
1296
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

PAPER

Application Performance Profiling in Android Dalvik Virtual
Machines

Hung-Cheng CHANG†a), Kuei-Chung CHANG††, Nonmembers, Ying-Dar LIN†, Member,
and Yuan-Cheng LAI†††, Nonmember

SUMMARY Most Android applications are written in JAVA and run
on a Dalvik virtual machine. For smartphone vendors and users who wish
to know the performance of an application on a particular smartphone but
cannot obtain the source code, we propose a new technique, Dalvik Pro-
filer for Applications (DPA), to profile an Android application on a Dalvik
virtual machine without the support of source code. Within a Dalvik vir-
tual machine, we determine the entry and exit locations of a method, log its
execution time, and analyze the log to determine the performance of the ap-
plication. Our experimental results show an error ratio of less than 5% from
the baseline tool Traceview which instruments source code. The results also
show some interesting behaviors of applications and smartphones: the per-
formance of some smartphones with higher hardware specifications is 1.5
times less than the phones with lower specifications. DPA is now publicly
available as an open source tool.
key words: Android, Dalvik virtual machine, profiling

1. Introduction

Android has been one of the most important operating sys-
tems (OSs) developed for handheld devices, and more users
have become concerned about the performance of their mo-
bile devices when running an application. Thus, how to
determine the performance of Android applications has be-
come one of the major issues in their design. Most Android
applications are written in JAVA language and run on a vir-
tual machine (VM), and there are four profiling approaches
to assess performance of a Java application in terms of pro-
filing location. The first one is to instrument the application
source code to acquire its performance information [1]–[3].
Second, one can embed profiling points in the virtual ma-
chine to extract the required information through JAVA byte-
code analysis for VM-based applications [4]–[7]. Third, one
can extract the native code in the system kernel or in the
memory of the physical machine and analyze the collected
information to estimate its performance [8]–[10]. Fourth, an
emulator can be built to analyze the data collected from An-
droid to profile the system [11].

Manuscript received July 15, 2015.
Manuscript revised November 27, 2015.
Manuscript publicized January 25, 2016.
†The authors are with the Department of Computer Science,

National Chiao Tung University, Hsinchu, Taiwan.
††The author is with the Department of Information Engineer-

ing and Computer Science, Feng Chia University, Taichung, Tai-
wan.
†††The author is with the Department of Information Manage-

ment, National Taiwan University of Science and Technology,
Taipei, Taiwan.

a) E-mail: changhcs@cs.nctu.edu.tw
DOI: 10.1587/transinf.2015EDP7277

However, some approaches cannot be directly used for
Android systems. First, the source code of an application
usually cannot be obtained easily, which makes the source
code instrumentation not feasible. Second, an Android sys-
tem runs applications on a Dalvik virtual machine (DVM).
A classical Java virtual machine is a stack-based VM, and
a Dalvik virtual machine is a register-based VM [12], [13]:
different virtual machine architectures have very different
bytecode formats and processing flows, so that a VM inter-
ception analysis for a classical JAVA VM cannot be applied
directly to a Dalvik VM. This means that the virtual ma-
chine interception techniques would not work well on An-
droid systems [5]–[8]. Last, because the DVM is viewed as a
single process in the kernel and each application is an exact
replica of the original process, a native Android application
cannot be analyzed in any detail, such as method profiling.
On the other hand, although some approaches are specific to
Android [4], [11], they still need the help of other tools.

An Android system is composed of several layers, as
shown in Fig. 1. The Application Framework Layer pro-
vides modularized library-like functions for running appli-
cations. All Android applications are executed by a Dalvik
virtual machine, and in the Linux Kernel Layer, the whole
Dalvik virtual machine is regarded as a single process, so we
cannot obtain detailed profiling information of the DVM in
this layer. Instrumentation in a Dalvik virtual machine could
be a feasible way of profiling the Android application.

In this work, we develop a novel approach to profil-
ing, Dalvik Profiler for Applications (DPA), to instrument
a Dalvik virtual machine to collect profiling information at
two levels, without application source code. In process-level
profiling, we can estimate the performance of the target ap-
plication; in method-level profiling, we can further estimate
the performance distributions of all methods in the target
application. Figure 1 shows the layout of DPA, which con-
sists of four components in a Dalvik virtual machine and
one component in the host. The method start time retriever
and method end time retriever collect the entry/exit time,
name, and process identity (PID) of a method. The record
buffer temporarily holds the data from the retrievers and then
passes the data on to the log file in some system storage
(e.g. a flash memory) when the buffer is full. After profil-
ing, the analyzer in the host can analyze the data stored and
retrieve the profiling results. The remainder of this paper
is organized as follows. In Sect. 2, we discuss related work
in detail. The design and implementation of the proposed

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



CHANG et al.: APPLICATION PERFORMANCE PROFILING IN ANDROID DALVIK VIRTUAL MACHINES
1297

Fig. 1 Android framework with proposed DPA.

profiling approach in DVM are described in Sects. 3 and 4,
respectively, and we evaluate the profiling system by dis-
cussing its precision and granularity in Sect. 5. Finally the
conclusion and future work are given in Sect. 6.

2. Background

In terms of profiling location, there are four approaches to
performance profiling of an application. The first is to inter-
cept the application source code to acquire the performance
information. Heap Profiling [1] is a tool that rewrites the ap-
plication source code for profiling. Rewriting also allows
more garbage collection during application running time in
order to save memory space when profiling. Spoon [2] in-
struments an application during compiling time to profile
the performance, without the need for an extra compiler
or language. Traceview [3] is a debugging tool developed
by Google which provides precise, detailed, and compre-
hensive analysis of a running Android application. How-
ever, Heap Profiling, Spoon, and Traceview need the sup-
port of an application source code. For example, Trace-
view needs instructions, Debug.startMethodTracing() and
Debug.stopMethodTracing(), in the source code to activate
a method profiling process for an application. This may
be impractical for profiling because the source code usually
cannot be easily obtained.

Second, one can instrument the virtual machine to ob-
tain the required information for VM-based applications.
Method-Level Phase Analysis [5] collects application work-
loads in JAVA virtual machines and analyzes these work-
loads offline to observe the method-level behavior of an ap-
plication. Wave Analysis [6] profiles power consumption
of JAVA applications on mobile devices. It plants a mon-
itor across a JAVA virtual machine and the OS, and feeds
the monitored results to external equipment. The wave dia-
gram of this equipment then shows the power consumption
of each application. Bytecode Instrumentation [7] dynam-
ically instruments additional bytecode to an application in
a JAVA virtual machine to obtain performance information.
These three methods may not work well on Android because
the architecture of a Dalvik virtual machine is essentially
different from that of a classical JAVA virtual machine. An-
droScope [4] instruments code throughout Android layers to
collect data for whole system profiling. For method-level
profiling in AndroScope, it collects data from DVM and an-
alyzed the data to get performance information. However,

the analysis process needs the aid of Traceview [3].
Third, we can intercept the native code in the kernel or

in the memory of the physical machine, and analyze the col-
lected information to estimate performance. Javana [8] and
FIT [9] instrument the native code in the physical machine
to profile an application. *J [10] records many application
runtime events and analyzes these events to profile the appli-
cation offline. As a result of the offline processing, *J avoids
the overhead caused by profiling. These may all be invalid
on Android because a Linux Kernel Layer regards the whole
DVM as a single process, and each application is a replica
of the DVM process. It is difficult to obtain detailed perfor-
mance information, such as the performance of a method in
an application, by means of a traditional profiling tool.

Fourth, we can build an emulator outside the Android
and analyze the system. VPA [11] is such an emulator that
takes data collected from the Android and some pre-built
models, e.g. time model and power model, as input to profile
the whole system. It can provide a comprehensive profiling
result, but the additional emulator is too complex for average
consumer to use.

The advantages and disadvantages of these profiling
methods are listed in Table 1. Because of the constraints on
profiling without source codes and the incapacity of method-
level profiling in kernel, a virtual machine is an ideal loca-
tion to profile Android applications. But, as noted above,
traditional profiling techniques in a JAVA virtual machine
may not be feasible for a Dalvik virtual machine. We thus
propose DPA to profile Android applications in DVM. DPA
is a source code which is independent of Dalvik VM special-
ized profiling tools. DPA obtains the information on pro-
cesses and methods in a Dalvik VM directly and analyzes
the information off-line to avoid profiling overhead. The
only constraint is that DPA needs the support of the Android
system because the modification of Dalvik VM is necessary.
However, because Android is an open source system, we can
easily implement DPA in the Android source code.

3. Architecture Design

Figure 2 illustrates the method interpretation process in
Dalvik VM and the DPA profiling method. The white blocks
represent the original interpretation processes of Dalvik
VM, and the gray blocks represent the tasks DPA carries
out during profiling. The entry and exit processing points
of a method are first located, and then the execution time of



1298
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Table 1 Comparisons of profiling methods.

Fig. 2 Entry and exit points of method interpretation.

Table 2 Notations in our work.

the method is obtained by subtracting the entry time from
the exit time. After obtaining the execution time of each
method, the execution time of the profiling process can be
estimated by the total time of all methods in the process.

Table 2 defines the notations used in this work. D de-
notes the device to be profiled. It could be any Android
device such as a smart phone or a tablet. For process-level
profiling, P denotes all running processes on D, and pi and
tpi are used to denote the individual process i in P and the
execution time of process pi, respectively. For method-level
profiling, Mi denotes a set of all running methods in pi, mij

denotes method j of Mi, and tmij denotes the execution time
of mij.

The objective of this work was to design a profiling
approach which could measure the execution time tmij of
each mij, and the execution time tpi of each pi for a given

Fig. 3 Profiling design overview.

working device D with a set of n running processes, P.
Figure 3 shows the design concept. In class loader of

DVM processing, many variables or data structures for pro-
filing were declared in class loader, e.g. t1 and t2. In the
interpreter state, we obtained the entry time t1 and the exit
time t2 of method mij, and then obtained tmij by subtracting
t1 from t2, after which the tmij was logged in the device’s
storage. Operations in the interpreter state were repeated
until the end of profiling. Finally, we summed all the tmij

in the log to get tpi and analyzed the performance of the
application on device D.

Each method was invoked with a method call and ter-
minated with a return statement. To estimate the execu-
tion time of a method, we used the get-current-time func-
tion, clock gettime() defined in sys/time.h, to obtain the time
before the method call and after the return statement. We
obtained the execution time of a method by subtracting the
time of these two points. However, the technique can-
not be applied to process-level profiling. As defined by
Google [12], an application is mapped onto a process when
being executed, and a process can also be viewed as a main
activity. The Activity Life Cycle shows that there is no state
defining the exit of a process. A process can only be termi-



CHANG et al.: APPLICATION PERFORMANCE PROFILING IN ANDROID DALVIK VIRTUAL MACHINES
1299

nated by a kill system call or destroyed by the system. So
we summed the time of all methods of a process to obtain
the process execution time.

A clock gettime() performs a system call in the OS,
which imposes execution overhead. When method calls
were nested or recursive, the execution time calculated by
this technique consequently incurred significant overhead.
In order to mitigate this problem, we recorded the calling
times of clock gettime() when profiling, and deducted the
overhead offline. On the other hand, writing the record to
the storage at each method return would also generate over-
head, because the storage I/O also performs a system call.
Memory space was allocated as a buffer to retain the profil-
ing data temporarily. To reduce the I/O overhead, the pro-
filing data were written to storage only when the buffer was
full.

4. Implmentation

The DVM reads a .dex file (Dalvik Executable File) as input
and maps the whole file to the memory. Then the mapped
file is parsed and the data in the file are loaded into a DexFile
structure. The most important variable of DexFile is pClass-
Defs, which is a pointer to indicate the position of the first
class in the mapped file.

After file mapping, the DVM will start to load classes.
While loading a class, the DVM looks up a hashing table in
advance to check if this class exists. If the class exists, the
data of the class is loaded into a ClassObject structure. The
ClassObject structure contains a lot of information about the
class, including the address of each method. After the pre-
processing, the application is sent to the interpreter.

The interpreter translates the bytecode into executable
native code. Because the efficiency of translation dominates
the performance of the application execution, Google re-
writes the interpreter in assembly. However, each portion
of the assembly code only fits a certain target machine ar-
chitecture, ARM or x86. In case of an absence of new archi-
tecture support or debugging issues, Google still retains the
original code written in C. These two types of code lead to
different application execution modes. The mode written in
assembly is platform specific for performance requirements,
while the mode written in C is for cross-platform require-
mentsor debugging. Because the relative performance of
each application is not affected by the execution mode, and
the adjustment or configuation is easily carried out in C, we
implemented our design by modifying the mode written in
C. In file Interp.cpp, the variable stdInterp determines what
kind of interpreter should be used, and we set stdInterp to be
dvmInterpretPortable to ask the interpreter to run in portable
mode.

To implement method profiling, we needed to set some
variables in the Method structure, which is is declared in file
Object.h, and it defines variables to record the information
of a method, such as the method name, the bytecode instruc-
tion count, and the address of the first bytecode instruction.
We appended two variables of timeval data type (defined in

/sys/time.h), t1 and t2, to the Method structure, which were
used to record the entry and exit time of a method during
profiling.

The bytecode translation in the interpreter was im-
plemented in the function dvmInterpretPortable() which
was divided into several regions by brackets. Each re-
gion manages a state of method execution. The re-
gion GOTO TARGET(invoke method) manages some pre-
processing before method execution, such as variables
initializing, and we obtained the entry time t1 by
the API clock gettime() in this region. The region
GOTO TARGET(returnFromMethod) manages the return of
a method, and we obtained another time t2 by the API
clock gettime() in this region. The subtraction of t2 and t1
gives the method exection time exactly.

After each method was profiled, the records were
logged to a file. Because the logging process (I/O oper-
ations) also needs system calls that may cause overhead,
we attached a buffer in dvmInterpretPortable() to enable the
records to be written to the file in batch mode to reduce the
I/O overhead. Little system memory space was allocated
for the buffer. Each entry of the buffer was implemented in
a C structure with three values: the method name, the ex-
ecution time of the method, and the process identity (PID)
of the method. The method name and execution time can
be easily obtained from the Method structure. The PID was
recorded in the variable systemTid, which was declared in
Thread structure. The current instance of thread can be ob-
tained from the argument self in dvmInterpretPortable(). A
process name was recorded in /proc/PID/cmdline when the
process starts. This recording work was done in Applica-
tion Framework layer and the process name was not passed
to Dalvik, so /proc/PID/cmdline had to be accessed for the
process name.

The value of method execution time may be inaccurate
when method calls are recursive or nested. Figure 4 shows
a simplified example demonstrated in C, in which method
M2 was invoked in method M1. In this technique, we used
two clock gettime() APIs to obtain the start and end time of
M2; the execution time of M1 we profiled included the time
these two clock gettime() calls consumed. If more meth-
ods are invoked in M2, the execution time of M1 profiled
would be more inaccurate. To solve this problem, we de-
clared a variable, level, in dvmInterpretPortable() to record
the invoking level of the method. The level is increased by
1 when a method is invoked, and the level is decreased by
1 when a method returns. We can use this variable to count

Fig. 4 The profiling of nested method calls.



1300
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

the number of clock gettime() calls in a profiled method and
subrtact the time these clock gettime() calls consumed from
the time profiled to get an accurate result. For the execution
time of each clock gettime(), we imitated the way Trace-
view operates: an inline function is declared and composed
of several clock gettime() function calls, and the execution
time of clock gettime() is determined by dividing the inline
function execution time by the number of clock gettime()
function calls it contains.

As Google defined [12], there is no certain state for exit
in Activity Life Cycle. A process can be viewed as a main ac-
tivity, so the similar profiling technique we used in method
profiling is not suitable for process profiling. Instead, we
summed the execution time of methods directly invoked by
the main activity. Because we inserted the variable level
to record the method level, we simply summed up the exe-
cution times of methods with level 1 to obtain the process
execution time.

5. Evaluation

In this section, we verify the accuracy of DPA on a develop-
ment board and use this technique to profile popular appli-
cations on smartphones. The verification was confirmed by
comparing the results of DPA with the results of the baseline
tools, Traceview and RMP. In the end of this section, we
analyze the execution properties of some popular applica-
tions after DPA profiling without any support of application
source code to help users to realize applications they may
use and choose the suitable ones from them.

Lin et al. have run a variety of methods on both DVM
and the Library Layers in Android, and compared their per-
formances [13]. We ran these methods on BeagleBoard [14]
and profiled them with DPA. As mentioned above, the func-
tion clock gettime() causes extra execution time that makes
the profiling imprecise. Both Traceview and RMP can dy-
namically control the number of clock gettime() in the appli-
cation source code, so they can precisely profile an applica-
tion. Thus we took Traceview and RMP as the baseline tools
for DPA verification. Let the profiled time by DPA be tDPA,
the profiled time by Traceview be tTra., and the profiled time
of RMP be tRMP. We defined the error rate of method-level
profiling Errm and the error rate of process-level profiling
Errp as

Errm =
tDPA − tTra.

tTra.
(1)

and

Errp =
tDPA − tRMP

tRMP
(2)

respectively. Table 3 is the specification of BeagleBoard
and Fig. 5 (a) shows that the error rate of each test case was
< 5%. However, if we do not apply buffer and overhead
deducting strategy in DPA, the error rates of Random and
String Concatenation (String Cat.) increase to 12.58% and
17.66% respectively, because these two methods are called

Table 3 The specification of BeagleBoard.

Fig. 5 The verification results.

recursively. On the other hand, profiling without buffer and
system call, overhead deduction had nearly no effect on the
other four methods. Figure 5 (b) shows the profiling results
of the put together methods; the “All” means all six methods
tested in method-level profiling. The error rate was < 5%
if the methods inside the process were not nested. Even
for processes with nested methods, the error rate was just
slightly more than 5%.

However, when the code of an application became
complex, DPA encountered a fatal miss. The error rate was
as large as 30%. It was because DPA only profiled the execu-
tion time of methods inside the process, ignoring the system
operations such as memory allocation. To solve this prob-
lem, in the future we will extend DPA out of the interpreter
in the Dalvik VM and get the Activity Life Cycle information
to clearly define the start/end point of process-level profil-
ing. Furthermore, with the aid of kernel modification, we
can calculate the time caused by system operations to im-
prove the precision of process-level profiling.

Tables 4 and 5 show the specifications of the two
phones and the version of each application respectively. Fig-
ure 6 shows three methods which took the most execution



CHANG et al.: APPLICATION PERFORMANCE PROFILING IN ANDROID DALVIK VIRTUAL MACHINES
1301

Table 5 Applications under test.

Table 4 The specification of tested smart phones.

Fig. 6 Execution time of hotspot methods on tested phones.

time in each application on each of the two phones. Al-
though the hotspot methods in the profiled applications were
different on Samsung Galaxy S III (Fig. 6 (a)) and Sony
Xperia Z (Fig. 6 (b)), the trends of the exectuion time of the
two phones were approximately the same except for the An-
droid built-in browser.

In browser profiling, Opera and Chrome perform better

Fig. 7 Method execution time comparison.

because most methods inside them have shorter execution
time. Dolphin has a relatively low performance because the
method wait() has an extremely long execution time. We
suspect that Dolphin supplies comprehensive gesture input
functions and takes a long time to wait for and react to the
gesture input. On the other hand, Android built-in browsers
on different phones have different methods of execution be-
havior. Although both of them are tagged version 4.3 in the
system information, they are distinctly different in size. The
browsers might not be the same, and we surmise that the
browser in Samsung smartphones might be optimized.

In video player profiling, VPlayer has smoother play-
ing and reacts faster to users. From the profiling results we
found that the methods sleepFor() and sleep() of VPlayer
are two of the three hotspot methods, and we suspect that
VPlayer offloads the video decoding to hardware so that it
can “sleep” and thus generate better performance. The other
two players have a lower performance than VPlayer. This
might be because this version of the two players does not
support hardware decoding.

In game profiling, we profiled Candy Crush and Jewel
Mania because they have analogous playing operations. We
found that Jewel Mania has better display quality but longer
loading time and a less smooth reaction to users. Methods
in Jewel Mania need more execution time to attain display
quality and load game data.

Finally, we selected one method from these tested ap-
plications and compared the execution time on Samsung
S III and Sony Xperia Z. Figure 7 shows that the execu-
tion time of methods on Sony Xperia Z is about 1.1–1.5
times slower than that of methods on Samsung S III. Ver-
sions of Android in Samsung S III and Sony Xperia Z are
both 4.3, but the Android in Samsung S III is optimized by



1302
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Cyanogenmod [17] and that in Sony Xperia Z is native from
AOSP [16]. This gives Samsung S III a better performance
even though Sony Xperia Z has better hardware specifica-
tions.

6. Conclusions and Future Work

In this work, we designed DPA to profile applications in
Dalvik virtual machine without the source code of appli-
cations. We measured the execution time of methods and
processes in an application, and found the following.

1. DPA has good profiling accuracy: from the base-
line tool Traceview, DPA had an error rate of 5% on
method-level profiling and slightly more than 5% on
process-level profiling.

2. The result of DPA reflects the execution time of meth-
ods inside the application: smoother applications have
shorter method execution time; if an application pro-
vides greater display quality or fancier functions, per-
formance may decrease and the methods in the appli-
cation may also take longer to execute.

3. Better hardware specifications may still have lower per-
formance: we also found that even with better hard-
ware specifications and the same Android version, per-
formance may still be low because the Android itself
is not optimized. We found that performance disparity
was 1.1–1.5 times.

The execution time we measured was the turn around
time, not the real execution time of an application. If the sys-
tem context switches frequently, the result of DPA may be
inaccurate. The process profiling may also encounter a fatal
miss when the code of an application is complex or large,
because we only considered the execution time of methods
inside the process and ignored the system operations such as
memory allocation. On the other hand, DPA cannot profile
the method implemented in native code, because the execu-
tion of native code is not processed in the DVM. It needs
another strategy for profile. Future work will address these
problems so as to render DPA more accurate. DPA is now
publicly available as an open source tool [18].

References

[1] R. Shaham, E.K. Kolodner, and M. Sagiv, “Heap profiling for space-
efficient Java,” ACM SIGPLAN Notices, vol.36, no.5, pp.104–113,
2001.

[2] R. Pawlak, “Spoon: Compile-time Annotation Processing for Mid-
dleware,” IEEE Distributed Systems Online, vol.7, no.11, p.1, Nov.
2006.

[3] Traceview, http://developer.android.com/tools/debugging/
debugging-tracing.html

[4] M. Cho, H.J. Lee, M. Kim, and S.W. Kim, “AndroScope: An In-
sightful Performance Analyzer for All Software Layers of the An-
droid-Based Systems,” ETRI Journal, vol.35, no.2, pp.259–269,
April 2013.

[5] A. Georges, D. Buytaert, L. Eeckhout, and K.D. Bosschere,
“Method-Level Phase Behavior in Java Workloads,” ACM SIG-
PLAN Notices, vol.39, no.10, pp.270–287, 2004.

[6] L.-W. Liu, A Method-Level Energy Profiling Tool for Java Applica-
tions on Mobile Devices, Master Thesis, National Tsing Hua Uni-
versity, Taiwan, 2010.

[7] M. Dmiuiev, “Selective Profiling of Java Applications Using Dy-
namic Bytecode Instrumentation,” Performance Analysis of Systems
and Software, pp.141–150, 2004.

[8] J. Maebe, D. Buytaert, L. Eeckhout, and K.D. Bosschere, “Javana:
A System for Building Customized Java Program Analysis Tools,”
ACM SIGPLAN Notices, vol.41, no.10, pp.153–168, 2006.

[9] B.D. Bus, D. Chanet, B.D. Sutter, L.V. Put, and K.D. Bosschere,
“The Design and Implementation of FIT: a Flexible Instrumentation
Toolkit,” ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pp.29–34, 2004.

[10] B. Dufour, L. Hendren, and C. Verbrugge, “*J: A Tool for Dynamic
Analysis of Java Programs,” Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pp.306–307, 2003.

[11] C.-H. Tu, H.-H. Hsu, J.-H. Chen, C.-H. Chen, S.-H. Hung, “Per-
formance and power profiling for emulated android systems,” ACM
Transactions on Design Automation of Electronic Systems, vol.19,
no.2, pp.1–25, March 2014.

[12] Security Engineering Research Group, Analysis of Dalvik virtual
machine and class path library, Institute of Management Sciences,
Peshawar, Pakistan, 2009.

[13] C.-M. Lin, J.-H. Lin, C.-R. Dow, C.-M. Wen, “Benchmark Dalvik
and Native Code for Android System,” Innovations in Bio-inspired
Computing and Applications, pp.320–323, 2011.

[14] BeagleBoard, http://beagleboard.org/
[15] Y.-D. Lin, K.-C. Chang, Y.-C. Lai, and Y.-S. Lai, “Reconfigurable

Multi-Resolution Performance Profiling in Android Applications,”
IEICE Transactions on Information and Systems, vol.E96-D, no.9,
pp.2039–2046, 2013.

[16] Android Open Source Project, (AOSP), https://source.android.com/
[17] Cyanogenmod, http://www.cyanogenmod.org/
[18] Dalvik Profiler for Applications (DPA), http://sourceforge.net/

projects/dpa/files/latest/download

Hung-Cheng Chang received the M.S. de-
gree in computer science and information en-
gineering from National Taiwan University of
Science and Technology in 2010. He is now
a Ph.D. student in computer science from Na-
tional Chiao Tung University. His research in-
terests include the flash memory, virtual ma-
chines, and embedded operating systems.

Kuei-Chung Chang received the Ph.D. de-
gree in computer science from National Chung
Cheng University in 2008. He is Associate Pro-
fessor of Department of Information Engineer-
ing and Computer Science at Feng Chia Uni-
versity in Taiwan. His research interests in-
clude system-on-chip, network-on-chip, embed-
ded system, and multi-core system.

http://dx.doi.org/10.1145/381694.378820
http://dx.doi.org/10.1109/mdso.2006.67
http://dx.doi.org/10.4218/etrij.13.0112.0203
http://dx.doi.org/10.1145/1035292.1028999
http://dx.doi.org/10.1109/ispass.2004.1291366
http://dx.doi.org/10.1145/1167515.1167487
http://dx.doi.org/10.1145/996821.996833
http://dx.doi.org/10.1145/949344.949425
http://dx.doi.org/10.1145/2566660
http://dx.doi.org/10.1109/ibica.2011.85
http://dx.doi.org/10.1587/transinf.e96.d.2039


CHANG et al.: APPLICATION PERFORMANCE PROFILING IN ANDROID DALVIK VIRTUAL MACHINES
1303

Ying-Dar Lin is a Distinguished Pro-
fessor of computer science at National Chiao
Tung University (NCTU), Taiwan. He received
his Ph.D. in computer science from the Uni-
versity of California at Los Angeles (UCLA)
in 1993. He was a visiting scholar at Cisco
Systems in San Jose, California, during 2007–
2008. Since 2002, he has been the founder and
director of Network Benchmarking Lab (NBL,
www.nbl.org.tw), which reviews network prod-
ucts with real traffic and has been an approved

test lab of the Open Networking Foundation (ONF) since July 2014. He
also cofounded L7 Networks Inc. in 2002, which was later acquired by
D-Link Corp. His research interests include network security and wire-
less communications. His work on multihop cellular was the first along
this line, and has been cited over 650 times and standardized into IEEE
802.11s, IEEE 802.15.5, IEEE 802.16j, and 3GPP LTE-Advanced. He is
also an IEEE Fellow (class of 2013), IEEE Distinguished Lecturer (2014–
2015), and an ONF Research Associate. He currently serves on the editorial
boards of several IEEE journals and magazines. He published a textbook,
Computer Networks: An Open Source Approach (www.mhhe.com/lin),
with Ren-Hung Hwang and Fred Baker (McGraw-Hill, 2011).

Yuan-Cheng Lai received the Ph.D. de-
gree in computer science from National Chiao
Tung University in 1997. He joined the faculty
of the Department of Information Management
at National Taiwan University of Science and
Technology in 2001 and has been a professor
since 2008. His research interests include wire-
less networks, network performance evaluation,
network security, and content networking.


