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Abstract 

An irreducible and homogeneous Markov chain with finite state space is considered. Under a mild condition F on the 
transition probability matrix, a necessary and sufficient condition for weak lumpability, and the characterization of the 
set of initial starting vectors which make it lumpable are obtained. A similar result is obtained for those transition 
probability matrices without the restriction of condition F. 
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1. Introduction 

Consider  an irreducible M a r k o v  chain X(n), n = 0, 1, 2, . . . ,  with a finite state space E = { 1, 2 . . . .  , N}, 
transit ion probabil i ty matrix P = (Pij), i , j  e E, and an initial probabil i ty (row) vector v = (vl), i e E. Let 
A = {A(1), A(2), . . . ,  A(M)} be a part i t ion of  E where without  loss of  generality we assume 

A(1) = {1, . . . ,  n(1)} 

A(m) = {n(1) + ... + n(m - 1) + 1, . . . ,  n(1) + ... + n(m)} 

A ( M )  = {n(1) + .-- + n ( M  - 1) + 1 . . . . .  N}. 

With the given process X and the part i t ion A, we associate the aggregated process Y, defined by 

Y ( n ) = m  iff X ( n ) = A ( m ) ,  Vn>lO.  

The usefulness of  discussing Y(n) was stated in Hachgian  (1963), Kemeny  and Snell (1976) and Rubino  and 
Sericola (1989), etc. Unfortunately,  Y(n) is not  necessarily M a r k o v  nor  even homogeneous .  Condi t ions  under 
which Y(n) is M a r k o v  for any initial probabil i ty vectors (this proper ty  is called s trong lumpability), were 
studied in Burke and Rosenblat t  (1958), Hachgian  (1963) and Kemeny  and Snell (1976). Hachgian  (1963) also 
discussed lumpabil i ty of  a M a r k o v  chain with a denumerable  state space. Weak  lumpabil i ty first appeared in 
(Kemeny and Snell, 1976) which proposed  that  it is possible that  there exists a proper  subset S, of  the set of  all 
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initial probability vectors S such that the process Y(n) starting with any at ~ S u is Markov homogeneous while 
it is not when starting with at¢Su. In this more general situation, X(n) is said to be weakly lumpable with 
respect to the given partition A. Kemeny and Snell (1976) also provided a local necessary and sufficient 
condition and a useful sufficient condition to weak lumpability. Abdel-Moneim and Leysieffer (1982) gave 
another but incorrect necessary and sufficient condition as was shown later with a counterexample in Rubino 
and Sericola (1989). The same author (Rubino and Sericola, 1991) obtained a finite characterization of weak 
lumpability by means of an algorithm which computes the set Su. Under a mild condition, a necessary and 
sufficient condition to weak lumpability as well as S u are given in the paper. Discussion on that mild 
condition follows. 

2. Preliminaries 

Most of the following definitions are similar to those of Kemeny and Snell (1976) and Rubino and Sericola 
(1989). For  a given at E S, the restriction of at to A(k), denoted by attk), is the vector of S defined by: 
attk)(i) = at(i)/Q if i belongs to A(k), 0 otherwise, where Q = ~j~Atk) at(j) for all at and k such that Q # 0. If 
Q = 0, attk)is not defined. For  example, suppose N = 5, M = 2, A(1)= {1,2} and A(2)= {3,4,5}. For  
at =(~,~,½, ~2, 3) ,  we have at(1) (1, ½, 0, 0, 0) and at(2) (0,0,½,1 3 = = ~, ~). Let U, be the M × N matrix with the ith 
row at"), and V be the N × M matrix with thej th column a vector with l's in the components corresponding to 
states in A(j) and O's otherwise. In the above example, 

and V = 

1 0 

1 0 

0 1 

O 1 

O 1 

The next theorem, a combination of those in Kemeny and Snell (1976), characterizes strong lumpability. 

Theorem 2.1 (Kemeny and Snell, 1976). For a given homogeneous, irreducible finite Markov chain X (n) with 
probability transition matrix P, the following conditions are equivalent. 

(i) X(n) is strongly lumpable with respect to a partition A. 
(ii) The rows of PV in each A(i) are the same and the (unique) probability transition matrix of the lumped 

process Y(n) is P = U, PV where at is the vector with each entry being 1IN. 
(iii) VU, PV = PV for some at ~ S or, equivalently, for all at ~ S. 

It is not difficult to see that P = U, PV for all at such that U, is defined. 
Results on weak lumpability were obtained in Abdel-Moneim and Leysieffer (1982); Kemeny and Snell 

(1976) and Rubino and Sericola (1989, 1991). First, more notations are needed. For  any ~t e S, let 

atl = at(i) 

at2 = (at1 p)O) 

atm = (a t ra-  1 p)(s) .  

Denote by Z~ the totality of vectors at,. obtained by considering all finite sequences A(i), A(j) . . . . .  A(s), 
ending in A(s). Define also Pp(X(1) e G) be the probability of X(1) belonging to G with starting vector ft. Next 
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theorem is the origin of the idea used in Abdel-Moneim and Leysieffer (1982) and Rubino and Sericola (1989, 
1991). 

Theorem 2.2 (Kemeny and Snell, 1976). A given finite homogeneous irreducible Markov chain X (n) is weakly 
lumpable with respect to a partition A ifffor each pair o f t  and s in E, Pp(X(1)~ A(t)) is the same Vfl ~ Zs. 

Theorem 2.3 (Kemeny and Snell, 1976). I f  X (n) is weakly lumpable with respect to A, then ~ e Su where n is the 
fixed vector of P. The unique transition probability matrix of Y is/5 = U, PV. 

Similarly, i5 = U, PV = U, PV for all at e S, such that U, is defined. A useful sufficient condition to weak 
lumpability is given next. 

Theorem 2.4 (Kemeny and Snell, 1976). U, P V U ,  = U,P implies weak lumpability of X(n). 

See that U, PVU,  = U,P if and only if(nil)P) (j) = n (j) Vi, j = 1 . . . .  , M. The following theorem describe the 
form of S u. 

Theorem 2.5 (Rubino and Sericola, 1989). S, is a convex closed set. 

Theorems 2.3 and 2.5 yield improvement on results of Rubino and Scricola (1989). Let us define the set 

S~ = 21n ~1) + ... + 2Mn~M): ~ 2i = 1,2~ >1 0, Vi . 
i = l  

IfS,  ¢ ~b, then S~ _ S, and dim(S~) = M, so the number of steps needed to compute S, is necessarily less than 
or equal to N - M, instead of N. 

3. Main results 

It was shown in Burke and Rosenblatt (1958) that under the condition of reversibility of X(n), the 
aggregated process Y(n) satisfying the Chapman-Kolmogorov equations are equivalent to strong lumpabil- 
ity of X(n). Now we want to show that under the following condition, the Chapman-Kolmogorov equations 
are equivalent to weak lumpability of X(n). A characterization of it is also obtained. 

Condition F. The probability transition matrix P of a finite homogeneous irreducible Markov chain satisfies 
condition F with respect to a Partition A if the columns of V, PV, p2V, ... generate R N. 

Theorem 3.1. Under condition F, the following are equivalent: 
(i) X is weakly lumpable. 

(ii) Y satisfies Chapman-Kolmoyorov equations when the initial distribution is ~. 
(iii) U~PVU~ = U~P, i .e.  (7t( i)P) (j) = ~u) Vi, j = 1, . . . ,  M. 

(iv) X is weakly lumpable and 

S ' = { 2 1 f t ' t '  + "'" + 2Mn'M): ~' 2i= l'21>~O'Vi} 
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Proof. Trivially, (i) implies (ii). Since pk = u n p k  V, it is also not difficult to see that (ii) can be reworded in an 
equivalent form: 

U , P ( V U ,  - I ) p k v  = 0, Vk = 1, 2, . . . ,  (3.1) 

where n is the fixed vector of P. Since U. V = I M × M, we also have 

U . P ( V U .  - I )  V = O. (3.2) 

(3.1), (3.2) and condition F give the result of (iii), and (iii) implies (i) by Theorem 2.4. 
We now show that (ii) and (iv) are equivalent. Since p k =  u ,  p k v  = u ,  p k v  for a t  S, such that U, is 

defined, (3.1) and (3.2) can be rewritten as 

U . P ( V U .  - I ) P  k V = O, 

U . P ( V U .  - I ) p k v  = O. 

k = 0 , 1 , 2  . . . . .  
(3.3) 

Condition F combined with (3.3) immediately yields the following: 

~ P V ~ = ~ P = ~ P V ~ ,  

which implies for all i, j 

n(j) = (~(i)p)¢j) = ~(j). (3.4) 

Theorem 2.5 together with (3.4) concludes the desired result. []  

Checking condition F is not a serious matter  if we use the following procedure. 

1. v 1 . . . . .  VM, the columns of V, are linearly independent of each other. Set 7 = { V l  . . . . .  VM}. 
2. Check whether Pva is linearly independent of the vectors of 7. Add Pv 1 to 7 if the answer is yes, discard 

Pvx if it is not. 
3. Do procedure 2 for Pv z . . . . .  Pvu .  
4. Do procedure 2 and 3 for W, j = 2, 3 . . . . .  but only to those vi's such that W -  ~ vi's were added to 7. 
5. Stop when 7 contains N vectors, which means F is satisfied, or stop at the smallest j such that 

all Wv's  are linearly dependent to the vectors in 7 that contains vectors fewer than N, which means F is 
failed. 

Remark.  (1) If a stochastic matrix P is strongly lumpable, then V U P V  = P V  by (iii) of Theorem 2.1. 
Multiply p k -  ~ to both sides of the above equality, we have v u p k v  = p k v .  Thus, the columns of pk's are 
linear combinations of the columns of V. Hence, P does not satisfy condition F. 

(2) Moreover,  a stochastic matrix P with at least two identical rows in the same block A(m)  does not 
satisfy condition F. 

(3) By the nature of P, the last column PVM is not added to 7. Thus, the last step in procdure 3 should be 
actually dropped. 

Some amends can be done for those P beyond the restriction of F. Without loss of generality, we 
assume the first q = n(1) + ..- + n(Q) elements of each columns of V, PV ,  p 2 V  . . . .  generate R q where 
Q < ~ M , q < ~ N .  
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Theorem 3.2. Under  the assumption above, X bein9 weak ly  lumpable implies (rt(i)P) ~) = rc °) i = 1 . . . . .  M and 
j = 1 . . . . .  Q. Furthermore,  Su is o f  the f o r m  

Sli = { ~17[(1) q- "'" q- /~QIC(Q)']- }~Q+I~Q+I q- "'" -]- ]LM~M: ~ ]Li = l'fi'i ~ 

with unknown o~i's having non-zero entries only in the ith block A(i).  

Proof. Since X is weakly lumpable, we have, as in the p roof  of  Theorem 3.1, that  for all ~, fl ~ S, 

U , P ( V U a - - 1 ) P K V = O ,  k = O ,  1 . . . .  

Let 

a l l  ... alM I 
U~P = " 

\aM1 ... aMM/ 

where air is a 1 × n ( j )  vector• 
Also let a! ~) = (0 ... 0 ai~/clj 0 ... 0) with aij in the j th  block and cij being the sum of the elements of  a~j, and 

let 

7C( 1 ) 

Ox : (Q+I)  
a i  

• ( M )  

a i  

Trivially, any such x belongs to S u. 

A short  computa t ion  shows the ith row of U , P ( V U ~  - I )  is of  the form, 

dl(al II - re(l)) + ... + dQ(al Q) -- n(Q)), 

where those d's are some constants.  
Hence the assumpt ion leads to the first part  of  the theorem 

al J )=re  0), j =  1 . . . .  ,Q. 

The second part  can be proved similarly by taking 

= a!Q+ 1) 

"_(M) 
ui 

[ ]  

Therefore the dimension needed in the calculation method  of  Rubino and Sericola (1991) can be reduced• 
Theorem 3.2 also implicitly implies that  (~P)~) = n ~J) for all • ~ S, and j = 1, 2 . . . . .  Q. Thus  we are able to 
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check  c o n t i n u o u s l y  on  the  necessa ry  c o n d i t i o n  ((1tt°P)JP) tk) : 1[  ( k )  for  i = 1 . . . . .  M ,  j = Q + 1 . . . . .  M a n d  

k - - 1  . . . . .  Q. 
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