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On the Jensen–Shannon Divergence and
Variational Distance

Shi-Chun Tsai, Wen-Guey Tzeng, and Hsin-Lung Wu

Abstract—We study the distance measures between two probability
distributions via two different distance metrics, a newmetric induced from
Jensen–Shannon divergence, and the well known metric. We show that
several important results and constructions in computational complexity
under the metric carry over to the new metric, such as Yao’s next-bit
predictor, the existence of extractors, the leftover hash lemma, and the
construction of expander graph based extractor. Finally, we show that the
useful parity lemma in studying pseudorandomness does not hold in the
new metric.

Index Terms—Jensen–Shannon divergence, expander, extractors, left-
over hash lemma, parity lemma.

I. INTRODUCTION

For any two distributions P and Q over the sample space
f!1; � � � ; !ng, the variational distance (under L1 metric) between P
and Q denoted by SD(P;Q) is defined as

1

2

n

i=1

jPr[P = !i]� Pr[Q = !i]j:

This definition is equivalent to the existence of the best distinguisher
B such that B(!i) = 1 if and only if Pr[P = !i] � Pr[Q = !i] and

jPr!  P [B(!i) = 1]� Pr!  Q[B(!i) = 1]j = SD(P;Q):

We say that two distributions P andQ on a sample space are �-close in
L1-norm if SD(P;Q) � �. In computational complexity, many results
have been obtained based on theL1 metric, such as pseudorandomness
and extractors [11] and Yao’s next-bit predictor [13], etc. It prompts a
natural question: Why we should use the L1 metric in the first place.
Can we use another metric of distributions instead of the variational
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distance? Suppose we have a new distance metric for probability dis-
tributions. Do the computational complexity results still hold under the
new distance metric? Endres and Schindelin recently proposed a new
metricND for probability distributions [4]. The square of the new dis-
tance measure is the so-called Jensen–Shannon divergence. This moti-
vates us to answer the above question for this new metric.

Jensen–Shannon divergence was proposed by Lin [6] for breaking
the condition of absolute continuity of Kullback divergence. This re-
search is information-theoretic. For application in computational com-
plexity, especially communication complexity, it is natural to employ
Jensen–Shannon divergence in the related problems. This is because
Jensen–Shannon divergence captures some properties of the mutual in-
formation. For an application to communication complexity, we refer
the readers to the paper of Bar-Yossef [2] in which he used a technique
based on Jensen–Shannon divergence to prove lower bounds on the
query complexity of sampling algorithms [2].

In this correspondence, we study the metric based on Jensen–
Shannon divergence and use it to investigate some randomized com-
putational complexity issues. We show that several important results
and constructions in computational complexity under the L1 metric
carry over to the new metric, such as Yao’s next-bit predictor [13],
the existence of extractors [11], the leftover hash lemma [9], and the
construction of expander graph based extractors. Finally, we show that
the useful parity lemma [12] in studying pseudorandomness does not
hold in the new metric.

II. NOTATION AND PRELIMINARY RESULTS

Here we focus on discrete distributions whose sample space is fi-
nite. We use [n] to denote the set f1; 2; . . . ; ng. The base of log func-
tion is 2. In this correspondence, for every positive integer m, the no-
tation Um always denotes the uniform distribution over f0; 1gm. We
say a distribution Dn in f0; 1gn is a k-source if for all x 2 f0; 1gn,
Dn(x) � 2�k . The notation k � k always means the `2 norm. The fol-
lowing fact is useful in this correspondence.

Fact 1: ln 2 = 1

j=1
1

2j(2j�1)
. For any distribution P with sample

space 
n = f!1; . . . ; !ng, define the entropy of P to be

H(P ) =

n

i=1

�Pr[X = !i] log Pr[X = !i]

where we define p log p = 0 if p = 0. For the properties of entropy
functionH , we refer readers to the textbooks by Cover and Thomas [3]
and Yeung [14].

Definition 1: Let P andQ be two distributions with the same prob-
ability space. The quantity

H
P +Q

2
� (H(P ) +H(Q))=2

is the Jensen–Shannon divergence. ND is defined as

ND(P;Q) = H
P +Q

2
�
H(P ) +H(Q)

2
:

Endres and Schindelin proved thatND is a metric [4]. Topsøe gave a
lemma to characterizeND [10]. For convenience, every distribution in
finite sample space can be viewed as a vector. So we write distributions
P and Q as P = hp1; . . . ; pni and Q = hq1; . . . ; qni where pi =
Pr[P = !i] and qi = Pr[Q = !i] for 1 � i � n.

Lemma 1: [10] For any distributions P and Q over 
n

2

log e
(ND(P;Q))2 =

1

j=1

1

2j(2j � 1)

n

i=1

jpi � qij
2j

(pi + qi)
2j�1 :
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The following theorem characterizes the relation between ND and
SD.

Theorem 1: [10]

SD(P;Q) � ND(P;Q)

� (1+SD(P;Q)) log(1+SD(P;Q))+(1�SD(P;Q)) log(1�SD(P;Q))
2

:

Actually, the above bounds are tight. For the left-hand side in-
equality, we consider the following two distributions:

P = �;
1� �

n� 2
; . . . ;

1� �

n� 2

n�2

; 0

and

Q = 0;
1� �

n� 2
; . . . ;

1� �

n� 2

n�2

; � :

Clearly, SD(P;Q) = �. We can compute ND(P;Q) =
p
�. Hence,

the left-hand side is tight.
For the right-hand side we set

P =
1+ �

2n
; . . . ;

1 + �

2n

n

;
1� �

2n
; . . . ;

1� �

2n

n

and

Q =
1� �

2n
; . . . ;

1� �

2n

n

;
1 + �

2n
; . . . ;

1 + �

2n

n

:

Clearly, SD(P;Q) = �, and we have

ND(P;Q) =
(1 + �) log(1 + �) + (1� �) log(1� �)

2
:

Therefore, the right-hand side is a tight bound.

III. RANDOMIZED COMPUTATION VIA ND

Randomized computation has been a very useful method for algo-
rithm design. Randomized algorithms are the only known efficient
methods for many difficult problems [7]. In this section, we illustrate
that several important results in randomized computation based on
SD carry over to ND. We also show a nonapplicable case.

A. Distinguisher Versus Predictor

Yao [13] proved that a Boolean function G is a good distinguisher
between two distributions (where one of which is uniform) if and only
if G is a good next-bit predictor. First of all we give some definitions.

Definition 2: For any distribution Dn on the probability space
f0; 1gn, an �-good distinguisher between Dn and Un is a Boolean
function C such that

Pr
x D

[C(x) = 1]� Pr
x U

[C(x) = 1] � �:

Definition 3: For any distribution Dn, an �-good next-bit predictor
for Dn is a function, for some i 2 [n] and given the first (i � 1) bits
of the input, such that

j Pr
x D

[G(x1; . . . ; xi�1) = xi]j � �:

With a distinguisher as an oracle, Yao proved the following lemma.

Lemma 2: [13] IfC is an �-good distinguisher betweenDn andUn,
then there exists an (�=n)-good next-bit predictor for Dn.

By Theorem 1, we have the following result.

Theorem 2: Suppose ND(Dn; Un) � �. Then we have a next-bit
predictor G with the following property: there exists i 2 [n] such that

Pr[G(x1; . . . ; xi�1) = xi] � (�2=n)

where x1; . . . ; xi are sampled from Dn.
Proof: By Theorem 1, we have

SD(Dn; Un) � ND(Dn; Un)
2 � �2:

By Lemma 2, there exists an ((�2)=n)-good next-bit predictor G
for Dn.

B. Extractors

We continue to show the existence of extractors under the setting
of ND with some appropriate parameters. Similar to the definition of
extractor [8], we have the following definition.

Definition 4: EXT : f0; 1gn � f0; 1gt ! f0; 1gm is called a
(k; �)-extractor for ND if for every k-source Dn

ND(EXT(Dn; Ut); Um) � �:

For ND we have the following analogous result.

Proposition 1: For every n; � > 0 and k � n, there exists a (k; �)-
extractor

EXT : f0; 1gn � f0; 1gt ! f0; 1gm

forND with t=log n�k�4 log �+O(1) andm=k+t+4 log ��O(1).
Proof: We prove the proposition by the probabilistic method [1],

[7]. Consider the random extractor f which maps x 2 f0; 1gn+t into
f0; 1gm randomly and independently. Since a k-source can be repre-
sented as a convex combination of flat k-sources and ND is a metric,
it is sufficient to prove the proposition for flat sources. For any distri-
bution P in f0; 1gm and any Boolean function T : f0; 1gm ! f0; 1g
we denote PT as a distribution in f0; 1g with

Pr[PT = 1] =
x:T (x)=1

P (x):

We first prove the following claim.

Claim 1: For any flat (k + t)-source Q, if m and t satisfy the con-
ditions of Proposition 1, then

Pr[ND(f(Q); Um) > �] < 22 � 2�
(2 �� ):

Proof: Let the support of distribution Q be

Supp(Q) = fx : Q(x) > 0g:

For each x 2 Supp(Q), the distribution of f(x) is the same as Um.
Also, ff(x) : x 2 Supp(Q)g is a set of random variables which
are independent and identically distributed (i.i.d.). For each Boolean
function T : f0; 1gm ! f0; 1gfT (f(x)) : x 2 Supp(Q)g is also a
set of 0–1 random variables which are i.i.d. and

Exp[T (f(x))] =
jfz : T (z) = 1gj

2m
= Pr[(Um)

T
= 1]:
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By the Chernoff bound [1], [7]

Pr
x2Supp(Q) T (f(x))

2k+t
� jfz : T (z) = 1gj

2m
> �2

< 2�
(2 � ):

By Theorem 1, we can get

Pr[ND(f(Q); Um) > �] � Pr[SD(f(Q); Um) > �2]

� Pr[9T; SD(f(Q)T ; (Um)T ) > �2]

< 22 � 2�
(2 �� ):

The probability that f is not a good extractor for some flat k-source
is at most

2n

2k
� 22 � 2�
(2 �� ) � 2n

2k
2�
(2 �� )

� 2n

2k

2

2�
(2 �� )

< 1

This proves the existence of the extractor for ND.

The crucial part of the proof is the inequality between SD andND.
Then we can use the property of SD to show the existence of extractor
with good parameters. There seems no constructive proof on the exis-
tence of the extractor for ND.

C. Leftover Hash Lemma

Linearity plays an important role in the proof of the Leftover Hash
Lemma and expander-based extractors. It seems thatND does not have
such linear property. However, in some setting ND has a good upper
bound in terms of the `2 norm. This bound can help us prove some
results about extractors for ND.

Definition 5: [5] H = fh : D ! Rg is universal family of hash
functions if, for every x; y 2 D, x 6= y

Prh H[h(x) = h(y)] =
1

jRj :

H is almost universal if

Prh H[h(x) = h(y)] � 1

jRj +
1

jDj :

Now letD = f0; 1gn;R = f0; 1gm and jHj = 2t. The Leftover Hash
Lemma states the following.

Theorem 3: [5] SupposeH is almost universal,X is a flat k-source
on f0; 1gn, and hhh is a random function drawn from H. Then

SD((hhh;hhh(X));Ut+m) � 1

2(k�m)=2
:

Define

Col[(hhh;hhh(X))] = Pr[(hhh;hhh(X)) = (hhh0; hhh0(X 0))]

where hhh0; X 0 are i.i.d. to hhh;X , respectively. The crucial part of the
proof of Theorem 3 is to show the following lemma.

Lemma 3: [5] Col[(hhh;hhh(X))] � (1 + 2(1+m�k))=(2t+m).

Define Ext : f0; 1gn � f0; 1gt ! f0; 1gt+m by Ext(x; h) =
(h; h(x)). We show that Ext is an extractor for ND. Here, instead
of directly applying the inequality betweenND and SD, we establish
the relation between ND and the `2-norm.

Theorem 4: SupposeH is an almost universal family of hash func-
tions from f0; 1gn to f0; 1gm where m = k + 2 log � � 1=2. Let
t = dlog jHje. Then the above Ext is a (k; �)-extractor for ND.

Proof: Without loss of generality, we assume that X is a flat
k-source. Let � = 2(1+m�k)=2. By Lemma 3, we have

Col[(hhh;hhh(X))] � (1=(2t+m)(1 + �2):

Therefore,

k(hhh;hhh(X))� Ut+mk2 = Col[(hhh;hhh(X))]� 1

2t+m
� �2

2t+m
:

By Lemma 1, for any distribution P over f0; 1gn, we have

(ND(P;Un))
2 =

log e

2
�
1

j=1

1

2j(2j � 1)

�
x2f0;1g

jP (x)� 2�nj2j
(P (x) + 2�n)2j�1

� 1

2
x2f0;1g

jP (x)� 2�nj2
(P (x) + 2�n)

� 2n�1 �
x2f0;1g

jP (x)� 2�nj2

= 2n�1 � kP � Unk2:
Hence, we have

(ND((hhh;hhh(X));U(t+m)) �
p
2t+m�1 � k(hhh;hhh(X))� Ut+mk

� �p
2

=
1

2(k�m)=2
:

This concludes that Ext is an extractor for ND.

D. Expander Graphs

Similar to the Leftover Hash Lemma for ND, the expander-based
extractor has the same property. LetG be a d-regular graph andMG be
its adjacency matrix.G is a �-expander if the second largest eigenvalue
ofMG is not greater than � [1], [7]. We view a distribution as a vector.
A random walk on �-expander converges to the uniform distribution.
Precisely, for any distribution Pn

kMG
kPn � Unk � �kkPn � Unk:

From the prior discussion, we get, for any distribution Pn on f0; 1gn

21�n(ND(MGPn; Un))
2 � kMGPn � Unk2
� �2 Col(Pn)� 2�n :

We define

ExtG : f0; 1gn � f0; 1gt ! f0; 1gn

by settingExtG(x; y) to be the yth neighbor of x. SupposeXn is a flat
k-source and �2 log � � n � k � 2 log �. Then we have

(ND(MGXn; Un))
2 � 2n�1kMGXn � Unk2
� 2n�1 � �2 Col(Xn)� 2�n

� �2

2
:

Hence, we achieve the following expander-based extractor for ND.

Theorem 5: IfG is a 2t-regular �-expander graph with�2 log � �
n�k�2 log �, thenExtG : f0; 1gn�f0;1gt ! f0; 1gn is a (k; �)-ex-
tractor for ND.

E. An Example That Does Not Carry Over to ND

From the preceding two subsections, we know that ND has a good
bound in terms of the `2 norm for some special setting. Nevertheless,
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TABLE I
DISTRIBUTION OF T2

ND is not linear in general. In this subsection, we give an example to
show that L1-distance has a more linear property. For SD metric, the
parity lemma is as follows..
Lemma 4: (Parity Lemma) [12] For any t-bit random variable T

SD(T; Ut) �

v2f0;1g nf0 g

SD(T � v; U1):

However, this statement is not true in general forND. We find a coun-
terexample. Let T2 be the distribution as shown in Table I. By a simple
calculation, we see that

ND(T2; U2) >

v2f0;1g nf00g

ND(T2 � v; U1):

Hence, the new metric ND does not hold for the parity lemma.
In order to find a general counterexample for t � 2, we define a

distribution Jt on f0; 1gt as

Jt = T2 � U1 � � � � � U1

t�2

= T2 � Ut�2:

It is easy to get ND(Jt; Ut) = ND(T2; U2). Next we want to show
the following proposition.

Proposition 2:

v2f0;1g nf0 g

ND(Jt � v; U1) =

v2f0;1g nf00g

ND(T2 � v; U1):

Proof: Note that for any t2 2 f0; 1g2 and for any nonzero vector
w 2 f0; 1gt�2

(t2 �w) � Jt � U1:

Hence,

ND((t2 �w) � Jt; U1) = 0:

Therefore,

v2f0;1g nf0 g

ND(Jt � v; U1)

=

t 2f0;1g nf00g

ND((T2 � Ut�2) � (t2 � 0
t�2); U1)

=

t 2f0;1g nf00g

ND(T2 � t2; U1):

In general, we get for any t � 2

ND(Jt; Ut) >

v2f0;1g nf0 g

ND(Jt � v; U1):

TABLE II
COMPARISON BETWEEN SD AND ND

However, it is still possible that the parity lemma may exist for ND

in a different form. Finally, we summarize the results of Section III in
Table II.
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