
Physics Letters B 758 (2016) 37–41
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Stability of Einstein static state universe in the spatially flat 

branemodels

Kaituo Zhang a, Puxun Wu b,c,d, Hongwei Yu c,b,∗, Ling-Wei Luo e

a Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China
b Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
c Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
d Center for High Energy Physics, Peking University, Beijing 100080, China
e Institute of Physics, Chiao Tung University, Hsinchu 300, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 February 2016
Received in revised form 21 April 2016
Accepted 25 April 2016
Available online 27 April 2016
Editor: M. Trodden

With the assumption that a perfect fluid with a constant equation of state is the only energy 
component on the brane, we study the stability of Einstein static state solution under homogeneous 
and inhomogeneous scalar perturbations in both spatially flat Randall–Sundrum (RS) and Shtanov–Sahni 
(SS) braneworlds. We find that if the perfect fluid has a phantom-like property and the “Weyl fluid” 
originating from the projection of the bulk Weyl tensor onto the brane behaves like a radiation with 
positive energy density, the Einstein static state solution is stable in the SS braneworld, but unstable in 
the RS one. Furthermore, we demonstrate that the static state solution is also stable in the bulk with a 
timelike extra dimension. Thus, in the model where the extra dimension is timelike, our universe can stay 
at the Einstein static state past-eternally, which means that the big bang singularity might be resolved 
successfully by an emergent scenario.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Braneworld scenario, based on superstring theory (M theory), 
assumes that our 1 + 3 dimensional observable universe (“brane”) 
is embedded in a 1 + 3 + d dimensional spacetime (“bulk”), and 
gravity can propagate freely in the bulk while ordinary particles 
and fields are confined on the brane. Thus the hierarchy prob-
lem could be resolved by the existence of extra dimensions. In 
most braneworld models, such as the famous Randall and Sundrum 
(RS) [1,2] and DGP [3] models, the extra dimension is spacelike, so 
the manifold of the bulk is Lorentzian. However, it is still plausible 
that timelike extra dimensions may exist. The simplest braneworld 
with a timelike extra dimension was constructed by Shtanov and 
Sahni [4]. In this model our Universe contracts at the beginning 
and then undergoes a nonsingular bounce [4]. It was also found 
that in both the spatially flat and positively-curved cases the Ein-
stein static state solution is stable against homogeneous pertur-
bations [5,6]. So, the authors in [5,6] argued that the big bang 
singularity problem may be resolved successfully since our uni-
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verse can stay at the Einstein static state past-eternally and then 
evolve into an inflationary era naturally.

The idea, which uses the Einstein static state to solve the prob-
lem of big bang singularity, was first proposed by Ellis et al., and it 
was named the emergent scenario [7,8]. It is easy to see that the 
existence of a stable Einstein static state universe is a prerequisite 
for the emergent theory. Otherwise our universe is impossible to 
stay at the static state past-eternally. The emergent mechanism is 
unsuccessful for the avoidance of big bang singularity in the theory 
of general relativity since the Einstein static state solution is unsta-
ble. In the very early universe, due to that the cosmic energy den-
sity is very large, it is reasonable to consider some other effects, 
such as those from quantum gravity and modified gravity, which 
might help to stabilize the Einstein static state. It has been found 
that the Einstein static state universe is stable against homoge-
neous scalar perturbations in massive gravity [9,10], loop quantum 
cosmology [11], Horava–Lifshifz gravity [12], f (T ) gravity [13], 
braneworld scenario [14,15], Jordan–Brans–Dick theory [16], hybrid 
metric-Palatini gravity [17], modified Gauss–Bonnet gravity [18], 
f (R) gravity [19], and some other theories [20]. However, inhomo-
geneous perturbations violate the stability of Einstein static state 
solution in modified Gauss–Bonnet gravity [21], and f (R) grav-
ity [22]. Therefore, the stability of Einstein static state solution 
under inhomogeneous perturbations must be investigated when 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the emergent scenario is used to resolve the big bang singularity 
problem.

As is mentioned in the above, in the SS braneworld, only the 
stability of Einstein static state solution under homogeneous per-
turbations was investigated. Whether it is stable against inhomoge-
neous perturbations remains unclear. So, in this paper, we analyze 
the effect of inhomogeneous scalar perturbations on the stabil-
ity of Einstein static state in the spatially flat braneworld. Besides 
the SS braneworld model, whose extra dimension is timelike, we 
also consider the RS braneworld one, which has a spacelike extra 
dimension. In addition, we discuss the stability of Einstein static 
state solution under these perturbations in the bulk with a time-
like extra dimension.

2. Einstein static state solution in the braneworlds

In braneworld scenario, our four-dimensional world is consid-
ered as a brane which is the boundary of a five-dimensional bulk. 
Its action has the following general form [4]

S = M3
∫

bulk

(R− 2(5)�)
√−ε g d5x − 2εM3

∫
brane

K
√

−h d4x (1)

+
∫

brane

(m2 R − 2σ)
√

−h d4x +
∫

brane

L
√

−h d4x .

Here, gab is the five-dimensional metric in the bulk, and R is the 
scalar curvature of five dimensional spacetime. R is the scalar cur-
vature of the induced metric on the brane which is defined by 
hab = gab − εnanb , and na is the vector field of the inner unit 
normal to the brane. K = hab Kab is the trace of the symmetric 
tensor of extrinsic curvature Kab = hc

a�cnb of the brane. ε = 1
or −1, which corresponds to a spacelike or timelike extra dimen-
sion respectively. M and m denote the five- and four-dimensional 
Planck masses, respectively. (5)� is the five-dimensional cosmo-
logical constant and σ is the brane tension. g and h are deter-
minants of five-dimensional and four-dimensional metrics, respec-
tively. L denotes the Lagrangian density of a perfect fluid restricted 
on the brane.

Varying the action given in Eq. (1) with respect to the met-
ric hab , we obtain the Einstein field equation on the brane:

m2Gab + σhab = εM3(Kab − Khab) + Tab , (2)

where Gab and Tab are the Einstein’s tensor and stress-energy ten-
sor of a perfect fluid on the brane, respectively. As Eq. (2) involves 
the extrinsic curvature tensor Kab , it is not closed with respect 
to the intrinsic evolution on the brane. Using the Gauss–Codazzi 
identities and projecting the field equations onto the brane, the 
effective equation [23,24] which involves only four-dimensional 
quantities, can be obtained

Gab + �effhab = 8πGeffTab + 1

α + 1

( ε

M6
Q ab − Wab

)
. (3)

Here α = 2εσm2

3M6 is a dimensionless parameter, and �eff =
1

α+1

(
(5)�

2 + εσ 2

3M6

)
is the effective cosmological constant, which, 

for simplicity, we set to be zero in the following.1 8πGeff =
2εσ

3(α+1)M6 with Geff being the effective gravitational constant, and 
Q ab is a quadratic term defined by Q ab = 1

3 B Bab − Bac Bc
b +

1 It is worth noting that (5)� < 0 is required for ε = 1 which allows a zero four-
dimensional cosmological constant [23].
1
2

(
Bcd Bcd − 1

3 B2
)

hab , where Bab ≡ m2Gab − Tab is the ‘bare’ Ein-

stein equation on the brane, and B = hab Bab . For m = 0, which 
corresponds to RS or SS limit, one has α = 0 and Bab = −Tab . 
Thus, Q ab becomes the quadratic term of stress-energy tensor of 
the perfect fluid on the brane. The last term Wab ≡ ncnd Wacbd is 
the projection of the bulk Weyl tensor Wabcd onto the brane. With 
boundary conditions [25], the tensor Wab characterizes the stress-
energy tensor of a “Weyl fluid” [26] with the equation of state like 
that of “dark radiation” [27], i.e., γw − 1 = 1

3 .
To find an Einstein static solution, we assume that our universe 

on the brane is described by a spatially flat Friedmann–Robertson–
Walker (FRW) metric

ds2 = −dt2 + a(t)2
(

dr2 + r2(dθ2 + sin2 θ dφ2)
)

, (4)

where a is the scale factor and t is the cosmic time. We further 
assume that the perfect fluid has a constant equation of state, 
which means that its energy density ρ and pressure p satisfy 
p = (γm − 1)ρ with γm being a constant. The energy momentum 
tensor of the perfect fluid has the form

Tab = p hab + (ρ + p) UaUb , (5)

where Ua is the four-velocity vector. In addition, we find that Wab
can also be expressed as [28]

Wab = pwhab + (ρw + pw) UaUb , (6)

with

ρw = −3C/a4 , pw = (γw − 1)ρw = 1/3ρw , (7)

where C is an integration constant characterizing the “dark radia-
tion” contributed by the projection of five-dimensional Weyl tensor 
onto the brane. The energy conservation law gives

∇a Tab = 0 . (8)

Together with Bianchi identity, one can obtain

∇a
(

Q ab − M6Wab

)
= 0 . (9)

From Eqs. (3), (5) and (6), one can obtain the Friedmann equa-
tions of RS and SS braneworlds

H2 = 1

3

(
ρ + ε

ρ2

ρc

)
− 1

3
ρw = 1

3

(
ρ + ε

ρ2

ρc

)
+ C

a4
(10)

H2 + 2
ä

a
= (1 − γm)ρ + ε(1 − 2γm)

ρ2

ρc
− C

a4
, (11)

where H = ȧ
a is the Hubble parameter, ρc ≡ 2εσ and 8πGeff ≡ 1

are set for simplicity. In this paper, an overdot denotes a derivative 
with respect to t .

The Einstein static state solution satisfies the conditions ȧ = 0
and ä = 0, which imply

a = a0 , ρ = ρ0 , H(a0) = 0 . (12)

Combining Eqs. (10) and (11), we find that, in a static state uni-
verse, the energy density of the perfect fluid and the cosmic scale 
factor must satisfy

ρ0 = 4 − 3γm

2(3γm − 2)
ερc , a4

0 = (3γm − 2)2

γm(3γm − 4)
· 4εC

ρc
. (13)
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3. Perturbations on the brane

Since only isotropic scalar perturbations are considered in our 
analysis, it is convenient to express the perturbed metric in the 
longitudinal gauge

ds2 = −(1 − 2�)dt2 + a2(1 + 2�)
(

dr2 + r2(dθ2 + sin2 θ dφ2)
)

.

(14)

Here, � is the “Bardeen” potential, and � represents the pertur-
bation to the spatial curvature. The perturbed energy-momentum 
tensors of the perfect fluid and “dark radiation”, respectively, have 
the forms [25]

δT a
b = δρU aUb + U a Dbq + Ub Daq + δpPa

b , (15)

δW a
b = δρw U aUb + U a Dbqw + Ub Daqw + δpwPa

b , (16)

where q and qw are related respectively to the velocity perturba-
tions of the perfect fluid and the “Weyl fluid”. Pa

b and Da are 
given by

Pa
b = δa

b + U aUb , Da = Pb
a∂b . (17)

Assuming adiabatic perturbations, one has that δp = (γm − 1)δρ
and δpw = 1

3 δρw .
Now, for convenience we perform a harmonic decomposition 

for the perturbations:

� = �n(t)Hn(θ
i), � = �n(t)Hn(θ

i),

δρ = δρn(t)Hn(θ
i), δρw = δρwn(t)Hn(θ

i),

q = qn(t)Hn(θ
i), qw = qwn(t)Hn(θ

i). (18)

Here, n is larger than zero and is a continuous real number. The 
harmonic function Hn =Hn(θ i) satisfies

�Hn = −k2Hn, k2 = n2 ≥ 0, (19)

where � denotes the Laplacian operator on the three-dimensional 
spatial sections. n = 0 corresponds to the case of homogeneous 
scalar perturbations.

Using the perturbed metric and linearizing the field equation 
given in Eq. (3) and the energy conservation laws (Eqs. (8), (9)), 
we obtain the following linear perturbation equations

�n − �n = 0 , (20)

ερca2
0δρwn − (2ρ0 + ερc)a

2
0δρn + 2ερck2�n = 0 , (21)

ερc(2�̇n + qwn) − (2ρ0 + ερc)qn = 0 , (22)

−2ερc�̈n +
(

2(1 − 2γm)ρ0 + ε(1 − γm)ρc

)
δρn + 1

3
ερcδρwn

= 0 , (23)

a2
0

(
3γmρ0�̇n + δρ̇n

) + k2qn = 0 , (24)

−γmρ0�n + (γm − 1)δρn + q̇n = 0 , (25)

−12C

a4
0

ρc�̇n + ρcδρ̇wn − 6γmρ2
0 �̇n − 2ρ0δρ̇n + 2k2ρ0

a2
0

qn

= 0 , (26)

ρcq̇wn − 2ρ0q̇n + 1

3
ρcδρwn − 2(2γm − 1)ρ0δρn + 2γmρ2

0�n

+ 4ρc
C

a4
0

�n = 0 . (27)

Combining the above equations, we arrive at two independent 
equations
�̈n = − k2

3a2
0

�n +
(
ε(4 − 6γm)

ρ2
0

3ρc
+ 1

6
(4 − 3γm)ρ0

)
δn , (28)

δ̈n =
(

(γm − 1)

a2
0

k2 + εγm(6γm − 4)
ρ2

0

ρc
+ 1

2
γm(3γm − 4)ρ0

)
δn .

(29)

Here, δ = δρ/ρ is the relative density perturbation, and δn =
δρn/ρ . Expressing the above two equations in a matrix form, 
d2u
dt2 = ü = Au, where u =

(
�n

δn

)
and A is the coefficient matrix 

of Eqs. (28) and (29), one can see that the solution of this second-
order system has the form:

u(t) = u1

(
c1e+iω1t + c2e−iω1t

)
+ u2

(
c3e+iω2t + c4e−iω2t

)
,

(30)

where c1, c2, c3 and c4 are some constants, u1 and u2 are eigen-
vectors of A with λ1 and λ2 being the corresponding eigenvalues, 
respectively. It is easy to obtain the frequencies, which can be writ-
ten as

ω2
1 = −λ1 = k2

3a2
0

,

ω2
2 = −λ2 = (1 − γm)

a2
0

k2 + εγm(4 − 6γm)
ρ2

0

ρc

+ 1

2
γm(4 − 3γm)ρ0 . (31)

If the eigenvalues λ1 and λ2 are always negative for any k, which 
means that the frequencies ω1 and ω2 are always real, the ex-
ponential functions e±iω1t and e±iω2t oscillate and do not grow 
up. Then, the static state solution is neutrally stable against scalar 
perturbations. Apparently, the stability requires that ω2

1 ≥ 0 and 
ω2

2 ≥ 0, which are determined only by the values of constants γm

and C .

4. Stability

Now we study the stability of the critical point given in Eq. (13)
against scalar perturbations in braneworlds with a timelike or 
spacelike extra dimension.

4.1. SS model

In this case, the extra dimension is timelike and ε = −1. The 
Einstein static state solution shown in Eq. (13) becomes

ρ0 = 3γm − 4

2(3γm − 2)
ρc , a4

0 = − (3γm − 2)2

γm(3γm − 4)
· 4C

ρc
. (32)

Since the energy density and scalar factor should be positive, the 
existence of an Einstein static state solution requires

C < 0, γm < 0 or γm >
4

3
;

C > 0, 0 < γm <
2

3
. (33)

4.1.1. Homogeneous perturbations
Homogenous perturbations corresponds to the case of k = 0. 

Then, Eq. (31) reduces to

ω2
1 = 0 , ω2

2 = γm(4 − 3γm)2ρc
, (34)
4(3γm − 2)
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where Eq. (32) has been used. The stable conditions require

γm ≤ 0 or γm >
2

3
(35)

Combining Eqs. (33) and (35), we obtain the conditions for stable 
Einstein static state solution under homogeneous scalar perturba-
tions

C < 0, γm < 0 or γm >
4

3
. (36)

4.1.2. Inhomogeneous perturbations
The inhomogeneous perturbations correspond to k > 0. Substi-

tuting Eq. (32) into Eq. (31), we obtain the frequencies

ω2
1 = k2

3a2
0

,

ω2
2 = γm(4 − 3γm)2

4(3γm − 2)
ρc − k2(γm − 1)

2|2 − 3γm|
√

γm(4 − 3γm)ρc

C
. (37)

Since ω2
1 is always positive, we only need to discuss the require-

ment for ω2
2 ≥ 0, which gives

γm < 0 , C < 0 ;
0 < γm <

2

3
, 0 < C ≤ (γm − 1)2

γm(4 − 3γm)3

4k4

ρc
;

γm >
4

3
, C ≤ (γm − 1)2

γm(4 − 3γm)3

4k4

ρc
. (38)

For an any given value of C , since k ∈ (0, ∞), the requirements 
shown in the second and third lines of the above expression are 
violated. Thus, the conditions for stable Einstein static state solu-
tion against inhomogeneous scalar perturbations are

γm < 0 , C < 0 . (39)

Combining the conditions for homogeneous and inhomoge-
neous scalar perturbations, we find that in the SS braneworld, the 
Einstein static state universe is stable if γm and C satisfy Eq. (39). 
Therefore, in the SS braneworld a successful implementation of 
emergent scenario requires that the perfect fluid on the brane 
should be the phantom-like and the Weyl fluid has a positive en-
ergy density.

4.2. RS model

The RS model has a spacelike extra dimension, which means 
that ε = 1. The Einstein static state solution (Eq. (13)) has the 
form

ρ0 = 4 − 3γm

2(3γm − 2)
ρc , a4

0 = (3γm − 2)2

γm(3γm − 4)
· 4C

ρc
. (40)

The requirements of a positive energy density and a positive scalar 
factor give

C < 0,
2

3
< γm <

4

3
. (41)

For homogenous scalar perturbations (k = 0), Eq. (31) reduces to

ω2
1 = 0 , ω2

2 = −γm(4 − 3γm)2ρc

4(3γm − 2)
. (42)

ω2
2 ≥ 0 leads to that

0 ≤ γm <
2
, or γm = 4

. (43)

3 3
From Eqs. (41) and (43), one can see that there is no overlap for 
the allowed regions of γm . Thus, the Einstein static state solution 
is unstable in the spatially-flat RS model.

5. Perturbations in the bulk

It has been found that the static Horava–Witten braneworlds 
can be stable subject to finite energy deformations [29], while they 
are unstable from the higher-dimensional point of view [30,31]. 
Thus, it is interesting to discuss the stability of Einstein static state 
solutions in the bulk. Varying the action given in Eq. (1) with 
respect to the five-dimensional metric gαβ , one can obtain the 
five-dimensional Einstein field equations [4]

(5)Gαβ = −(5)� gαβ, (44)

where (5)� = − 2εσ 2

3M6 since �eff = 0. By dividing the five dimen-
sional coordinates into (xa, y) with y denoting the extra dimen-
sional coordinate which is orthogonal to the brane situated at 
y = 0, we can express the RS and SS solutions as [32,33]

(5)ds2 = e−2y/lhab(x)dxadxb + εdy2 , (45)

where l ≡ 3εM3

σ and the bulk coordinate is in the range y ≥ 0. In 
Poincare coordinates, the above metric can be re-expressed as

(5)ds2 = l2

z2

[
hab(x)dxadxb + εdz2

]
, (46)

where z = le y/l represents the extra dimensional coordinate. For 
the case of Einstein static states, the analysis in the proceeding 
Section shows that the metric on the brane is independent on xa , 
which indicates that hab are constants.

To study the stability of Einstein static state solutions in the 
bulk, we need to discuss the stability of the metric given in 
Eq. (46) under perturbations. Since only on the SS brane are there 
stable Einstein static state solutions, in the following we focus on 
the case of ε = −1. In the longitudinal gauge, the perturbed five-
dimension metric can be described by [34,35]

(5)ds2 = l2

z2

[
(1 − 2(5)�)h00dt2 + (1 + 2(5)�)hijdxidx j

− (1 − 2(5)�)dz2
]

. (47)

Substituting Eq. (47) into Eq. (44) and using δgα
β = 0 and 

ḣab = 0, we obtain the perturbed Einstein field equations in the 
bulk

δ(5)G
0
0 = −12

l2
(5)� + 3z

l2
(5)�′ + 9z

l2
(5)�′ + z2

l2
(2(5)� − (5)�)

|i
|i

− 3z2

l2
(5)�′′ = 0 , (48)

δ(5)G
5
5 = −12

l2
(5)� − 3z

l2
(5)� ′ + 9z

l2
(5)�′ + z2

l2
(2(5)� − (5)�)

|i
|i

− 3z2

l2
(5)�̈ = 0 , (49)

δ(5)G
0
5 = 3z2

l2
(5)�̇′ − 3z

l2
(5)�̇ = 0 , (50)

δ(5)G
0
i =

(
− z2

l2
(5)�̇ + 2z2

l2
(5)�̇

)
|i

= 0 , (51)

δ(5)G
5
i =

(
− 3z

l2
(5)� − z2

l2
(5)� ′ + 2z2

l2
(5)�′

)
= 0 , (52)
|i
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δ(5)G
i
j =

(
− 12

l2
(5)� + 3z

l2
(5)�′ + z2

l2
(5)�̈ − 3z

l2
(5)� ′

+ z2

l2
(5)� ′′ + 6z

l2
(5)�′ − 2z2

l2
(5)�′′

− 2z2

l2
(5)�̈ − z2

l2
((5)� − (5)� + (5)�)

|k
|k
)

δi
j

+ z2

l2
((5)� − (5)� + (5)�)

|i
| j = 0 , (53)

where the vertical bar denotes a covariant derivative with respect 
to three dimensional component of the metric, and a dot (prime) 
denotes the derivative with respect to time (the coordinate z). 
From Eq. (53) with i �= j, we obtain that

(5)� − (5)� + (5)� = 0 ,

which implies that the anisotropic quantity of the perturbation in 
the bulk vanishes. This property can also be obtained in the case 
of the spacelike extra dimension [34]. Combining Eqs. (48–53), we 
find that

hab∇̃a∇̃b(5)� = m2 (5)� = 0, (54)

where ∇̃ denotes a covariant derivative with respect to four di-
mensional component of the metric and m is a constant. Since 
m2 ≥ 0 means that the solution is stable [35], Eq. (54) shows that 
in the bulk the Einstein static state solution is stable under scalar 
perturbations.

6. Conclusions

In this paper, we study the emergent scenario in spatially flat 
RS and SS braneworlds with the assumption that a perfect fluid 
with a constant equation of state is the only energy component on 
the brane. The existence of a stable Einstein static state solution 
requires that this perfect fluid has a phantom-like property since 
its equation of state must be less than −1, and the “Weyl fluid”, 
which originates from the projection of the five dimension Weyl 
tensor onto the brane and behaves like a radiation, has a positive 
energy density. However, there is no stable Einstein static state so-
lution for the RS braneworld. Furthermore, we find that in the bulk 
with a timelike extra dimension the static state solution is also sta-
ble under scalar perturbations. Thus, in the SS braneworld where 
the extra dimension is timelike, our universe can stay at the Ein-
stein static state past-eternally, which means that it is possible to 
resolve the big bang singularity problem by an emergent scenario.
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