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Abstract We perform the calculation of the drag force act-
ing on a massive quark moving through an anisotropicN = 4
SU(N) Super Yang–Mills plasma in the presence of a U (1)

chemical potential. We present the numerical results for any
value of the anisotropy and arbitrary direction of the quark
velocity with respect to the direction of the anisotropy. We
find the effect of the chemical potential or charge density will
enhance the drag force for our charged solution.

1 Introduction

The experimental data in the Relativistic Heavy Ion Collider
(RHIC) [1,2] show that the quark gluon plasma (QGP), as
deconfined phase of QCD at high temperature and high num-
ber density, is a strongly coupled fluid rather than a weakly
coupled gas of quarks and gluons. Thus perturbative QCD is
no longer reliable and we should explore the non-perturbative
methods of QCD.

The AdS/CFT correspondence [3–5] provides a power-
ful tool to investigate the strongly coupled system in con-
densed matter physics (for reviews, see [6,7]) like supercon-
ductors [8–10], Lifshitz fixed point [11–14], quantum chro-
modynamics [15,16] and heavy ion collisions like photon
production [17,18], elliptic flow [19], drag force [20,21], jet
quenching [22,23], Langevin coefficients [24], and anoma-
lous transport [25–28]. Using the AdS/CFT correspondence,
we can study the strongly coupled N = 4 Super Yang–Mills
plasma through considering IIB supergravity in AdS5 × S5.
One significant result is the calculation of the ratio of the
shear viscosity to the entropy density of QGP; this ratio is
universal and equal to 1/4π [29], which matches the exper-
imental data very well. This indicates the QGP is a strongly
coupled system and the AdS/CFT presents a useful method
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to investigate the properties of QGP at least at a qualitative
level.

It is well known that the most important quantities of QGP
are the drag force and the jet-quenching parameter. In the
context of AdS/CFT [20,21], the moving heavy quark in the
thermal medium is dual to a probe open string with infinite
mass, which is attached to the boundary of the bulk spacetime
and stretches to the black hole horizon. So the dynamics of
the string can give us the effects of N = 4 Super Yang–
Mills plasma in which quark is moving. The similar study
for jet quenching for N = 4 SYM plasma can be found in
[22,23], where the jet-quenching parameter was obtained by
calculating the expectation value of a closed light-like Wilson
loop in the dipole approximation.

In this paper, we will study the moving quark in the
anisotropic QGP with chemical potential, since the QGP after
creation in a short time is anisotropic and real experiments
are done at finite baryon potential.1 Our motivations come
from the facts that significant observation of the RHIC and the
LHC experiments is that the plasma created is anisotropic and
non-equilibrium during the period of time τout after the col-
lision, i.e. it is locally anisotropic at the time τout < τ < τiso,
a configuration to be described by the hydrodynamics with
the anisotropic energy-momentum tensor.

Another motivation comes from the fact that in condensed
matter physics, some materials are anisotropic, with differ-
ent properties in different directions. For example, for high-
temperature cuprates, the crystal structure of such super-
conductors shows a multi-layer of CuO2 planes with super-
conductivity taking place between these layers. The electric
transport perpendicular to the CuO2 plane is more difficult
than the electric transport in the CuO2 plane [30]. It is nat-
ural to investigate the drag force in an anisotropic system at
finite chemical potential and compare the results with those
isotropic cases.

1 The model we consider is static and the origin of the anisotropy may
be different from the QGP anisotropy.
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Fig. 1 The metric functions for a = 1.86, Q = 6.23 (left) and a = 64.06, Q = 9.76 (middle), with uH = 1
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Fig. 2 Drag force in x-direction Fx as a function � at v = 0.5. The four graphs denote a/T = 1.38, a/T = 4.41, a/T = 12.2, a/T = 86,
respectively, where the color lines denote Q = 5 (green), Q = 2 (brown), Q = 1 (red), Q = 0 (blue)

From the point of view of holography, the anisotropic
plasma with chemical potential is dual to an anisotropic
charged black brane [31,32], hence, to compute the drag
force experienced by an infinitely massive quark, we should
consider a string in an anisotropic charged black brane. We
will show the results analytically and numerically, respec-
tively. The discussion for a chargeless anisotropic plasma,
shear viscosity–entropy density ratio, and its energy loss in
the framework of AdS/CFT can be found in [18,33–39].

This paper is organized as follows. In Sect. 2, we briefly
describe the construction of the anisotropic charged black

brane solution. In Sect. 3, we calculate the drag force act-
ing on a massive quark moving through the plasma. Further-
more, in the small anisotropy and high-temperature limit, we
can perform the calculation of the drag force analytically. In
Sect. 4, we show our numerical results for prolate anisotropy.
In Sect. 5, we conclude with a brief summary of our
results.

Note: When this paper was in preparation, Ref. [40]
appeared, which has some overlap with this paper. The dif-
ference between our paper and [40] is that we consider the
drag force for the large charge case in particular.
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Fig. 3 Drag force in x-direction Fx as a function � at v = 0.9. The four graphs denote a/T = 1.38, a/T = 4.41, a/T = 12.2, a/T = 86,
respectively, where the color lines denote Q = 5 (green), Q = 2 (brown), Q = 1 (red), Q = 0 (blue)
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Fig. 4 Drag force in z-direction Fz as a function � at v = 0.5. The four graphs denote a/T = 1.38, a/T = 4.41, a/T = 12.2, a/T = 86,
respectively, where the color lines denote Q = 5 (green), Q = 2 (brown), Q = 1 (red), Q = 0 (blue)
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Fig. 5 Drag force in z-direction Fz as a function � at v = 0.9. The four graphs denote a/T = 1.38, a/T = 4.41, a/T = 12.2, a/T = 86,
respectively, where the color lines denote Q = 5 (green), Q = 2 (brown), Q = 1 (red), Q = 0 (blue)
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Fig. 6 Drag force F as a function � at v = 0.5. The four graphs denote a/T = 1.38, a/T = 4.41, a/T = 12.2, a/T = 86 respectively, where
the color lines denote Q = 5 (green), Q = 2 (brown), Q = 1 (red), Q = 0 (blue)

123



Eur. Phys. J. C   (2016) 76:256 Page 5 of 12  256 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0
F Fiso T

0.5 1.0 1.5

4

6

8

10

F Fiso T

0.5 1.0 1.5

1.2

1.4

1.6

1.8

2.0

2.2

2.4

F Fiso T

0.5 1.0 1.5

50

100

150

200

F Fiso T

Fig. 7 Drag force F as a function � at v = 0.9. The four graphs denote a/T = 1.38, a/T = 4.41, a/T = 12.2, a/T = 86, respectively, where
the color lines denote Q = 5 (green), Q = 2 (brown), Q = 1 (red), Q = 0 (blue)

2 Anisotropic charged black brane solution

The five-dimensional axion–dilaton–Maxwell–gravity bulk
action reduced from type IIB supergravity is given
by [31,32]

S = 1

2κ2

[ ∫
d5x

√−g
(
R + 12 − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

− 1

4
FμνF

μν
)

− 2
∫

d4x
√−γ K

]
, (1)

where we have set the AdS radius L = 1, and κ2 = 8πG =
4π2

N2
c

. The AdS5 part of a ten-dimensional anisotropic IIB

supergravity solution in an Einstein frame is given by [32],2

ds2 = e− 1
2 φ

u2

(
−FB dt2 + dx2 + dy2 + Hdz2 + du2

F
)

,

(2)

A = At (u)dt, and χ = az, (3)

which was obtained by dimensional reduction on S5 from
the ten-dimensional metric. So we have ignored the metric of
the S5 part that will play no role in the following discussions

2 The model and solutions used in the following are the finite charge
density version of the model provided in [34,35].

and our treatment is in agreement with a ten-dimensional
framework. Note that the anisotropy is introduced through
deforming the SYM theory by a θ -parameter of the form
θ ∝ z, which acts as an isotropy-breaking external source
that forces the system into an anisotropic equilibrium state
[34]. The θ -parameter is dual to the type IIB axion χ with
the form χ = az.

The spacetime is required to be anisotropic but homo-
geneous, so that the functions φ, F , B, and H = e−φ

should only depend on the radial coordinate u. The elec-
tric potential At in this metric is expressed as At (u) =
− ∫ u

uH
duQ

√Be
3
4 φu from the Maxwell equations, where Q

is an integral constant related to the charge density. Note that
the electric potential has a contribution from the anisotropy
through the dilatonic field φ. The horizon is at u = uH and
the boundary is at u = 0, respectively. The asymptotic AdS
boundary requires F = B = H = 1. We plot the numerical
solutions in Fig. 1 [32].

In the small anisotropy and charge limits, we can obtain
the high-temperature solution,

F = 1 −
(

u

uH

)4

+
[(

u

uH

)6

−
(

u

uH

)4]
q2

+ a2F2(u) + O(a4),

B = 1 + a2B2(u) + O(a4),
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Fig. 8 The drag force F as a function of velocity for a quark mov-
ing through the plasma with Q = 0 (i.e. chargeless). The four graphs
correspond to a/T = 1.38, a/T = 4.42, a/T = 12.2, a/T = 86

respectively, in which five lines denotes (from the top to down) � = 0,
� = π/6, � = π/4, � = π/3, � = π/2

H = e−φ(u), with φ(u) = a2φ2(u) + O(a4), (4)

whereF2(u) = F̂0(u)+F̂2(u)q2+O(q4),B2(u) = B̂0(u)+
B̂2(u)q2 + O(q4), and φ2(u) = φ̂0(u) + φ̂2(u)q2 + O(q4)

with

F̂0(u) = 1

24u2
H

[
8u2(u2

H − u2) − 10u4 log 2

+(3u4
H + 7u4) log

(
1 + u2

u2
H

)]
,

B̂0(u) = −u2
H

24

[
10u2

u2
H + u2

+ log

(
1 + u2

u2
H

)]
,

φ̂0(u) = −u2
H

4
log

(
1 + u2

u2
H

)
, (5)

and
F̂2(u) = 1

24u4
H(u2 + u2

H)

[
7u8 + 6u2u6

H + u4u4
H(25 log 2 − 12),

+ u6u2
H(25 log 2 − 1)

− (u2 + u2
H)(12u6 + 7u4u2

H + 6u6
H) log

(
1 + u2

u2
H

)]
,

B̂2(u) = 1

24

[
−u2(11u4 + 3u2u2

H + 2u4
H)

(u2 + u2
H)2

+ 2u2
H log

(
1 + u2

u2
H

)]
,

φ̂2(u) = 1

4

[
−2u2 + u4

u2 + u2
H

+ 2u2
H log

(
1 + u2

u2
H

)]
, (6)

where we have used the dimensionless parameter q =
u3

HQ

2
√

3
. Here we would like to justify the usage of the small

anisotropy and charge limits. The analytic solution for the
non-perturbative charge was given in [31,32]. Unfortunately,
for the analytic computation of the drag force, it is too diffi-
cult to determine some critical parameters.

We can easily obtain the temperature:

T = −F ′(uH)
√B(uH)

4π
. (7)

Note that the temperature cannot be zero unless a2 ≤ 0,
which corresponds to oblate anisotropy. In contrast, a2 > 0
corresponds to prolate anisotropy. On the dual quantum field
theory side, an imaginary a looks like a nonunitary defor-
mation and could lead to a negative field coupling. In this
sense, the oblate black brane solution with a2 < 0 could give
unphysical results. In the following discussions, we mainly
focus on the prolate case.
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3 Drag force

On the anisotropic charged brane background, the Nambo–
Goto action which governs the dynamics of a probe string in
string frame is given by

S = −T0

∫
d2σ eφ/2

√− det gαβ, (8)

where gαβ ≡ Gμν∂αXμ∂βXν is the induced metric on the
two-dimensional world sheet. Xμ(σα) are the embedding
equations of the world sheet in spacetime. In the follow-
ing, we generalize the calculations in [37,38] to the charged
plasma case and find the additional contribution to the drag
force from the chemical potential. We will work in the static
gauge, i.e. σ = u and τ = t . Since the plasma is anisotropic,
we consider the motions of the string in two different direc-
tions, x and z, which corresponds to the quark moving at
constant velocity v. It is convenient to set the configuration
of the string as [37]

x(u, t) = x(u) sin θ + vt sin θ

z(u, t) = z(u) cos θ + vt cos θ. (9)

Obviously θ is the angle between the z-axis and the velocity.
The determinant of gαβ satisfies

− geφ = −v2
(
sin2 θ + (

1 + F sin2 θ(x ′ − z′)2
)H cos2 θ

) + BF (
1 + F(x ′2 sin2 θ + Hz′2 cos2 θ)

)
u4F , (10)

so the Lagrangian L = −T0eφ/2√−g gives the canonical
momenta density to the string as

�σ
x = ∂L

∂x ′ = −T0e−φ/2 x
′BF + v2H(z′ − x ′) cos2 θ

u4√−g
sin θ,

�σ
z = ∂L

∂z′
= −T0e−φ/2 z

′BF + v2H(x ′ − z′) sin2 θ

u4√−g
cos θ,

(11)

where the prime denotes the derivative with respect to u.
Then the equations of motion following from the Nambu–
Goto action are

∂u

(
−T0e−φ/2 x

′BF + v2H(z′ − x ′) cos2 θ

u4√−g
sin θ

)
= 0,

∂u

(
−T0e−φ/2 z

′BF + v2H(x ′ − z′) sin2 θ

u4√−g
cos θ

)
= 0.

(12)

Note that in the string configuration (9), the time part of
the E.O.M vanishes because of the time independence. Then
after integration of (12), we have

− T0e−φ/2 x
′BF + v2H(z′ − x ′) cos2 θ

u4√−g
sin θ = C,

−T0e−φ/2 z
′BF + v2H(x ′ − z′) sin2 θ

u4√−g
cos θ = D, (13)

which involve

x ′ = eφ/2u4 csc θ
√−g

(
v2(C + D cot θ) − CBF csc2 θ

)
T0BF (BF csc2 θ − v2(1 + H cot2 θ)

) ,

z′ = eφ/2u4 csc θ
√−g sec θ

(
v2H(D csc θ + C sec θ) − DBF csc θ sec2 θ

)
T0BFH (

4BF csc2 2θ − v2(H csc2 θ + sec2 θ)
) ,

(14)

where the constants C and D are integral constants corre-
sponding to the momenta in the two directions. Taking (14)
back to (10), we can solve the determinant of the induced
metric as

− geφ = −2T0BH(BF − v2(cos2 θH + sin2 θ))2

I (u)
, (15)

with

I (u) = u4
[

− 2T 2
0 B2F2H

+BF
(

2D2u4 + H(2C2u4 + T 2
0 v2

+ T 2
0 v2 cos 2θ(H − 1) + T 2

0 v2H)
)

− 2u4v2H(D cos θ + C sin θ)2
]
. (16)

The positiveness of the determinant requires [37]

B(u) = v2(H(u) cos2 θ + sin2 θ)

F(u)
, (17)

at u = uc where the denominator I (u) vanishes, which
implies that the integral constants satisfy

D = CH(u) cot θ, (18)

at u = uc. So the determinant of the induced metric can be
simplified to

− geφ = T 2
0 B

(−BF + v2(cos2 θH + sin2 θ)
)

−T 2
0 u

4BF + C2u8(1 + cot2 θH)
, (19)

with the choices of
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Fig. 9 The drag force F as a function of velocity for a quark mov-
ing through the plasma with Q = 2. The four graphs correspond to
a/T = 1.38, a/T = 4.42, a/T = 12.2, a/T = 86, respectively, in

which five lines denotes (from the top to down) � = 0, � = π/6,
� = π/4, � = π/3, � = π/2
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Fig. 10 The drag force F as a function of velocity for a quark mov-
ing through the plasma with Q = 5. The four graphs correspond to
a/T = 1.38, a/T = 4.42, a/T = 12.2, a/T = 86, respectively, in

which five lines denotes (from the top to down) � = 0, � = π/6,
� = π/4, � = π/3, � = π/2
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Fig. 11 The drag force F as a function of velocity for a quark mov-
ing through the plasma with Q = 10. The four graphs correspond to
a/T = 1.38, a/T = 4.42, a/T = 12.2, a/T = 86, respectively, in

which five lines denote (from the top to down) � = 0, � = π/6,
� = π/4, � = π/3, � = π/2
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Fig. 12 Drag force in x direction as a function a/T at v = 0.5 (left) and v = 0.7 (right), where the red, green, blue lines represent Q = 0, Q = 1,
Q = 2, respectively

C = ±T0v sin θ

u2
c

, D = ±T0H(uc)v cos θ

u2
c

. (20)

Then the drag forces along the x-direction and z-direction on
the string are

Fx = T0v sin θ

u2
c

, Fz = T0H(uc)v cos θ

u2
c

. (21)

4 Numerical analysis

In a charged anisotropic plasma, the angle dependence of the
drag force in the x-direction in units of the isotropic drag
force are shown in Figs. 2 and 3. From the first three plots
of Fig. 2, we can see that Fx is a monotonically increasing
function of � when a � T and a ∼ T . However, the last plot
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Fig. 13 Drag force in z direction as a function a/T at v = 0.5 (left) and v = 0.7 (right), where the red, green, blue lines represent Q = 0, Q = 1,
Q = 2, respectively

of Fig. 2 illustrates that Fx is no longer a monotonic function
of � when a 	 T . By contrast, Fig. 3 shows that the Fx
at v = 0.9 is no longer a monotonic function of � when
a/T = 12.2. We also find that for a charged plasma, with
fixed v, Fx can be larger than Fiso ≡ Fiso(q = 0) for some
interval of � which depends on Q and a/T ; by contrast,
Fx is always smaller than Fiso for a chargeless anisotropic
plasma. Note that the non-monotonic behavior shown in Fig.
3 is consistent with the result given in [37], where the authors
did not show Fx . This is because if we write down the general
expression for F , we can obtain the same ansatz as that given
in [37] in the zero-chemical potential limit. Similarly, we
can plot the angle dependence of the drag force in the z-
direction in Figs. 4 and 5, while Fz is always a monotonically
decreasing function of �.

Figures 6 and 7 illustrate the � dependence of the drag
force F in units of the isotropic drag force at fixed v and
a/T . It is easy to see that F is a monotonically decreasing
function of �, and when a/T is greater, the falloff of F is
faster.

In Figs. 8, 9, 10, and 11, we can see that the drag force
F in units of the isotropic drag force diverges in the ultra-
relativistic limit, v → 1, for any � �= π/2. We can see that
F in a charged plasma diverges faster than in a chargeless
plasma. So the anisotropic drag force is arbitrarily larger than
the isotropic case in the ultra-relativistic limit. More interest-
ingly, in the large Q limit, the behavior of the drag force F
coincides for different angles �.

To exhibit the temperature dependence of the drag force
more explicitly, we plot the drag force as a function of a/T
with different Q in Figs. 12 and 13. We can see that, unlike
an anisotropic neutral plasma, in which the drag force in the
transverse direction Fx (� = π

2 ) is a monotonically decreas-
ing function of a/T , Fx in anisotropic charged plasma is no
longer a monotonically function: In the region with a/T < 1,
Fx increases as a/T increases, but in the region a/T > 1, Fx

decreases as a/T increases. This means that for a non-zero
charge Q, the force changes non-monotonically. However,
as shown in the plot of Fz (� = 0) in Fig. 13, the drag
force along the longitudinal direction is always a monotoni-
cally increasing function for both neutral plasma and charged
plasma.

5 Summary

By using the AdS/CFT correspondence we have performed
the calculations of the drag force exerted on a massive quark
moving through a charged, anisotropic N = 4 SU(N) Super
Yang–Mills plasma. We used the anisotropic charged black
brane solution, which is dual to anisotropic QGP with a chem-
ical potential. For a complete study of the drag force in an
anisotropic background, we carried out an analytic calcula-
tion first and obtained some general expressions for the drag
force. Different from the isotropic case, where the drag force
in a charged plasma is always larger than in a neutral plasma
at the same temperature, for our anisotropic case, we will
find that it will be dependent on the explicit value of q and
a, which can be seen in the numerical analysis. For arbitrary
anisotropy and charge, we presented the numerical results for
any prolate anisotropy and arbitrary direction of the quark
velocity with respect to the direction of the anisotropy. We
find the effect of the chemical potential or charge density is
to enhance the drag force for the prolate solution.
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Appendix: High temperature analysis

In this appendix, we calculate the drag forces in the limit of
high temperature. We consider the high-temperature solution
(4). First, plugging Eq. (4) into (17), it is easy to obtain uc to
order a2:

uc = u0 + u1a
2, (22)

with

u0 =
(
u2

H

√
1 − v2 − u2

H(−1 + v2 + √
1 − v2)

2
q2

)1/2

,

u1 =
u3

H

(
1 − √

1 − v2 − 5 log 2 + 5 log(1 + √
1 − v2) − v2(1 − 5 log 2 + (4 + 3 cos2 θ) log(1 + √

1 − v2))
)

48(1 − v2)3/4

+ u3
H

384(1 − v2)5/4(1 + √
1 − v2)

(
10(1 − v2)(8(1 +

√
1 − v2) log 2 − v2(8

√
1 − v2 + (8 − 7

√
1 − v2) log 2))

+(−80(1 +
√

1 − v2) + v4(−86 + 13
√

1 − v2) + 2v2(83 + 38
√

1 − v2)) log(1 +
√

1 − v2)

+9v2 cos 2θ(2(v2 − 1)(1 +
√

1 − v2) + (v2(−2 +
√

1 − v2) + 2(1 +
√

1 − v2)) log(1 +
√

1 − v2))
)
q2. (23)

So, by the use of (7) and (21), we are able to derive the drag
force,

Fx = π
√

λT 2v

2

(√
1

1 − v2 − q2

2

(
1 − 3√

1 − v2

))

+v
√

λa2

48π

(1 − v2 + √
1 − v2 + (4v2 − 5) log(1 + √

1 − v2)

(1 − v2)3/2

+ q2

2(1 − v2)2(1 + √
1 − v2)

,
( − (1 +

√
1 − v2)

× (13 + 30 log 2) + v2(23 + 29
√

1 − v2

+ 15(4 +
√

1 − v2) log 2) + v4(15
√

1 − v2 log 2

− 2(5 + 8
√

1 − v2 + 15 log 2))

+ (20(1 +
√

1 − v2) + v4(17 + 5
√

1 − v2)

−v2(37 + 22
√

1 − v2)) log(1 +
√

1 − v2)
))

,

Fz = π
√

λT 2v

2

(√
1

1 − v2 − q2

2

(
1 − 3√

1 − v2

))

+ v
√

λa2

48π

(1 − v2 + √
1 − v2 + (1 + v2) log(1 + √

1 − v2)

(1 − v2)3/2

+ q2

2(v2 − 1)2(1 + √
1 − v2)

(
v4(−1 − 7

√
1 − v2

−15(2 −
√

1 − v2) log 2)

+ v2(2(−2 +
√

1 − v2) + 15(4 +
√

1 − v2) log 2)

− 5(1 +
√

1 − v2)(−1 + 6 log 2)

− (v2(1 + v2)(−2 +
√

1 − v2)

+ 4(1 +
√

1 − v2)) log(1 +
√

1 − v2)
))

, (24)

where we have used θ = π/2 and θ = 0, which correspond
to the x-direction and the z-direction, respectively. Note that
the first part of the right hand side of (24) is an isotropic force
in the charged plasma Fiso:

Fiso(q) = π
√

λT 2v

2

(√
1

1 − v2 − q2

2

(
1 − 3√

1 − v2

))
,

(25)

and, when q = 0, we can get the drag forces in the plasma for
zero chemical potential, which coincides with the result of
[37]. We can see from (25) that, in the isotropic case, the drag
force in the charged plasma is always larger than in a neutral
plasma at the same temperature. In [38], the author obtained
a critical velocity vc ≈ 0.909 for anisotropic neutral case
independent of the temperature and anisotropy. The critical
velocity turns out to be charge dependent and vc increases as
q increases (Table 1).

In the absence of a chemical potential, Eq. (24) recover
the analytical expressions for the transverse and parallel drag
forces given in [38].

Table 1 Critical velocity for different q

q 0 0.04 0.06 0.08 0.1

vc 0.909 0.912 0.915 0.920 0.926
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