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Giant photoluminescence enhancement
in tungsten-diselenide–gold plasmonic hybrid
structures
Zhuo Wang1,2,3, Zhaogang Dong4, Yinghong Gu5, Yung-Huang Chang6, Lei Zhang5, Lain-Jong Li7, Weijie Zhao2,
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Impressive properties arise from the atomically thin nature of transition metal dichalcogenide

two-dimensional materials. However, being atomically thin limits their optical absorption or

emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical

for integrating these materials in optoelectronic and photonic devices. Typical

photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with

recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption,

emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide

trenches in gold substrate, we report a giant photoluminescence enhancement of

B20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral

gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic

nanostructure. This work demonstrates the feasibility of giant photoluminescence

enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way

towards the implementation of plasmon-enhanced transition metal dichalcogenide

photodetectors, sensors and emitters.
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C
rystalline monolayers of transition metal dichalcogenides
(TMDCs) are direct bandgap two-dimensional (2D)
material semiconductors that are promising as light-

active materials for optoelectronic applications1,2. Recently,
TMDCs have shown great potential in ultrafast and
ultrasensitive photodetectors and as ultrathin light absorbers
and emitters3–5. However, their application in photonic devices is
limited by their low absolute photoluminescence (PL) caused by
low quantum efficiency and weak absorption6. Fortunately,
significant enhancement is afforded by integrating noble metal
nanostructures supporting localized surface plasmons7–13 and
propagating surface plasmon polaritons (SPPs)14,15.

Tungsten diselenide is a promising material in creating
electrically excited light-emitting diodes1 and heterojunctions
with MoS2 (ref. 5). It proves to be a promising emitter
at B750 nm wavelength with a quantum yield that is 2 orders
of magnitude larger than that of MoS2 (refs 16,17). However, PL
enhancements from WSe2-plasmonic hybrid nanostructure have
yet to be investigated. Recently reported enhancements in MoS2

are potentially close to the ultimate limit that can be achieved
from this material9,18. Although it is generally more challenging
to achieve large enhancements from systems with a higher
quantum yield, it is important to explore the ultimate limit in the
PL enhancements that can be achieved in WSe2.

Here we report the surprisingly large PL enhancement factor
(EF) of B20,000-fold from a single crystal monolayer of
WSe2. WSe2-gold plasmonic hybrid nanostructures were created
by suspending the monolayer over sub-20-nm-wide trenches
that support lateral gap plasmons. By systematically tuning the
gap plasmon resonances to the 633-nm pump laser, a close
correlation was observed between the local near-field intensity,
the Purcell factor and the measured PL enhancements. This paper
sheds light on the utility of lateral gap plasmons in promoting
excitation at the pump laser wavelength and emission at 750 nm,
providing an effective way to obtain giant PL in TMDCs. Distinct
from previous plasmon-enhanced structures8,9,12,13, our hybrid
plasmon-enhanced design provides full access to the top surface
of WSe2, for example, for layering of other 2D materials, electrical
top contacts, chemical doping or optical waveguiding.

Results
WSe2-plasmonic hybrid nanostructures. A schematic of the
investigated system is shown in Fig. 1a. We transferred
chemical vapour deposition (CVD)-grown WSe2 monolayer
flakes (Supplementary Note 1) onto gold substrates onto which
trenches as narrow as sub-20 nm have been patterned. This
sample enables a direct comparison of PL emission from the same
single crystal WSe2 flake, where regions over unpatterned gold
were taken as the base reference. The gold substrate was prepared
by a recently reported template-stripping method based on
nano-patterned silicon templates (Supplementary Fig. 1 and
Supplementary Note 2)19. These structures have advantages
over other commonly used gold nano-bowties, nano-rods or
nano-discs made by electron-beam lithography (EBL)8,12,13,
where template-stripping produces ultra-smooth surfaces,
critical for reducing damping losses due to the reduction of
plasmon scattering20,21. Moreover, we do template-stripping right
before the transfer process of WSe2 so as to reduce contamination
from adsorbed air-borne molecular species and preserve the
hydrophilic nature of freshly stripped gold22.

The trenches in gold support strong field enhancements as
shown in the finite-difference time-domain (FDTD) simulation
results in Fig. 1b, where a monolayer WSe2 flake is placed over
the trench. The resonances are in the form of lateral gap
plasmons in the sub-20 nm trenches with E-fields predominantly

parallel to the plane of WSe2 to promote strong light
absorption23. This resonance can be tuned to be matched with
the pump laser wavelength by varying the pitch of the structures,
which are critical for plasmon coupling with light to achieve
optimal field confinement24,25. Figure 1c presents a scanning
electron micrograph (SEM) image of a triangular WSe2 single
crystal monolayer as transferred onto the gold substrate with a
trench width of B12 nm.

Observation of PL enhancement in WSe2. Here we show that
the lateral gap plasmons are able to enhance the PL emission
significantly. A template-stripped gold substrate with a large pitch
(760 nm) and 532-nm pump laser were chosen for this purpose so
that the enhanced PL due to lateral gap plasmons in the trench
could be spatially resolved. Figure 2a,b presents the SEM image
and the corresponding PL mapping across the same WSe2 flake,
so that it enables us to have a self-consistent comparison of
PL enhancement from a single flake, thus avoiding potential
variations in PL emission between different flakes. The PL
experiment was carried out using a 532-nm pump laser with a
power of 30mW and the intensity value at each pixel of Fig. 2b
was obtained by integrating the PL spectrum across the spectrum
window of 700–820 nm. This PL mapping shows that the
sub-20 nm trenches on gold substrate were able to enhance the PL
emission considerably.

Figure 2c presents a quantitative comparison of PL spectra
from WSe2 on patterned gold nanostructures (that is, Point A),
unpatterned gold film (that is, Point B) and on sapphire. In this
particular sample with a pitch of 760 nm, the 9-nm-wide trenches
enhance the PL emission from WSe2 up to 37-fold as compared
with the emission from WSe2 on sapphire. Moreover, PL
emission from WSe2 on unpatterned gold film is enhanced by
sevenfold as compared with the emission from WSe2 on sapphire
(Fig. 2d), which might be due to the substrate-induced doping so
as to reduce the non-radiative decay rates of the excitonic
transitions26. In addition, the change in doping level could be
induced from the downshift of Raman peak in WSe2 when
transferred from sapphire onto gold substrate27 (Supplementary
Fig. 2c). The weaker PL enhancement at Point C is due to the tear
defect in the flake that is observable in the SEM image.

PL enhancement mechanism. The physical processes involved in
the PL enhancement are investigated next. The PL intensity
of emitters is determined by its excitation rate (that is, absorption
of the pump laser) and its emission efficiency (that is, Purcell
factor). When the plasmon resonance of WSe2-gold
nanostructures matches the wavelength of the pump laser, the
excitation rate of WSe2 will be enhanced28, that is, gexcB|ENF|2

(near-field intensity enhancement). In addition, the plasmon
resonance at the emission wavelength enhances the radiative
decay rate and quantum efficiency via the Purcell effect29,30.

The largest PL enhancement was achieved at the maximum of
the product between the field EF at the excitation wavelength and
the Purcell factor at the emission wavelength. Figure 3a
presents the relative reflectance spectra as measured from gold
nanostructures with different pitches, as normalized to the
unpatterned gold film (see Methods). The plasmon resonance
at the dips of the spectra red-shifted with increasing pitch. FDTD
simulations were done for each nanostructure pitch, with
nanostructure geometry adjusted to match the SEM images
(Fig. 3c). The simulations show an excellent agreement with the
measured spectra, as seen in Fig. 3a. Moreover, the dependence of
the plasmon resonance on the pitch size is summarized in Fig. 3b,
where the plasmon resonance red-shifts from 507 to 633 nm as
the pitch size is increased from 60 to 200 nm. Resonance
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wavelengths beyond 633 nm were not obtained in our patterned
nanostructures as the resonance wavelength for nanostructures
with pitches 4200 nm exhibited a blue shift due to a shallower
trench depth as caused by imperfections in the fabrication process
(see Supplementary Fig. 3 and Supplementary Note 3). Figure 3c
presents the SEM images of the patterned trenches of
different pitches. Well-defined square structures are observed
in the patterned gold nanostructures for large pitch sizes of 140–
200 nm, while the shape evolves into rounded disks as the pitch
was reduced to 60 nm. This effect is due to the nanofabrication
process, that is, proximity effects in EBL and micro-loading
effects during etching that are more pronounced when the pitch
is reduced.

Both 532-nm and 633-nm pump lasers were used to investigate
the effect of plasmon-enhanced PL emission from monolayer
WSe2. Figure 4a,b presents the corresponding PL spectra as

extracted from the PL mapping. We note that the 633-nm pump
laser gives a higher PL emission as compared with the 532-nm
pump laser. Despite the higher intrinsic absorption at 532 nm as
compared with that at 633 nm in WSe2, excitation at 532 nm
resulted in low field enhancements (Supplementary Fig. 4a,b) and
low PL enhancements (Supplementary Fig. 4d), due to inter-band
transitions of electrons in gold at 532 nm (ref. 31). Figure 4c
presents the experimental PL EF (corrected by the trench area
fraction) excited by the 633-nm laser and the product of the
simulated EF of near-filed intensity and Purcell factor (see
Methods) as a function of pitch size. Despite the higher density
of trenches on the smaller pitch structures, on-resonance excitation
with the pitch of 200 nm results in the strongest near-field intensity
and Purcell factor enhancements, which were computed 1 nm
above the gold substrate, that is, at the expected z-plane of WSe2.
The s.d. in Fig. 4c was obtained by statistically analysing 10 spectra
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Figure 1 | Schematic of WSe2-gold plasmonic hybrid structure with strong optical absorption. (a) Schematic of PL emission from a single crystal

monolayer of WSe2 flake on a gold substrate. Part of the triangular flake rests on the patterned region of the substrate consisting of sub-20-nm-wide

trenches. (b) Representative simulation of the electric field distribution of the lateral gap plasmons with a WSe2 monolayer flake suspended over a single

trench. The polarization of the incident laser field is across the gap. The dashed yellow line denotes the boundary between air and gold. The scale bar,

20 nm. (c) Representative Scanning electron micrograph (SEM) image of WSe2 on square arrays with a trench width of 12 nm (Patterned) and unpatterned

gold film (Unpatterned). The scale bars in the main figure and the inset, 1 mm and 100 nm, respectively.
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of WSe2 on each patterned gold nanostructure. Variations could be
attributed to the slight trench size and shape variations of the
patterned gold nanostructures, or optical non-uniformity among
different triangular single crystals of WSe2.

As seen in Fig. 4c, the maximum PL enhancement was
achieved at WSe2 on a nanostructure with the pitch of 200 nm.
With the gap plasmon resonance tuned to the 633-nm pump laser
wavelength, the integrated PL intensity from WSe2 on this gold
nanostructure was enhanced up to 1,810-fold (without correction
by the trench area fraction) compared with the reference on
unpatterned gold film (see Supplementary Fig. 5a,b). Due to the
small pitch size of 200 nm, the modulation of WSe2 PL intensity
by the array of trenches could no longer be resolved in the PL
mapping (see the inset of Fig. 4c). From Figs 1b and 5b as shown
later on, we assume that the enhancements are still localized to
WSe2 at the trenches, where this assumption will be supported by
the PL mappings as shown in Fig. 5d,f later on. As measurements
here were done with the pump laser polarized along the x-axis,
fields are confined only within the trenches along the y-axis.
Correcting for the small area occupied by these trenches, we
obtain the maximum effective PL EF of B20,000 in WSe2 over
the trench using the formula9:

oPL EF4 ¼ Ipatterned

Iunpatterned

A0

Agap
; ð1Þ

where Ipatterned is the PL intensity from WSe2 on the patterned
gold nanostructure and Iunpatterned is the PL intensity from WSe2

on the unpatterned gold film. A0 represents the excitation area of
the laser spot size (p� 6002 nm2) and Agap represents the area
of the trenches (1.0� 105 nm2) perpendicular to the polarization
direction of the laser within the laser spot (see detailed calculation
in Supplementary Fig. 6 and Supplementary Note 4). To the best
of our knowledge, this magnitude of enhancement has not been
previously observed from 2D materials7–15.

Such a giant EF for the measured PL emission is due to the
plasmon-enhanced excitation process and the plasmon-enhanced
emission process. To be more specific, as shown in
Supplementary Fig. 4b, the plasmonic nanostructure is able to
enhance the excitation intensity by B310-fold, at the pump laser
wavelength of 633 nm, when the pitch size is 200 nm.
Furthermore, as shown in Supplementary Fig. 4c, the Purcell
factor on this 200-nm-pitch nanostructure is able to be enhanced
by B307-fold, as compared with the one on unpatterned gold
film. Therefore, the experimental EF of PL emission could
be predicted by the product of these two EFs, which is calculated
to be more than 9� 104, as shown in Fig. 4c for the pitch size
of 200 nm. In addition, we would like to mention that it is
unlikely that phase transition of WSe2 is at play here, although
there is direct contact between WSe2 and gold plasmonic
structures. The semiconducting 2H to metallic 1T phase
transition, which has only been observed in high-vacuum and
low-temperature conditions32, has associated Raman and PL
quenching effects33. However, we observed strong PL
enhancement instead of quenching.
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Figure 2 | Characterization results of WSe2-gold plasmonic hybrid structure. (a) SEM image of a crystalline WSe2 monolayer flake transferred onto a

template-stripped substrate with a pitch of 760 nm. ‘A’ points to a portion of WSe2 suspended above an intersection of two underlying trenches, while ‘B’

corresponds to the reference point, that is, WSe2 on unpatterned smooth gold. ‘C’ points to a tear defect in the monolayer. The scale bar, 1 mm. (b) PL

intensity (I) mapping on the WSe2-gold plasmonic hybrid structure showing larger signals from patterned regions and resolvable modulations in intensity.

The intensity value at each pixel was obtained by integrating the PL spectrum across the spectrum window of 700–820 nm. A 532-nm pump laser was

chosen here for a fine PL mapping resolution. (c) PL spectra from WSe2 on patterned gold nanostructures (A), unpatterned gold film (B) and the one from

as-grown WSe2 on sapphire. Their PL peak energy (full-width-at-half-maximum) are 1.65 eV (63 meV), 1.63 eV (78 meV) and 1.61 eV (83 meV),

respectively. (d) Zoom-in PL spectrum of WSe2 on sapphire. The laser power is 30 mw and integration time is 0.5 s.
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Polarization dependence of PL emission. Next, we investigate
the polarization-dependent characteristics of the PL emission
from WSe2 on patterned gold nanostructures. To resolve the
PL-enhanced regions, we chose a 920-nm-pitch substrate and a
532-nm pump laser to do the PL mapping. Here we choose
the 532-nm pump laser to do the PL mapping simply because the
532-nm pump laser has a smaller spot size due to the shorter
wavelength, as compared with the 633-nm pump laser. As a
result, the imaging resolution of the PL mapping as obtained by
the 532-nm pump laser is much clearer to show the enhanced PL
emissions from trench regions. Figure 5a shows an SEM image of
the sample. Figure 5b,c presents the simulated electric field
distributions of lateral gap plasmons at the intersection of two
trenches with 0�- and 45�-polarizations for the excitation. The
simulated electric field distributions of this nanostructure agree
with the experimental PL mappings in Fig. 5d–f. The maximum
field enhancement occurs in trenches perpendicular to the
polarization direction (Fig. 5b) and at the intersection of the
trenches under 45�-polarization (Fig. 5c). A plot of PL intensity
intersecting several trenches indicates a laser beam waist of
B600 nm (see Supplementary Fig. 7). These results provide
further evidence that the highest PL enhancements are from
WSe2 directly above the trenches, where the optical fields are
localized. It is noted that when the pitch size is larger than the
pump laser wavelength, both lateral gap plasmons at the trenches
and SPP on the flat squares are excited. However, the intensity
of the SPP is only 1/6 of that of the lateral gap plasmon
(see Fig. 5b,c). Thus, the contribution to the PL enhancement of
WSe2 still dominantly stems from the lateral gap plasmons
supported by the trenches. Figure 5g,h presents the PL and

Raman spectra of WSe2 on the intersection and on the square
centre, respectively. Both Raman and PL intensities of WSe2 at
the intersection are found to be larger than the ones at the
square centre. The un-shifted Raman peak of WSe2 over trenches
and square centre suggests that no strain is induced by the trench
and thus it also confirms that the observed PL enhancement was
not induced by strain34.

Discussion
Furthermore, the WSe2-gold plasmonic hybrid nanostructure
allows us to conveniently evaluate a recent claim in the
literature35, which states that suspended 2D materials are
expected to have larger PL than the counterparts on a
substrate, because the substrate depopulates the density of states
in 2D materials through charger transfer. Nevertheless, as shown
in Fig. 5d,f, the gaps parallel to the pump laser polarization do not
exhibit any stronger PL over its surrounding, although WSe2 is
suspended here. Therefore, it suggests that the suspension nature
of WSe2 by the trenches contributes little to the PL enhancement.

It should be noted here that the square geometry chosen has the
advantage of being independent of the incident polarization. In
other words, if the incident polarization is either purely x-polarized
or y-polarized, we will achieve the same PL EF. Therefore, for any
other polarizations in-between, we always could decompose the
incident optical field into the respective x-polarized component
and y-polarized component. Since the PL emission intensity is
linear with the excitation intensity, the PL EF remains the same.

Last, we would like to mention that there were no observable
local heating effects in our experiments. In hybrid structure of
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MoS2-gold nanoantenna, an increased absorption of the laser
light at the nanoantenna may cause local heating so as to red
shift and broaden the MoS2 PL emission peak. Simultaneously,
the local heating might cause a reduction in PL intensity of MoS2

(ref. 12). In our experiment, the PL peak position and its
full-width-at-half-maximum (FWHM) of WSe2 on both
patterned and unpatterned gold film have no power
dependence (Supplementary Fig. 8a–d). Hence, for the range of
laser powers used, the integrated PL and peak intensity increase
linearly with respect to the laser power (Supplementary Fig. 8e,f),
showing no signs of local heating effect.

In summary, concentrating and manipulating the electromag-
netic field in sub-20 nm trenches can achieve unprecedented PL
enhancement of WSe2. Tuning the resonance of lateral gap
plasmons to match with the pump laser wavelength effectively
boosts the light–matter interactions in WSe2, thus enhancing the
light emission efficiency of WSe2. A giant PL EF of B20,000 was
observed in WSe2 when using the 633-nm pump laser. We expect
further PL enhancements to be achieved through the design of
double-resonance structures with directionality control. This
work demonstrates an important method to enhance the PL of
TMDCs since it could enable high-efficiency and high-quality
photodetectors and sensors, where photon absorption and
emission dictate the device performance. The incorporation of
gold arrays with sub-20-nm-wide trenches onto WSe2

monolayers opens up a new platform for investigating
novel electrical/optical properties in 2D materials, such as

electroluminescence and second harmonic generation, speeding
up the applications of novel optoelectronic devices.

Methods
Material growth and quality of WSe2. The triangular-shape monolayer WSe2

was grown on sapphire by the CVD method (Supplementary Note 1). This
technique yields high-quality monolayer WSe2 with a crystal size of B4.5 mm
(Supplementary Fig. 2a). The typical PL spectrum of a pristine monolayer WSe2

(Supplementary Fig. 2b) shows one pronounced emission peak at 768 nm (1.61 eV),
that is, the A direct excitonic transition36–38. The Raman spectrum excited by
532-nm laser is shown in the inset of Supplementary Fig. 2b, where the two
characteristic peaks for monolayer WSe2 on sapphire are at 248 cm� 1 and
259 cm� 1, which are from the degenerate E0=A01 mode and 2LA(M) mode,
respectively39.

Fabrication of gold substrate and transferring of WSe2. The gold substrate
consisting of patterned gold structure and unpatterned gold film was prepared
by a template-stripping method (Supplementary Note 2). WSe2 flake was then
transferred onto the gold substrate by a wet transfer approach (Supplementary
Note 1). In comparison with the direct patterning of metallic nanostructures onto
TMDCs by EBL, transferring WSe2 on top of plasmonic nanostructure has several
advantages. First, it allows for direct incident laser irradiation on WSe2, instead of
attenuated transmitted light irradiation on WSe2 through the plasmonic struc-
tures13. Second, it avoids the potential undesired damage or doping of WSe2 due to
electron bombardment during electron-beam lithography process40. Last, the final
structure will also be suitable for the direct access to the WSe2 flake, for example,
for subsequent patterning or for contact to external leads.

Characterizations. Atomic force microscope (AFM) images were measured by a
BRUKER Dimension FastScan equipment. The optical reflectance spectra of the sample
were then measured by using a CRAIC UV-VIS-NIR micro-spectrophotometer model
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sited on patterned gold nanostructure with a pitch of 200 nm (on the left of the dashed line) and unpatterned gold film (on the right of the dashed line).

The intensity value at each pixel was obtained by integrating the PL spectrum across the spectrum window of 700–820 nm. The solid line represent the

shape of the flake and the dashed line represents the boundary between the patterned and unpatterned substrate. The laser power was 30mW and

integration time was 0.5 s.
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QDI 2010 (equipped with a � 36 objective lens with numerical aperture (NA)¼ 0.5).
Moreover, SEM images were measured by FEI Verios 460. A confocal micro-PL set-up
was used to excite the sample by using a 532-nm or 633-nm CW pump laser focused by
a � 100 microscope objective lens (NA¼ 0.65). PL emission was then collected by the
same objective and detected by a nitrogen-cooled charge coupled device. The spot sizes
of the 532-nm and 633-nm pump lasers were B600 nm and 1.2mm, respectively.
The PL mappings in Figs 2 and 5 were measured by the 532-nm laser as the smaller
laser spot size of this gave a better PL mapping resolution. The background PL signals
of pure gold nanostructures (Supplementary Figs 2e and 5c) were subtracted from all
the PL spectra of WSe2 on patterned gold nanostructures. The PL EF is defined
by equation (1).

Numerical simulations. A commercial software package, Lumerical FDTD
Solutions, was used to simulate the optical field distributions and Purcell factors.
Periodic boundary conditions were used along x- and y-axes, while perfect-
matched layer was used along z-axis. The finest mesh size was set to be 0.5 nm in
the structure. The geometries of the metal nanostructures in the simulations were
designed to match with the SEM images (Fig. 3c), with a trench depth of 75 nm.
This fine adjustment in the geometry was done for every pitch, which explains the
discontinuous jumps in the numerical data points (Fig. 3b and Supplementary
Fig. 4). The simulated EF of near-filed intensity is defined as the ratio of the
simulated |E|2 on top of the trench to the simulated |E|2 on the unpatterned
gold film at pump laser wavelength. To estimate the emission enhancement, we
first calculated the Purcell factors for dipoles located on top of the trenches of
gold nanostructures and for dipoles on top of the unpatterned gold film41.
The emission enhancement was then determined by the ratio of these Purcell
factors, which can be obtained directly from the FDTD analysis. Note that the

classical calculations of Purcell factors do take into consideration both radiative
and non-radiative rates for the dipole in the different environments42. Classically,
the non-radiative decay rates are due to Ohmic losses in the metallic structures
adjacent to the dipole.
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