(�)

except that the r eigenvalues of � are replaced by in�nity, i.e. (�(A(�))� �(�)) ∪
{∞}=�(Ã(�)):

(ii) Let (�; z) be an eigenpair of A(�) with ‖ z ‖2 = 1 and � =∈�(�). De�ne
z̃=(In − �VF�−1V TF )z ≡ T (�)z (11)

Then (�; z̃) is an eigenpair of Ã(�).

Proof
(i) Using the identity (see e.g. Reference [19, pp. 53])

det(In + RS)=det(Im + SR)

and Lemma 1, we have

det(Ã(�)) = det(A(�))det(In − �VF(�Ir − �)−1V TF )

= det(A(�))det(In − �(�Ir − �)−1)

= det(A(�))det(�Ir − �)−1det(−�)
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Since 0 =∈�(�), det(−�) �= 0. Thus, Ã(�) and A(�) have the same �nite spectrum except the
eigenvalues in �(�). Furthermore, dividing Equation (8) by �3 and using the fact that

Ã3VF =(A3 − A3VFV TF )VF =0

we see that (diagr{∞; : : : ;∞}; VF) is an eigenmatrix pair of Ã(�) corresponding to in�nite
eigenvalues.
(ii) Since � =∈�(�), the matrix T (�)= (I−�VF�−1V TF ) in (11) is invertible with the inverse

T (�)−1 = In − �VF(�Ir − �)−1V TF (12)

From Lemma 1, we have

Ã(�)z̃=A(�)[In − �VF(�Ir − �)−1V TF ][In − �VF�−1V TF ]z=0

This completes the proof.

Theorem 2 suggests that the explicit non-equivalence de�ation scheme can be applied re-
peatedly to compute all desired interior eigenpairs. To be speci�c, Algorithm 2.1 is modi�ed
to achieve the goal as follows. We refer this modi�ed algorithm as CJD-D�.

1. The locking steps (2.3) and (2.4) in Algorithm 2.1 are replaced with the following two
updating steps. Note that in (2.4), the convergent eigenvectors in VF are not appended
to the trial subspace V .

(2.3)Orthonormalize F‘ against current VF . Update VF =[VF;F‘] and
� by the upper triangular matrix in the Gram–Schmidt process.

(2.4) Choose an orthonormal matrix Vini ⊥ VF . Set V =Vini.

2. In the �rst iteration on Step (2), the matrices A(�) in (2.2.iii) and (2.2.v) are de�ned
by the original eigenvalue problem (1). Starting from the second iteration, the matrices
are de�ned by the de�ated system (8).

However, there are some drawbacks with the de�ation transformation matrix T (�) in (11).
For example, if � is close to the eigenvalue of �, the matrix T (�) may be ill-conditioned
and hence the transformation (11) may be inaccurate. Moreover, the computational cost for
solving the de�ated cubic eigenproblem (8) becomes more expensive when the number of
columns of VF in (9) is getting larger. Fortunately, the drawbacks can be avoided by the
observations in the next subsection.

2.3. Variants of the CJD method for de�ated cubic eigenproblems

To overcome these disadvantages, the main idea is to avoid the use of the de�ated cubic
eigenproblem Ã(�) in (8) and the de�ation transformation T (�) in (11), directly. The goal can
be achieved by rewriting the correction equation in the CJD-D� method involving the matrices
Ã(�) and T (�) so that the new equivalent correction equation depends only on the original
vectors and matrices. Consequently, the computational cost can be reduced signi�cantly and
the scheme becomes more stable.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:605–624
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Using the CJD-D� method for solving the de�ated cubic eigenproblem (8), we �rst note
that it is required to compute

r̃= Ã(�)ũ and p̃= Ã
′
(�)ũ (13)

where � is a Ritz value. By the de�nition of T (�) ≡ (I − �VF�−1V TF ) and (12), Lemma 1
implies

Ã(�)T (�)=A(�) (14)

Di�erentiating Ã(�) with respect to � and using (14), we get

Ã
′
(�)T (�) =A′(�)−A(�)T−1(�)T ′(�)

=A′(�)−A(�){VF [−�−1 + �(�Ir − �)−1�−1]V TF } (from (12))

=A′(�)−A(�)VF(�Ir − �)−1V TF
=A′(�)− (�3A3 + �2A2 + �A1)VF(�Ir − �)−1VF (from (7))

+ (A3VF�3 + A2VF�2 + A1VF�)(�Ir − �)−1VF
=A′(�)− [A3VF(�2 + ��+ �2Ir)V TF + A2VF(� + �Ir)V TF + A1VFV TF ] (15)

By de�ning

�u=T (�)−1ũ (16)

Theorem 2 (ii) shows that if (�; ũ) is an eigenpair of Ã(�), then the vector (�; �u) is an
eigenpair of A(�). Furthermore, from (14) and (16) the residual r̃ of the eigenpair (�; ũ) for
the de�ated cubic eigenproblem can be rewritten as

r̃= Ã(�)ũ= Ã(�)T (�) �u=A(�) �u= r (17)

which is also the residual of the eigenpair (�; �u) of the original cubic eigenproblem. Moreover,
by (15) and (16), the skew orthogonalization vector p̃ in (13) for CJD-D� method can then
be computed by

p̃=A′(�) �u− [A3VF(�2 + ��+ �2Ir)V TF + A2VF(� + �Ir)V TF + A1VFV TF ] �u (18)

In other words, by using (17) and (18) rather than (13), we can achieve signi�cant saving
on computing r̃ and p̃ as the size of � and VF becomes large.
We can further reduce the cost of computation of the vector

t̃= Ã
−1
(�)r̃ + �̃Ã

−1
(�)p̃ (19)

by de�ning

�t=T (�)−1 t̃ (20)
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and using (14) such that

�t= −A−1(�)r̃ + �̃A−1(�)p̃

The vector �t can therefore be approximated by

�t ≈ −M−1
A r̃ + �̃M−1

A p̃ (21)

with a preconditioner MA ≈ A(�), which is preferable since it is in general more cost e�cient
than the matrix MÃ ≈ Ã(�).
We next note that, by neglecting the low-rank updates in the de�ated matrix Ã(�), the

matrices W̃ i and the vectors w̃i can also be computed by using the original matrices, i.e.

W̃i=AiV and w̃i=Aiv (22)

for i=0; 1; 2; 3. This heuristic scheme results in that the Ritz vector �u of A(�) can be obtained
without using the transformation in (16). In other words, with Equations (16), (20) and (22),
there is no need to explicitly compute ũ and t̃ when applying Algorithm 2.1 to the de�ated
cubic eigenproblem.
Finally, based on the previous observation, we consider two di�erent choices of the param-

eter �̃ for approximating the vector �t in (21) for the de�ated cubic eigenproblem.

1. The vector t̃ de�ned in (19) should be orthogonal to the vector ũ=T (�) �u, i.e. ũ∗ t̃=0.
Consequently, �̃ can be chosen as

�̃= �̃D=
�u∗T ∗(�)T (�)M−1

A r̃
�u∗T ∗(�)T (�)M−1

A p̃
(23)

where

T ∗(�)T (�)= In − �VF(�−T + �−1 − ��−T�−1)V TF

Here, the subscript ‘D’ in (23) is used to indicate that the vectors ũ and t̃ involve the
de�ation transformation T (�).

2. Since we have simpli�ed the computation of t̃ by replacing it with �t, it is natural to
require �t de�ned in (21) be orthogonal to the vector �u, i.e. �u∗ �t=0. We can thus choose

�̃= �̃O=
�u∗M−1

A r̃
�u∗M−1

A p̃
(24)

By doing so, we further relax the need of computing T ∗(�)T (�). The subscript ‘O’ in
(24) is used to emphasize that the computation of �u and �t involve only the original cubic
eigenproblem.

In short, by introducing the vectors �u and �t, we have shown that the computation of r̃,
W̃i and w̃i in the process of applying the CJD-D� method to the de�ated eigenproblem can
involve only the original system A(�). The vector p̃ computed by (18) still depends on the
matrices � and VF , but not on the transformation matrix T (�).
We summarize previous discussions in the following algorithm for the computation of all

desired eigenpairs of the de�ated cubic eigenproblem.
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Algorithm 2.2 (CJD-Lk-D�-�D and CJD-Lk-D�-�O).
CJD method with locking and variant explicit de�ations.

(0)Given A(�)=
∑3

i=0 �
iAi and the number k of desired eigenvalues.

(1) Choose an n-by-m orthonormal matrix V =[Vini]; Set VF =[] and �= [].
(2) For ‘=1; : : : ; k
(2.1) Compute Wi=AiV and Mi=V ∗Wi for i=0; : : : ; 3.
(2.2) Iterate until convergence

(i) Compute the eigenpairs (�; s) of (
∑3

i= 0 �
iMi)s=0 by

using QZ algorithm for solving the enlarged generalized
linear eigenproblem as in (2.2.i) of Algorithm 2.1.

(ii) Select the desired (target) eigenpair (�; s) with ‖ s ‖2 = 1:
(iii) Compute u=Vs, r=A(�)u and p by Equation (18).
(iv) If (‖r‖2 ¡ �), Set �‘= �, F‘= u, Goto Locking

Steps (2.3), (2.4).
(v) Compute t= −M−1

A r + �M−1
A p by

�= �D=
u∗T (�)∗T (�)M−1

A r
u∗T (�)∗T (�)M−1

A p
or �= �O=

u∗M−1
A r

u∗M−1
A p

(vi) Orthogonalize t against V , v= t=‖t‖2:

(vii) Compute wi=Aiv, Mi=

[
Mi V ∗wi

v∗Wi v∗wi

]
for i=0; : : : ; 3.

(viii) Expand V =[V; v] and Wi=[Wi; wi].
(2.3)Update � and VF by the Gram–Schmidt process. That is,

orthonormalize F‘ against current VF , expand VF =[VF;F‘], update
� by the upper triangular matrix in the Gram–Schmidt process.

(2.4) Choose an orthonormal matrix Vini ⊥ VF ; Set V =[VF; Vini].
End for

(3)Output the approximated eigenpairs (�‘; F‘) for ‘=1; : : : ; k.

2.4. A summary of the algorithms

We have proposed several ideas for computing all desired interior eigenpairs of the cubic
eigenvalue problems. These ideas have led to the following four algorithms. We discuss
the advantages and disadvantages of the methods, which elaborate the motivations regarding
the developments of the methods. Furthermore, these considerations will be veri�ed by the
numerical experiments in Section 4.
CJD-Lk (proposed in Section 2.1):
This method is described in Algorithm 2.1, which includes the primitive locking technique.
In general, a Schur form does not exist for a cubic eigenvalue problem. Two spurious Ritz

values (which have no meaning) thus will be obtained when the convergent eigenvectors
are appended to the subspace V and the small cubic eigenvalue problems in step (2.2.i)
of Algorithm 2.1 are solved. These two spurious Ritz values could a�ect the choice of the
next desired eigenvalue. An incorrect choice of the Ritz value will slow down the overall
convergence. Neglecting this disadvantage, however, CJD-Lk needs less computational cost.
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CJD-D� (proposed in Section 2.2):
Without the locking steps, this scheme solves the original cubic eigenvalue problem (1)
and the de�ated cubic eigenvalue problems (8)–(9).
In this case, the convergent eigenpairs have been de�ated to the in�nity (Theorem 2).

Therefore, the method would not produce any spurious Ritz value to a�ect the convergence.
However, the computational cost for solving (8) becomes more and more expensive when
the number of the desired eigenpairs is getting larger.

CJD-Lk-D�-�D and CJD-Lk-D�-�O (proposed in Section 2.3):
Aiming to improve the performance of CJD-D�, these two methods are described in
Algorithm 2.2. The primitive locking technique is used.
Two variant choices of �= �D in (23) or �= �O in (24) are derived to predict the new

search direction �t in (21). The only di�erence between (21) and (5) is the choice of the
skew orthogonalization vector p̃ in (18). This new search direction p̃ involves only the
original cubic eigenvalue problem matrices, Ai, but not Ãi. Consequently, we can achieve
signi�cant saving on the computation of r̃ and p̃ as the size of the desired eigenpair
becomes large by using (17), (18), (21), (23) and (24). We would like to emphasize that
the choice of p̃ and then �t (by �D or �O) does share the same concept with the explicit
non-equivalence de�ation in the de�ated cubic eigenvalue problem, the choice further gains
the saving on computation.
On the other hand, performing the locking steps will also bene�t Algorithm 2.2. Since the

new search direction �t in (21) is solved approximately by a suitable chosen preconditioner
MA, the inexact search direction �t might slow down the convergence of the rest desired
eigenpairs. Furthermore, neglecting the low-rank updates in (22) leads to slow convergences.
We therefore suggest applying the locking technique to yield better overall performance in
Algorithm 2.2.

3. A QUANTUM DOT MODEL PROBLEM

Semiconductor quantum dot (QD) is a structure in which the carriers are con�ned in all
three dimensions. In many physics and engineering applications, it is essential to estimate the
discrete energy states (eigenvalues) and wave functions (eigenvectors) of the QD structure.
Speci�cally, we consider that a single electron is con�ned by a cylindrical InAs QD embedded
in the centre of a cylindrical GaAs matrix with the same rotation axis. Figure 1 illustrates the
schema of the QD structure. Moreover, the model is based on the e�ective-mass envelope-
function approximation with one conduction band, the BenDaniel–Duke boundary conditions,
and non-parabolic e�ective mass depending on both energy and position [1–3]. On the bound-
ary of the QD, the �nite hard-wall 3D con�nement potential is induced by real discontinuity
of the conduction band.
The QD model can be described by the following time-independent Schr�odinger equation

[1, 2] in the cylindrical co-ordinate (r; �; z)

−˜2
2m‘(�)

[
@2F
@r2

+
1
r
@F
@r
+
1
r2
@2F
@�2

+
@2F
@z2

]
+ c‘F = �F (25)

where ˜ is the reduced Plank constant, � is the total electron energy, and F =F(r; �; z)
is a wave function. The index ‘ depends on r and z and is used to make a distinction
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Figure 1. The quantum dot structure schema showing that a cylindrical quantum dot is
embedded in the hetero-structure matrix.

between the region of the dot (‘=1) and the matrix (‘=2). Here the e�ective mass m‘(�) is
given as

1
m‘(�)

=
P2‘
˜2

(
2

�+ g‘ − c‘ +
1

�+ g‘ − c‘ + �‘

)
(26)

where P‘, g‘, c‘, and �‘ are momentum element, energy gap, con�nement potential, and
spin-orbit splitting in the ‘th region, respectively. Equation (25) is equipped with Dirichlet
boundary conditions

F(r; �; Zmtx)=F(r; �; 0)=F(Rmtx; �; z)=0 (27)

and the interface conditions
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=
−˜2
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∣∣∣∣
Z+btm

−˜2
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@z

∣∣∣∣
Z−
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=
−˜2
2m2(�)

@F
@z

∣∣∣∣
Z+top

(28)

where Zmtx, Ztop, and Zbtm denote the co-ordinate of the top of the matrix, the top of the dot,
and the bottom of the dot, respectively. The radii of the dot and the matrix are denoted as
Rdot and Rmtx, respectively.
To discretize the 3D cylindrical model (25), we choose non-uniform mesh points with �ne

meshes around the heterojunction (interface). Furthermore, the mesh points are shifted with
a half mesh width in the radial direction, so that no pole conditions need to be imposed
[20]. Based on the mesh points, we use the standard centred seven-point �nite di�erence
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method and two-point �nite di�erence method to approximate Equation (25) and the interface
conditions (28), respectively.
Due to the non-parabolic e�ective mass (26), the discretization results in a large sparse cubic

eigenvalue problem of (1) with a matrix size ��	-by-��	, where �, �, and 	 denote the mesh
point numbers in the radial (r), azimuthal (�), and axial (z) direction, respectively. However,
by exploring the periodicity in the azimuth direction and applying suitable permutations and
the Fourier transformation, the 3D eigenvalue problem can be decoupled into � independent
�	-by-�	 2D eigenproblems as⎡

⎢⎢⎢⎢⎣
G̃1(�)

. . .

G̃�(�)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
F̃1

...

F̃�

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
D̃1(�)

. . .

D̃�(�)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
F̃1

...

F̃�

⎤
⎥⎥⎥⎥⎦ (29)

where G̃j(�) and D̃j(�) are �	-by-�	 matrices for j=1; : : : ; �. Note that the mesh points
associated with a certain azimuthal index number j (i.e. with the unknown vector F̃j) have
the same � value. That is, these mesh points are all located on a certain vertical 2D half-plane.
It is worth pointing out that only several 2D eigenproblems associated with the �rst j-indices
need to be solved to obtain the smallest eigenvalues which are of interest in application.
The decoupled 2D eigenproblems in (29) can be straightforwardly formulated as a non-

linear eigenvalue problem

G(�)F= �DF (30)

where G(�) is a �	-by-�	 matrix with entries containing � in rational form (see (26)), D
is the corresponding diagonal matrix, and F is the jth part of the associated eigenvector. By
multiplying the common denominator of (26) and then simplifying the equation, we obtain a
reduced version of (1), i.e.

A(�)F=(�3A3 + �2A2 + �A1 + A0)F=0 (31)

where A0, A1, A2, and A3 are n× n real coe�cient matrices.
The decoupling scheme dramatically reduces computational cost without losing accuracy.

For an example as will be used in Section 4.2, a partition of the domain with 755, 280, and
360 grid points in the radial, axial, and azimuthal direction, respectively, results in a 3D system
with the matrix size about 76 million. It is then reduced to several (three, for instance, in the
next section) decoupled cubic eigenvalue systems (29) with the size of 211 400. The reduction
from the 3D formulation to the 2D formulation (29) and full description of the matrices in
these formulations are rather complicated and tedious. We refer readers to Reference [21] for
more details. Nevertheless, we present the sparsity patterns of the matrices A0, A1, A2, and
A3 for �=8 and 	=12 in Figure 2 to provide more characteristic insights about the cubic
eigenvalue problems. Furthermore, the spectrum of a speci�c cubic eigenvalue problem with
the matrices Ai ∈R169×169, i=0; 1; 2; 3, is illustrated in Figure 3. All the computed eigenvalues
are plotted on the complex plane with the plus symbol. For this speci�c example, the target
eigenvalues are located within the interval [0; 0:35], and they are emphasized by the symbol
⊕. It is clear that the target eigenvalues are embedded in the interior of the spectrum. In the
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Figure 2. Sparsity patterns of the matrices A3 and A2, as well as A1 and A0 are shown in (a) and (b),
respectively. Note that the rows containing non-zeros in the o�-diagonal of A3 are associated with the
interface of the hetero-structure. For other Ai’s, the corresponding rows have the same property.

next section, we explore the performance of the algorithms for solving the cubic eigenvalue
problem (31) with more details.

4. NUMERICAL EXPERIMENTS

We implemented the proposed algorithms by Fortran 90 for the numerical experiments. All the
numerical tests were performed on a Linux (Red Hat release 7.3) based workstation equipped
with 2.2 GHz Xeon CPU and four gigabytes main memory. Absoft Pro Fortran [22] compiler
was used to compile the programs. The timing results are in seconds.
The diameter and the height of the cylindrical QD considered here are 15 and 2:5 nm, re-

spectively, whereas that of the matrix are 75 and 12:5nm, respectively. The QD size is chosen
so that it is approximately comparable with that of the experimental model presented in Refer-
ence [23] and the non-parabolic e�ect of the band structure is signi�cant [3]. Furthermore, the
semiconductor band structure parameters used in the numerical computations are c1 = 0:000,
g1 = 0:235, �1 = 0:81, P1 = 0:2875, c2 = 0:350, g2 = 1:590, �2 = 0:80, and P2 = 0:1993.

4.1. Choice of the parameters

The �rst part of the numerical experiments shows that the timing performance can be signif-
icantly improved by tuning the following two parameters:

• The �rst one is the number of Ritz vectors used to span the initial search subspace
whenever restarting occurs in Step (2.2.viii) of Algorithm 2.1 or 2.2. We perform the
restarting scheme to keep the matrix V in reasonable sizes. The Ritz vectors extracted
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Figure 3. The spectrum of a cubic eigenvalue problem with Ai ∈R169×169, for i=0; 1; 2; 3. The desired
eigenvalues marked by ⊕ are located in the interior of the spectrum (namely, the interval [0; 0:35]).

to form the new V are those associated with the Ritz values that are closest to the target
eigenvalue.

• The second one is a parameter involved in the preconditioner. To compute M−1
A r and

M−1
A p in Equation (5) or (21), we use SSOR(!) as a preconditioner, i.e. we set

MA :=SSOR(!)= (D −!L)D−1(D −!U ); !∈ (0; 2)
where D, L, and U are the diagonal, strictly lower triangular, and strictly upper triangular
matrices of A(�), respectively.

To explore the e�ect of the parameters, we solve the three eigenvalue problems in the form
of (31) that are corresponding to the �rst three azimuthal indices j=1; 2,and 3. We compute
the smallest positive eigenvalues by running through the cases for ! chosen to be 0:1 to 1:9.
The number of Ritz vectors in the initial search subspace is set to 1 to 5. The matrix size of
the eigenvalue problems are 107 055.
From the computational results illustrated in Figure 4, we observe that the best choice for

! is around 1:6. Convergence is slow if we restart with only one Ritz vector even for better
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Figure 4. Comparison results of Algorithm 2.1 with various relaxation values and Ritz vectors. The
timing results are marked by pluses, ×-marks, triangles, and squares for the algorithms CJD-D�, CJD-Lk,

CJD-Lk-D�-�D, and CJD-Lk-D�-�O, respectively.

!. The results obtained by using two to �ve Ritz vectors are quite similar. However, a closer
look at part (d) shows that the case of using four Ritz vectors is most e�cient for all three
eigenvalue problems. In summary, to span the initial subspace when restarting, our numerical
results suggest the use of four Ritz vectors associated with the four Ritz values that are closest
to the target eigenvalue (which is equal to zero here).

4.2. Variants of the CJD methods for cubic eigenvalue problems

We solve the cubic eigenvalue problems by CJD-D�, CJD-Lk, CJD-Lk-D�-�D, and CJD-Lk-
D�-�O. Comparison results of the four variants are given in Figures 5 and 6. All programmes
are terminated if the residual is less than 5:0× 10−12 or the iteration number is greater than
6000. The matrix size of the cubic eigenvalue problems (31) are 211 400.
Parts (a)–(c) of Figure 5 show the results of the slices with the index of azimuthal an-

gle j=1, 2, and 3, respectively. The timing results are marked by pluses, ×-marks, tri-
angles, and squares for CJD-D�, CJD-Lk, CJD-Lk-D�-�D, and CJD-Lk-D�-�O, respectively.
Results are not shown in the �gure if the method fails to converge in a reasonable time
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Figure 5. Comparison results in times of four methods are shown in parts (a)–(c).
Numbers of eigenvalue subproblems solved successfully in the three eigenvalue problems

for j=1; 2; 3 are shown in part (d).

(10 000 s for the case j=1 and 6000 s for the cases j=2; 3). The timing marks of CJD-Lk-
D�-�O are connected by dotted lines to serve as a base line. Parts (a)–(c) in Figure 5 shows
that, in almost all of the cases, the CJD-Lk-D�-�O method is the quickest one among the four
methods. Moreover, it can be observed from part (d) that the CJD-Lk-D�-�O method is the
most robust in the sense that it converges within the iteration limit for all six eigenpairs in
all three cases. Part (d) also suggests that the methods based on the explicit de�ation scheme
(CJD-D�, CJD-Lk-D�-�D, and CJD-Lk-D�-�O) are more robust than the CJD-Lk method that
no explicit de�ation scheme is involved.
In order to further explore the overall performances among the di�erent methods, the

‘average’ timing results are presented in Figure 6. The average times are calculated by the
following ways. In part (a), for each one of the three cubic eigenproblems (31) corresponding
to j=1; 2; 3, we consider only the computing times for the eigenpairs that all four methods
converge. That is, we take the arithmetic mean of the times for the �rst �ve, �ve, and three
eigenpairs corresponding to the problems for j=1, 2, and 3, respectively. In part (b), we
take the arithmetic mean of the six computing times for the �rst six eigenpairs as the aver-
age time if the method converges. Otherwise, the computing time is taken as the maximum
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Figure 6. Comparison of e�ciency. Average timing results calculated by two ways
are compared for the four methods.

(i.e. 6000) iteration time for each failed eigenpair, i.e. the method fails to converge for
this eigenpair. Based on Figure 6, we highlight following observations. First, if we ignore
the results beyond the iteration limit, the CJD-Lk,CJD-Lk-D�-�D, and CJD-Lk-D�-�O meth-
ods are basically comparable to each other, while CJD-Lk-D�-�O is the fastest one in al-
most all cases. Second, without using the transformation T (�) in (23), the CJD-Lk-D�-�O
method is better than the CJD-Lk-D�-�D method. Considering the overall performance, we
recommend using CJD-Lk-D�-�O for the target eigenvalue problems due to its e�ciency and
robustness.
We �nally demonstrate the computational results of the desired eigenpairs by CJD-Lk-

D�-�O. The decoupled system (29) allows us to solve several cubic eigenvalue problems
independently to obtain all bound states. Table I shows all the computed eigenvalues that are
less than 0:35, which is the di�erence between the con�nement potentials c1 and c2. The table
also presents the values of azimuthal index j, the order of the smallest eigenvalues of each
slice (denoted as Ord.), and the convergent residuals of the eigensystems. The mesh size is
so chosen that at least three signi�cant digits of the computed eigenvalues remain unchanged
whenever the domain is further re�ned.
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Table I. Computational results of the discrete eigenvalues, the azimuthal indices j, the
order of the smallest eigenvalues of the slices (denoted as Ord.), and the conver-

gent residuals of the eigensystems.

� j Ord. Residual

0.0873 1 1 2.84e-12
0.1101 2 1 3.38e-12
0.1386 3 1 4.36e-12
0.1503 1 2 4.88e-12
0.1708 4 1 4.61e-12
0.1931 2 2 3.01e-12
0.2054 5 1 4.56e-12
0.2370 3 2 4.57e-12
0.2412 6 1 4.78e-12
0.2459 1 3 4.18e-12
0.2777 7 1 4.81e-12
0.2811 4 2 4.25e-12
0.2971 2 3 4.82e-12
0.3141 8 1 4.08e-12
0.3245 5 2 4.99e-12
0.3305 1 4 4.82e-12
0.3384 2 4 4.46e-12
0.3454 3 3 4.43e-12
0.3485 3 4 4.00e-12
0.3495 9 1 4.27e-12

5. CONCLUSION

Numerical methods that can be used to e�ectively compute multiple eigenvalues embedded
in the interior of the spectrum of an eigenvalue system together with their associated eigen-
vectors are of great interests in a wide range of engineering and scienti�c areas. And yet
many challenging issues in this regard remain to be explored, especially for large-scale and
non-linear problems. Based on the framework of the Jacobi–Davidson method, we propose
and compare several numerical algorithms for the cubic eigenvalue problems in this article.
Moreover, an explicit non-equivalence de�ation method for computing successive eigenpairs is
developed and analysed. Several improvements by using e�ective preconditioners and locking
and restarting techniques on these methods are also provided to yield better performance.
All numerical results are generated by using a semiconductor quantum dot model which

exhibits both non-linear and large-scale properties in the resulting eigenvalue systems from
the �nite di�erence approximation in cylindrical co-ordinates. These systems are decoupled
into 2D subsystems by rotational symmetry of the model problem. The order of energy levels
(eigenvalues) depends critically on the number of subsystems, i.e. on the partition number in
the azimuthal direction.
Based on our intensive numerical investigation, we conclude that the cubic Jacobi–Davidson

method combined with the explicit de�ation method and the primitive locking technique, but
without using the transformation matrix T (�) (i.e. CJD-Lk-D�-�O) is the most favourable for
the QD model in terms of robustness and e�ciency. This method is most robust in the sense
that it converges for all tested subsystems and for all desired eigenpairs. It is most e�cient
in the sense that the average computing time required for all the eigenpairs is minimal.
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