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Helical Majorana fermions in 
d id+x y xy–2 2 -wave topological 

superconductivity of doped 
correlated quantum spin Hall 
insulators
Shih-Jye Sun1, Chung-Hou Chung2,3, Yung-Yeh Chang2, Wei-Feng Tsai4 & Fu-Chun Zhang5,6

There has been growing interest in searching for exotic self-conjugate, charge-neutral low-energy 
fermionic quasi-particles, known as Majorana fermions (MFs) in solid state systems. Their signatures 
have been proposed and potentially observed at edges of topological superconcuctors with non-trivial 
topological invariant in the bulk electronic band structure. Much effort have been focused on realizing 
MFs in odd-parity superconductors made of strong spin-orbit coupled materials in proximity to 
conventional superconductors. In this paper, we propose a novel mechanism for realizing MFs in 2D 
spin-singlet topological superconducting state induced by doping a correlated quantum spin Hall (Kane-
Mele) insulator. Via a renormalized mean-field approach, the system is found to exhibits time-reversal 
symmetry (TRS) breaking d id+x y xy−2 2 -wave (chiral d–wave) superconductivity near half-filling in the 
limit of large on-site repulsion. Surprisingly, however, at large spin-orbit coupling, the system 
undergoes a topological phase transition and enter into a new topological phase protected by a pseudo-
spin Chern number, which can be viewed as a persistent extension of the quantum spin Hall phase upon 
doping. From bulk-edge correspondence, this phase is featured by the presence of two pairs of counter-
propagating helical Majorana modes per edge, instead of two chiral propagating edge modes in the 
d + id′ superconductors.

Searching for topological states of quantum matters constitutes one of the central and fundamental issues in con-
densed matter systems. The growing interest in topological insulators (TIs), which support gapless edge (or sur-
face) states protected by time-reversal symmetry (TRS) while the bulk remains insulating1,2, is one prime example. 
Of particular interest are topological superconductors which support gapless self-conjugate, charge-neutral fer-
mionic quasi-particle excitations3. These excitations which reflect non-trivial topological bulk properties are 
localized at the edges, known as Majorana fermions (MFs).

Much effort has been put in searching for signatures of Majorana fermions in solid state materials. 
One-dimensional semiconductor nano-wires with strong spin-orbit (SO) coupling under a magnetic field prox-
imity to a s-wave superconductor have been proposed theoretically to host MF at both ends of the wire4–6, and 
also studied experimentally7–11. Similar ideas have been proposed in 2D systems where chiral MFs exist at the 
edges of spin-triplet, p–wave (odd-parity) superconductors12–14.

While realization of the above systems relies on TRS breaking by the Zeeman field, time-reversal invariant 
topological superconductors (TRITOPs)15–18 have recently been proposed to host two time-reversal pairs of hel-
ical MFs at edges in repulsively interacting SO coupled nano-wire proximity to either a s-wave6,16 or a d–wave19 

1Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan, R.O.C. 2Electrophysics 
Department, National Chiao-Tung University, HsinChu, Taiwan, 300, R.O.C. 3Physics Division, National Center 
for Theoretical Sciences, HsinChu, Taiwan, 300 R.O.C. 4Department of Physics, National Sun Yat-Sen University, 
Kaohsiung, Taiwan, R.O.C. 5Department of Physics, Zhejiang University, Hangzhou, China. 6Collaborative Innovation 
Center of Advanced Microstructures, Nanjing, China. Correspondence and requests for materials should be 
addressed to C.-H.C. (email: chung@mail.nctu.edu.tw)

Received: 13 November 2015

Accepted: 16 March 2016

Published: 11 April 2016

OPEN

mailto:chung@mail.nctu.edu.tw


www.nature.com/scientificreports/

2Scientific RepoRts | 6:24102 | DOI: 10.1038/srep24102

superconductor at each end of the wire. Proposals to realize TRITOPs in 2D systems include the spin-triplet 
px ±  ipy superconductors15, the bi-layer Rashba system20, and in exciton condensates21.

In this paper, we suggest a novel mechanism for realizing helical Majorana fermions in 2D spin-singlet chiral 
superconductors with TRS-breaking pairing gap–by directly doping correlated 2D quantum spin Hall insulators 
(QSHIs or 2D TIs) on honeycomb lattice22,23. A paradigmatic model for QSHIs is the Kane-Mele (KM) model23,24, 
which shows a non-trivial Z2 topological (or spin Chern) number and supports helical edge states protected by 
TRS. The half-filled KM model with strong electron correlations is in the Mott-insulating (MI) phase25, while 
superconductivity appears upon doping. Attractive candidates to realize correlated QSHIs on honeycomb lattice 
include: graphene with enhanced Kane-Mele SO coupling (∼ 20 meV) by doping with heavy adatoms26, In3Cu2 
VO9

27,28, β–Cu2V2O7
28,29, and Iridium-based honeycomb compounds X2IrO3(X =  Na or Li) with strong SO cou-

pling and electron correlations25,30–32.
Via renormalized mean-field theory (RMFT) approach33,34, we find the spin-singlet TRS breaking 
+−d idx y xy2 2 -wave superconductivity to appear at the ground state where the chiral edge states have been shown 

to occur35. Surprisingly, for sufficiently large SO coupling compared with the superconducting gap, instead of 
chiral edge states, we find gapless helical MFs to appear at each ribbon edge. This seemingly un-expected feature 
comes as a result of persistent extension of the quantum spin Hall phase with non-trivial pseudo-spin Chern 
number upon doping. A novel pseudo-spin Chern to chiral topological quantum phase transition is identified.

Results
Model Hamiltonian. The Hamiltonian of the Kane-Mele t-J (KM-tJ) model is given by23:
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where α  =  ↑ , ↓  stands for the spin index, 〈 i, j〉  and 〈 〈 i, j〉 〉  refer to the nearest-neighbor (NN) and 
next-nearest-neighbor (NNN) sites, respectively (see Fig. 1). Here, vij =  1 for i, j ∈  A and vij =  − 1 for i, j ∈  B in the 
SO coupling; 



Si  refers to the electron spin operator on site i, defined as: σ= ∑α β
α
αβ
β

=↑ ↓
� ��†S c c1/2i i i, , , 

= ∑α
α α†n c ci i i  is the electron density operator, and the anti-ferromagnetic spin-exchange couping ∼J t

U
4 2

 can be 
derived via the second-order perturbation from the Kane-Mele Hubbard model in the limit of a strong on-site 
Coulomb repulsion U ≫  t. Due to breaking of the SU(2) symmetry of the Kane-Mele Hubbard model at 
half-filling, a small effective ferromagnetic spin-exchange coupling J′  ≪  J term between NNN sites is generated 
via SO coupling25, which is neglected here (The J′  term favors the magnetic order in XY–plane25 and may induce 
spin-triplet superconductivity upon doping). We also drop the Rashba SO coupling for simplicity.

The HJ term has been known to favor the spin-singlet pairing. To address superconductivity of the model, 
we apply RMFT based on Gutzwiller projected single-occupancy constraint due to the proximity of the Mott 
insulating ground states, known to describe the ground state of d–wave cuprate superconductors in qualitative 
agreement with those via variational Monte Carlo approach33,34.

Figure 1. Honeycomb lattice of a finite-sized zigzag ribbon of the tight-binding Kane-Mele t-J model with 
the ribbon size N = 8 being twice the number of zigzag chains along x-axis. Nearest-neighbor and next-
nearest-neighbor lattice vectors are δ =a 1,2,3, ai = 1,2 with an unit length of a a, , respectively. We set a =  1 here. The 
gray shaded region represents for the super-unit-cell of the zigzag ribbon, which repeats itself along x-axis. The 
filled (open) dots stand for the sites on sub-lattice A(B). The three phases for d +  id′  pairing gap are defined (see 
shaded green triangle) as: φ0 =  0, φ1(2) =  − (+ )2π/3.
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The spin-exchange J term within RMFT reads (see the methods section):
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where a =  1, 2, 3, NS is the total number of sites, χ = − ∑ 〈 〉δ α
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and ε σ=αβ αβi y . Here, δ= +g 4/(1 )s

2 (see the Methods section). Based on the C6v symmetry of the underlying 
lattice, the pairing symmetry of ∆δ =



a 1,2,3
 may take the following forms36,37: (i) extended s–wave: ∆ = ∆ = ∆δ δ
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with gt =  2δ/(1 +  δ) (see the Methods section). The Hamiltonian Eq. (3) possesses both the Particle-hole  
(PH) symmetry: = −−

−k k
1C M C M ,  τ= Kx  (with τx being the Pauli matrix on particle-hole space and K being 

complex conjugation) as well as sub-lattice symmetry:  → −k k for cA,k →  cB,k
37. The matrix ĥk, describing  

the KM model, shows TRS: =−
−

ˆ ˆh hk k
1   where σ= i Ky  is the time-reversal operator taking ↑ ↓c c( , )k k  to 
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 with Ek >  0 being positive eigenvalues and Ns the number of sites. We 

diagonalized the mean-field Hamiltonian Hk on a finite-sized zigzag ribbon with Ns =  N/2 zigzag chains and 
N =  56 is set as the total number of sites along y–axis throughout the paper.

Bulk and edge properties. The mean-field variables are solved self-consistently by minimizing the free 
energy both for a periodic lattice and a finite-sized ribbon (see supplementary materials). Compared to the TRS 
extended s–wave, we find +−d idx y xy2 2 –wave pairing is the ground state38. Same pairing symmetry has been 
reported in superconducting phase of the doped graphene in the absence of the spin-orbit coupling35,37,39–41, 
which was argued to support two co-propagating chiral edge states at low energies with a non-trivial topological 
winding number NTKNN =  ± 242. The superconducting transition temperature Tc is estimated as Tc ∼  gtΔ0.

On a finite-sized zigzag ribbon and at a generic doping, the Bogoliubov quasi-particle dispersion shows four 
doubly-degenerate bulk bands (due to the Sz symmetry of our Hamiltonian) grouped in two pairs (see Fig. 2(a)); 
it satisfies the particle-hole symmetry with 2π periodicity. At low dopings, the normal state Fermi surfaces enclose 
the Dirac points = ±π π

± ( )K ,2
3

2
3

 (see Fig. 2(b)); the d +  id′  pairing strength is weak near K_38.
Surprisingly, in the regime of a strong SO coupling and weak pairing (∆ + ′

 t3d id
SO), we find the low 

energy excitations of our model support helical MFs at edges instead of chiral edge states as expected for a chiral 
d–wave superconductor. On a finite-sized zigzag ribbon, we find two Dirac-dispersed lines intersecting at 
momenta π π∼k 2 /3, 4 /3x

MF  where the Bogoliubov quasi-particle excitation energy vanishes, =E k( ) 0x
MF  (see 

Figs 2(a) and 3(a)). Note that for tSO ≫  Δ0, we find bulk gap closes near kx =  0, π in the pseudo-spin-Chern phase 
(see Fig. 2). This comes as spin-orbital gap of the pure Kane-Mele ribbon gets smaller near Γ  point. Upon doping, 
the P-H symmetry of the bands is imposed, leading to the overlap between particle and hole bands near kx =  0, π 
for large tSO/Δ0. We have checked numerically that all the states near kx =  0, π are indeed bulk states. Nevertheless, 
when tSO is of the same order of magnitude as Δ0, we find the bulk gap coloses only at the 
pseudo-spin-Chern-to-chiral phase transition (see Supplementary materials). Near each of these gapless points, 
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two pairs of two-fold degenerate states are generated via intersecting the two Dirac lines by a constant energy at 
two momentum points kx x

MF
( )1 2

, denoted as: Ψ =j
MF
1(2), 1,2 with the subscript 1(2) being the label of the eigenstate at 

kx x
MF

( )1 2
 and j =  1, 2 the label of two-degenerate eigenstates at a fixed momentum k. These four degenerate states are 

located at the same edge. However, Ψ j
MF
1,  and Ψ j

MF
2,  are counter-propagating, while Ψ j

MF
,1  and Ψ j

MF
,2  are co-propagating 

(see Fig. 3(b)).
These features are clearly different from the co-propagating chiral edge states realized either in the chiral 

d-wave superconductivity in doped graphene or by proximity of a s–wave superconductor to a quantum 
anamolous Hall insulators43. Instead, the edge states we find fit well to the helical MFs described by the 
linearly-dispersed Hamiltonian defined by the Bogoliubov quasi-particle operators γ τ

k
R L( )  as:
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where = −k k kx
MF, ≡k kx, γ ατk  with α =  L, R refers to the Bogoliubov quasi-particle destruction operator 

defined by the coherence factors τ τ τ τ
u u v v, , ,k i k i k i k i, , , , , corresponding to the right-moving quasi-particle with 

“pseudo-spin” τ =  ↑ (↓ ), and the summation over repeated site index = …i N1,  is implied; similarly for γ τ
k
L . The 

pair of the degenerate wavefunctions Ψ = i( )j
R L

1(2)
( )  at k k( )x

MF
x
MF

1 2  can be expressed as Ψ ↑ ↓ i( )R L( ), ( ) , formed by the 

coherence factors: Ψ =↑ ↑ ↑ ↑ ↑
i u u v v( ) ( , , , , )R

k i k i k i k i
,

, , , , , Ψ = − −↓ ↓ ↓ ↓ ↓
 i v v u u( ) ( , , , )L

k i k i k i k i
,

, , , , ; similarly for the other dou-

blet Ψ ↓ ↑ i( )R L( ), ( ) . It is clear from Fig. 3(b) that the edge states Ψ Ψ↑ ↓ ↓ ↑( , )R L L R( ), ( ) ( ), ( )  (as well as the Bogoliubov 
operators γ γ↑ ↓ ↓ ↑( , )k

R L
k
L R( ) ( ) ) form pairs (see pink (blue) curve in Fig.  3(b) for |Ψ | Ψ↑ ↓i i( ) ( ( ) ))R L, 2 , 2 . 

Figure 2. (a) The Bogoliubov dispersion E(kx) (in unit of t) of doped KM-tJ model on a zigzag ribbon with 
N =  56 for J/t =  0.1, tSO/t =  0.8, and δ =  0.05. (b) The spin-up Fermi surfaces in the normal state of the Kane-
Mele model on 2D periodic lattice for tSO/t =  1 at various dopings. The spin-down Fermi surfaces are obtained 
via K+ →  K−. (c) The 3D density plot for the effective intra-band superconducting gap function ∆−−k  of the 
Kane-Mele model on 2D periodic lattice (see text and Supplementary materials).
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Furthermore, these Bogoliubov operators with linear dispersion satisfy γ γ− =− 

†E E( ) ( )k k
 with π≡ −k k  via 

PH symmetry (see top and bottom panels of Fig. 3(b)). Hence, they can be regarded as examples of helical MFs at 
edges15; the MF zero-modes occur at π= −k kMF x

MF  where γ γ= = =ατ ατ
−



†E E( 0) ( 0)k kMF MF
. An additional sym-

metry is observed due to combined P-H and sublattice symmetries: γ γ− = †E E( ) ( )k k
 (see Fig. 3(b)). Our seem-

ingly unexpected results have roots in the competition between TRS SO coupling and TRS breaking chiral d–wave 
superconductivity. It seems to suggest that the TRS protected Z2 QSH insulating phase of the pure un-doped 
Kane-Mele model persists up to a finite doping and a finite pairing gap with chiral d-wave narure.

To gain more understanding of this surprising result, we try to identify the non-trivial topological invariant 
corresponding to the helical edge states we found. We first decompose our 8 ×  8 Hamiltonian matrix Mk in Eq. 3 
into two separated 4  ×   4  matr ices  . . ,  ↓HSC  in  the  new basis  = −↑ ↑ ↑

−
↓

−
↓† †c c c c c( , , , )SC k A k B k A k B k, , , , , , 

= −↓ ↓ ↓
−
↑

−
↑† †c c c c c( , , , )SC k A k B k A k B k, , , , , , representing the spin-up and spin-down parts of the Mk as44:
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Figure 3. (a) Bogoliubov excitation spectrum of Fig. 2(a) near zero energy. (b) In the basis of Ψ = Π Π↑ ↓c c[ , ,i i i i   
Π Π↑ ↓† †c c, ]i i i i  with i =  1 …  N, the square magnitudes of two pairs of degenerate eigenstate wave-functions 
associated with the same kx

MF is defined as |Ψ | ≡ |Ψ | ≡ | | | | | | | |= i i u i u i v i v i( ) ( ) ( ( ) , ( ) , ( ) , ( ) )j
R L

j
R L2

1,2
/ 2 2 2 2 2 /  (see text) 

for a fixed eigenenergy = = ± .±E E t0 014  with i running (left to right) from i =  1 (top edge) to i =  56 (bottom 
edge), corresponding to the helical Majorana fermions. They exhibit an exponential decay from both edges into the 
bulk. Here, R/L refers to the right/left moving state, and u i u i v i v i( ), ( ), ( ), ( ) are the corresponding matrix 
elements. Physical parameters are the same as in (a). (c) Schematic plot of the helical edge states in (b) for E =  E+ 
where same color in (b,c) refers to the same state. Here, ZGNR refers to the Kane-Mele zigzag nano-ribbon.
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and similarly for ↓HSC. Due to Sz and sub-lattice symmetries, two pairs of degenerate bands (one pair with positive 
and one with negative eigenvalues) are formed in ↑HSC and ↓HSC. Like the case for the quantum spin-Hall insulator 
(QSHI), we try to characterize the helical phase of our model in terms of the familar spin Chern number 
= −↑ ↓C C C( )/2s  where = ∑↑ ↓ ↑ ↓C Cn n

( ) ( ). Here, ↑ ↓Cn
( ) refers to the Chern number of the nth filled band in ↑ ↓HSC

( ): 
∫=

π
↑ ↓

∈C F k( )n i k BZ
( ) 1

2 12  where the integral is done in the first Brillouin zone (BZ), the field strength F12(k) and 
the associated Berry’s connection A(k) are defined as: F12(k) ≡  ∂ 1A2(k) −  ∂ 2A1(k) and = ∂µ µA n k n k( ) ( )  with 
n k( )  being the normalized eigenvector of the nth band in ↑ ↓HSC

( )45. However, we find C↑ =  0 =  C↓ due to the can-
cellation of Cn within each pair of filled degenerate bands. Therefore, the spin Chern number is zero, Cs =  0.

Nevertheless, ↑ ↓HSC
( ) exhibits an additional pseudo-spin symmetry: τ τ =− ↑ ↓ ↑ ↓H Hz SC z SC

1 ( ) ( ) with τz being the z–
component of the Pauli matrix defined in 4 ×  4 matrix within ↑ ↓cSC k,

( ) basis, and the pseudo-spin quantum numbers 
can take ± 1. Therefore, the helical phase realized in our system may still be characterized by a different topolog-
ical number, similar to the spin Chern number, called the pseudo-spin Chern number = −C C C( )/2w n n  where 
n and n label the two degenerate bands within each 4 ×  4 matrix ↑ ↓HSC

( ), related by → −↑ ↑
−
↓

−
↓† †c c c c( , ) ( , )A k B k A k B k, , , , , 

and carry the opposite pseudo-spin quantum number. In the strong SO coupling regime, tSO ≫  Δ0 and for a sizable 
range of doping around 1/2-filling, we evaluate Cn, Cn numerically and indeed find = = −C 1 Cn n, leading to a 
non-trivial pseudo-spin Chern number Cw =  1 for ↑ ↓HSC

( ). The total pseudo-spin Chern number by summing over 
contributions from both spin species is therefore =C 2w

tot  Supplementary materials. Via the bulk-edge corre-
spondence, two pairs of counter-propagating (helical) edge modes are therefore expected, which explains the 
helical edge states we find numerically via the renormalized mean-field theory. Note that the helical MFs have 
been known to exist in Z2 TRITOPs and are protected by the time-reversal symmetry (The existence of two pairs 
of helical edge states via mean-field analysis agrees perfectly with the total spin Chern number being ± 2 via sum-
ming over NW for all four filled bands)1,15,46. However, we provide an example of different kind of helical Majorana 
edge states here which is not protected by TRS, but by the pseudo-spin symmetry. We may call them quasi-helical 
edge states to be distinguished from the TRS protected helical edge states. These quasi-helical edge states are 
robust against disorder or spin-nonconserving interactions, similar to the spin-Chern phase in the QSHIs in the 
absence of TRS47–49.

Deep in the pseudo-spin-Chern phase, our system is well approximated by the effective spin-singlet px ±  ipy 
superconductivity near the two Dirac points K±. This can be seen when re-expressing the superconducting pair-
ings in terms of the electron operators ψ±,k which diagonaliz the tight-binding KM Hamiltonian38 Supplementary 
materials. In this basis, the intra-band pairing ψ ψ∆−− −

↑
− −
↓† †

k k k, ,  dominates at ground state (see Fig. 2(c) and 
Supplementary materials). Near K± points with q± =  K± +  (± qx +  qy), we find ∆ ∼ ±∆ ±−−

±
q iq( )q y x0 , resem-

bling the case of a TRITOPs. In the opposite limit for tSO ≪  Δ0 or sufficiently large doping where the chiral d-wave 
pairing dominates, however, we recover the chiral superconductivity: NW =  0 and = =C C 1n n , equivalent to the 
case of doped graphene35,37.

A novel pseudo-spin-Chern-to-chiral topological quantum phase transition is identified as Δ0/tSO or μ/tSO is 
varied (see Supplementary materials)44. The generic phase diagram by tuning μ (in a non-self-consistent way) at 
a fixed Δ0/tSO is shown in Fig. 4. For Δ0/t ≪  1, the chiral-to-pseudo-spin-Chern phase transition occurs near 
µ± ∼ ± t3c SO (see Fig. 4(a)). As shown in Fig. 4(b), the bulk band gap closes at the phase boundary μ ∼  − μc at 

one Dirac point (case (ii)), while it remains finite on either of the two phases (cases (i) and (iii)).
For Δ0 <  tSO, we find the critical values of μ being at µ µ= ± ∼ ± t3c SO. The bulk band gap closes only at the 

phase transition, while it remains open in either phase44,50 (see also Supplementary materials). Similar persistence 
of spin-Chern phase in a TRS breaking magnetic field has been observed experimentally in ref. 51. The 
pseudo-spin-Chern phase of our system belongs to class D topological superconductors, distinct from the 
TRITOPs19,52.

Discussions and Conclusions
Before we conclude, the applicability of our model for the adatom doped graphene and other correlated materials 
deserves some discussions here. The authors in ref. 26 showed via density functional theory that depending on 
the elements, adatoms favor either the high-symmetry bridge (B)(center of a bond connecting two carbon atoms), 
hallow (H) (center of the honeycomb) or the top (T) (on top of a carbon site) positions on the graphen sheet 
upon doping. In particular, they showed that the hallow (H) position is favored for indium or thallium, which 
generates an effective intrinsic spin-orbit (SO) coupling of precisely the Kane-Mele type with a sizable enhanced 
SO coupling (∼ 20 meV) compared to the un-doped graphene. The Kane-Mele model can in principle be realized 
when adatoms (indium or thallium) are regularly doped on a graphene sheet. Note that the lattice symmetry 
of graphene is not broken if adatoms are uniformly doped on the H-sites. Meanwhile, the strength of on-site 
Coulomb interaction U in graphene has been estimated via first-principle calculations to be U/t ∼  3.342,53, which 
cannot be viewed as a weak coupling or perturbation. Note that in general, a long-range Coulomb repulsion is 
also present in the un-doped graphene. However, at finite doping, the long-range Coulomb tail in graphene is 
further suppressed. Since we are interested in the superconducting phase at a finite doping, we consider here 
only the on-site Coulomb interaction U term42. The second-order perturbation in t/U of the Hubbard (with 
hoping t and on-site U terms) model leads to our t-J model with RVB-type antiferromagnetic spin-exchange 
coupling J ∼  t. This value of J/t falls into (intermediate) correlated regime. Though the value of J/t in graphene 
may not be large enough to warrant a strong-coupling approach, an effective t-J model of the same form can be 
derived alternatively by phenomenologically introducing an effective RVB J term in the intermediate coupling 
regime J ∼  t for graphene where the hoping t is not renormalized36,54. Furthermore, besides graphene, In3Cu2VO9 
and β −  Cu2V2O7 28 have been proposed recently to be well-described by the t −  J model on honeycomb lattice, 
while In3Cu2VO9

27, β −  Cu2V2O7
29, SrPtAs55, MoS2

56, and silicene36 have been proposed to be chiral d-wave 



www.nature.com/scientificreports/

7Scientific RepoRts | 6:24102 | DOI: 10.1038/srep24102

superconductors near half-filling. At a general level, we treat our t −  J model within RMFT where the hoping t 
and spin-exchange J get renormalized.

In summary, in contrast to the extensively studied chiral (helical) Majorana fermions in spin-triplet px +  ipy 
(px ±  ipy) superconductivity by applying a magnetic field and/or by proximity effect, we demonstrate for the first 
time a 2D spin-singlet topological superconductor with non-trivial pseudo-spin Chern number in doped corre-
lated Kane-Mele model. Our generic system supports helical counter-propagating Majorana zero modes despite 
the d +  id′  superconducting pairing gap breaks TRS. This seemingly unexpected feature comes as a result of per-
sistence of spin-Chern phase of the pure Kane-Mele model in the superconducting state upon doping. As T →  0, 
distinct differential conductance spectrum for each pair of Majorana zero mode through differential Andreev 
conductance in the normal-metal/superconducting (NS) junction is expected35,37. Further theoretical and exper-
imental investigations are necessary to clarify and realize the exotic helical MFs in doped QSH insulators.

Methods
Our calculations are based on Renormalized Mean-Field Thoery (RMFT)33,34. This approach is based on the 
Gutzwiller projected single-occupancy constraint in the large U (onsite Coulomb replusion) limit of the Hubbard 
model due to the proximity of the Mott insulating ground states. In this limit, the Hubbard model reduces to the 
t-J model. The RMFT approach has been known to describe the ground state of d–wave cuprate superconductors 
in qualitative agreement with results via variational Monte Carlo approach33,34. Projecting out the double occu-
pancy of the t-J model, the hopping t term effectively acquires a reduction factor gt: t →  tgt with gt =  2δ/(1 +  δ), 
while the spin-exchange J term gets enhances by a factor gs: J →  gsJ with gs =  4/(1 +  δ)2. In general, tSO term gets 
renormalized as ∼t g t U( )SO

eff
t SO , which vanishes at half-filling. However, tSO(U) is expected to be strongly ena-

hanced with increasing U23. For simplicity, at a finite doping, we shall approximately treat ≡t tSO
eff

SO as a constant 
parameter (The dependence of tSO(U) on U is rather complictaed. The precise form of tSO(U) shall be addressed as 
a separate issue and it does not affect the qualitative results of the present work). We consider our doped 
Kane-Mele model in the correlated regime described by the t-J model. Therefore, the RMFT is an appropriate 
approach for this purpose. The spin-exchange J term is decomposed into the mean-field variables for the super-
conducting gap function ∆ + ′

k
d id  and for the particle-hole excitations χ. We numerically solve these mean-field 

variables self-consistently on a finite-sized zigzag ribbon (Ns =  28 zigzag chains) on honeycomb lattice subject to 
the chemical potential μ and a doping δ.
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