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The underlying Dirac point is central to the profound physics manifested in a wide class of materials.
However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point.
Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show
that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong
topological insulator to a weak topological insulator at a finite temperature TD. At TD, massless Dirac
points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent
relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes.
In particular, it yields critical scaling behaviors both in magnetic and transport responses near TD.
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Since the discovery of graphene [1,2], enormous efforts
have been inspired to search for materials with similar
Dirac-like electronic structures. It was soon realized that a
variety of materials, known as topological insulators, can
exhibit low-dimensional Dirac Fermions at surfaces [3–5]
due to the nontrivial topology in bulk electronic structures.
More recently, 3D Dirac semimetallic phases were also
found in Na3Bi [6] and Cd3As2 [7,8]. In these materials,
the underlying Dirac points are central to the associated
novel properties [9] and the mass of the Dirac fermions is
the energy gap that controls the transition between the
topological trivial and the topological nontrivial phases
[4,10,11]. Right at the point when the mass vanishes, the
material is a Dirac semimetal which is at the fermionic
quantum critical point (QCP) between the hole Fermi liquid
and the electron Fermi liquid [12]. The quantum criticality
extends effects of the Dirac point to a finite critical regime
[12] and results in nontrivial scalings in Dirac semimetals.
Despite the profound physics that can be manifested in
Dirac semimetals, access to the critical point requires
particular symmetries [13] and they are rare in real
materials. Furthermore, the transition across the critical
point requires tunability of electronic structures. Successful
manipulations of electronic states across the critical point
are often difficult [11] and are usually not performed in the
same system. It is therefore desirable to search for feasible
ways to access the fermionic critical point.
In this work, we explore topological phases at finite

temperatures due to the many-body screening interaction of
localized spins and conduction electrons in a Kondo lattice.
We demonstrate that the hybridization of localized spins
and conduction electrons leads to temperature-dependent
electronic energy bands with the mass of the Dirac fermions
being tunable. When spin-orbit interactions are included in

hybridization, we find that the Kondo lattice is a strong
topological insulator at low temperature [14] and undergoes
a topological transition to a weak topological insulator at a
higher temperature TD. At TD, Dirac points emerge and the
system is a Dirac semimetal. Our results indicate that the
finite temperature transition through a Dirac semimetallic
phase results in nontrivial critical scaling behaviors both in
transport and magnetic responses near TD.
The model.—We start with the Anderson lattice

Hamiltonian (ALH) on a cubic lattice, which is shown
to characterize the topological Kondo insulating phase of
SmB6 [14],

H ¼
X
kσ

ðξkc†kσckσ þ ξdkd
†
kσdkσÞ

þ
X
kσσ0

ðVσσ0
k c†kσdkσ0 þ H:c:Þ þ U

X
i

ndi↑n
d
i↓: ð1Þ

Here c† and d† create conduction and more localized
electrons in the f orbit, respectively. ξk is equal to εk − μ
with εk ¼ −2t

P
i¼x;y;z cos ki − 4t0

P
i≠j cos ki cos kj and μ

being the chemical potential. ξdk ¼ εd − ηεk − μ character-
izes the narrow band formed by d electrons with η being
the bandwidth and εd being the relative shift of band center.
Vk is the hybridization between c and d electrons, given
by v0I þ 2λso

P
i¼x;y;zσi sin ki with I and σi being the unit

and the Pauli matrices, respectively. Here v0 vanishes due
to the odd parity of the f orbits [14] so that the spin-orbit
interaction λso dominates. Finally, U describes the Hubbard
repulsion between d electrons.
Kondo screening.—We first analyze the screening inter-

action between c and d electrons. In the presence of λso,
effective spin interactions are modified. By applying the
Schrieffer-Wolff transformation [15] on the ALH in the
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continuum limit with εd − μ ¼ −U=2 [16], we obtain the
generalized Kondo lattice Hamiltonian [22] with three types
of spin interactions represented by (i) the Heisenberg
interaction J1~skk0 · ~sd, (ii) the Dzyaloshinskii-Moriya

interaction J2½−ið~k − ~k0Þ · ð~skk0 × ~sdÞ�, and (iii) the tensor

type interaction J3½ð~skk0 · ~kÞð ~k0 · ~sdÞ þ ð~skk0 · ~k0Þð~k · ~sdÞ�,
where ~skk0 ¼ ψ†

k~σψk0 and ~sd ¼ ϕ†
dð~σ=2Þϕd with ψk ¼

ðck↑; ck↓Þ and ϕ†
d ¼ ðd†↑; d†↓Þ. The strengths of spin inter-

actions are given by J1 ¼ Jv20, J2 ¼ Jv0λso, J3 ¼ 4Jλ2so with
J ¼ 1=ðU þ εd − μÞ − 1=ðεd − μÞ. The screening of a single
localized spin is analyzed by a renormalization group (RG)
analysis [23]. By defining dimensionless parameters gi ¼
2ρJi with ρ being the density of states at the Fermi energy,
we obtain coupled flow equations [16]: _g1 ¼ −ðg21 þ g22Þ,
_g2 ¼ −g2ðg1 þ g3Þ, _g3 ¼ −ðg23 þ g22Þ. Here the solution is
ðg1 − g3Þ=ðg2Þ ¼ const. The initial coupling constants at the
band cutoffD0 satisfy g1ðD0Þg3ðD0Þ ¼ g22ðD0Þ.We find that
all the gi’s flow to infinity at the Kondo temperature [16]

TK ¼ D0e½−1=2ρðJ1þJ3Þ�: ð2Þ

TK is clearly enhanced in comparison to the Kondo temper-
ature without λso, T0

K ¼ D0eð−1=2ρJ1Þ. This enhancement
persists even when many localized spins are included [16].
λso also changes the screening scenario below TK. This

is exhibited by performing the decomposition: Ckσ ¼
ð1=kÞPlmY

m
l ðk̂ÞCm

lkσ with Ym
l being spherical harmonics.

Because the hybridization only mixes the orbital angular
momentum l ¼ 1 with spins, the d↑=↓ electron only
couples c electrons with jz ¼ �1=2 through a particular
linearly combinedCm†

1kσ defined by a
†
k;jz¼�1=2¼v0C

0†
0k;�1=2�

v1ðC0†
1k;�1

2

−
ffiffiffi
2

p
C�1†
1k;∓1

2

Þ with v1 ¼ ð2= ffiffiffi
3

p ÞλsokF [16]. The

resulting spin interaction is J1~skk0 · ~sd with ~skk0 ¼P
α;βa

†
k;α~σαβak;β. Hence it is the total angular momenta

of c electrons that interact with the d electron. Below TK, c,
and d electrons are coupled with the total angular momen-
tum being screened. However, since d electrons only
couple to a†k;jz¼�1=2, other linear combinations of Cm†

1kσ

are left free [16]. This hints that more structures may exist
in the phase space below TK.
Topological phase diagram.—To access electronic

structures below TK in the large U limit, we apply the
slave-bosonmethod by expressing d†iσ ¼ f†iσbi, where fi and
bi are spinon and holon operators satisfying the constraint,P

σf
†
iσfiσ þ b†i bi ¼ 1. The constraint is removed by a

Lagrangian field λi so that the Hamiltonian has to include
the extra term

P
iλið

P
σf

†
iσfiσ þ b†i bi − 1Þ. In the mean

field approximation, holons condense with hbii ¼ hb†i i≡ r
and λi is replaced its mean-field value λ. The Hamiltonian
becomes HM ¼P

kσðckσ;fkσÞ†Hkðckσ;fkσÞþNλðr2−1Þ
with

Hk ¼
�

ξkI rVk

rVk
~ξdkI

�
: ð3Þ

Here N is the number of sites and ~ξdk ¼ ðεd þ λÞ−
ηr2εk − μ. It is convenient to rewrite ξk ¼ mk − μk and
~ξdk ¼ −mk − μk with mk ¼ ½ð1þ ηr2Þεk − εd − λ=2� and
μk ¼ μ − ½ð1 − ηr2Þεk þ εd þ λ=2�. By minimizing the
free energy, r and λ are determined self-consistently through
the mean-field equations

1

N

X
kσ

hf†kσfkσi þ r2 ¼ 1; ð4Þ

1

N

X
kσσ0

½ReðVσσ0
k hc†kσfkσ0 iÞ − rηεkδσσ0 hf†kσfkσ0 i� þ rλ ¼ 0:

ð5Þ
We first illustrate possible phases by setting t0 ¼ 0.
The energy spectra are found as Ek ¼ −μk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ r2ðv0 � 2λso
ffiffiffiffiffiffiffiffiffiffiffi
sin2k

p
Þ2

q
. Clearly, the energy gap is

given by 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ r2ðv0 − 2λso
ffiffiffiffiffiffiffiffiffiffiffi
sin2k

p
Þ2

q
. Hence setting

mk ¼ 0 and v0¼ 2λso
ffiffiffiffiffiffiffiffiffiffiffi
sin2k

p
determines all gapless phases.

More explicitly, gapless phases and corresponding gapless
momentak0 are determined by εk0

¼ ðεd þ λÞ=ð1þ ηr2Þ≡
ελ; k0 and cos2k0 ≡ cos2kx0 þ cos2ky0 þ cos2kz0 ¼ 3−
ðv0=2λsoÞ2. It is clear that the effective parameter that tunes
the Kondo lattice through different phases is ελ. Solutions of
k0 generally form surfaces.As illustrated in Fig. 1(a), there is
a large parameter space that supports gapless phases. In
addition to gapless regimes, there are phases that have gaps in
electronic structures and are characterized by topological
indices ðν0; ν1; ν2; ν3Þ [24]. Clearly, going from one gapped
phase to another gapped phase with different topological
indices, the Kondo lattice has to go through gapless phases.
In the special case when v0 ¼ 0, gapless momenta satisfy
cos2 k0 ¼ 3 so that k0 are isolated points at time-reversal
invariant momenta:Γ,X,M, andR. These gapless phases are
nodal phases with the transition occurring at ελ=t ¼ −6;−2,
2, 6 as illustrated in Fig. 1(a). Since there are four degenerate
zero-energy states at k0, these phases are Dirac semimetallic
phases. In general, t0 is nonvanishing and the topological
phases are identified in the same way, shown in Fig. 1(b) for
v0 ¼ 0. For realmaterials, t0=t ∼ −0.2, the strong topological
insulator (STI) phase with index (1;000) shrinks, while the
(1;111) phase gets enlarged.
Fermionic finite-temperature critical point.—The elec-

tronic structures depend on temperature through r and λ.
As T increases, r decreases and the coupling between c and
d electrons decreases. Eventually c and d decouples at TK .
Here by taking U → ∞ and v0 ¼ 0 in Eq. (2), TK is
estimated as TK ¼ 4t exp½−9ηt2=ð2λ2soÞ�, where we made
use of D0 ∼ 4t, ρ ¼ 1=ð6tÞ, and ρdjμ − ϵdj ∼ 1 with
ρd ¼ 1=ð6ηtÞ being density of states of d electrons.
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Below TK, the energy spectrum is found by solving
Eqs. (4) and (5). As indicated in Fig. 1(a), when v0 ¼ 0,
the system goes through Dirac semimetallic phases
in which the energy spectra reduce to E�

k ¼ −μk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ 4r2λ2sosin2k
p

. By requiring mK ¼ 0 at time reversal
momentum K together with Eqs. (4) and (5), the resulting
system possesses Dirac points at some temperatures denoted
by T�

D. Here the chemical potential may not be at the Dirac
point. If one further requires that the effective chemical μK
vanishes, the system goes through a semimetallic phase with
nodal points being at K points. The corresponding temper-
ature is denoted by TD, which occurs only at properly tuned
chemical potential. Figure 2(a) shows that indeed the
system goes through a finite-temperature semimetallic phase
at T ¼ TD at three X points by using the proper chemical
potential. Clearly, as shown in the inset, the mechanism
for the emergent semimetallic phase is the occurrence of a
band inversion at X points.
In Fig. 2(b), we show a typical dependence of T�

D on the
electron density n and λso. T�

D generally forms a surface so
that Dirac points exist in the electronic structures for a large
parameter regime. The red line that cuts through different

n’s shows the temperature TD. It is clear that finite-
temperature Dirac points connect to the zero-temperature
QCP smoothly. Hence, the line formed by the temperature
TD extends the QCP and is a critical line that separates the
hole Fermi liquid from the electron Fermi liquid.
The effective Hamiltonian near a Dirac point at K that

occurs at T�
D can be generally expressed as

HK ¼
�
αðT − T�

DÞI ℏvFσ · q

ℏvFσ · q −αðT − T�
DÞI

�
− μ̄I; ð6Þ

where μ̄ is the effective chemical potential and q ¼ k −K
is the deviation of the momentum from K. HK is valid
within a cutoff with q < qc. When the number of electrons
is properly tuned so that μ̄ ¼ 0, T�

D reduces to TD. At TD,
the Kondo lattice is at a finite-temperature critical point.
Near TD, any physical response Q exhibits the scaling
behavior as

(a)

(b)

FIG. 2. (a) Emergence of a finite-temperature Dirac point at X
point with n ¼ 2.074, t ¼ −1, t0 ¼ −0.3, λso ¼ 0.2, η ¼ 0.05,
εd=t ¼ 0.449. Inset shows relative band positions before hybridi-
zation, indicating the occurrence of a band inversion at TD.
(b) Typical surface of T�

D as a function of n and λso with t ¼ −1,
t0 ¼ 0.3, η ¼ 0.001, εd=t ¼ 3.19. The red line marks critical
temperatures TD at which the chemical potential is at the Dirac
point. The blue dashed lines indicate the crossover temperature
T� that separates the Dirac liquid regime from the Fermi liquid
regime. As a reference, by using Eq. (2), TK can be estimated by
4t exp½−9ηt2=ð2λ2soÞ�, which are in the range 0.026t–0.24t for
λso=t ¼ 0.03–0.04 and are at least the order of 10TD,

(a)

(b)

FIG. 1. (a) Topological phase diagram of the Kondo lattice with
t0 ¼ 0. Here ελ ≡ ðεd þ λ=1þ ηr2Þ and ðν0; ν1; ν2; ν3Þ are topo-
logical indices. Shaded regimes are gapless phases and white
regimes are phases with gaps in electronic structures, labeled by a
strong topological insulator (STI), a weak topological insulator
(WTI), and Kondo insulator (KI) when the valence bands are
filled. The gapless phases at ελ=t ¼ −6;−2, 2, 6 are Dirac
semimetallic phases with corresponding Dirac points being at
time reversal momenta Γ, X, M, R, respectively. (b) Topological
phases for t0 ≠ 0 and v0 ¼ 0. Here solid lines, labeled by Γ, X,M,
and R, are phase boundaries with energy gap vanishing at Γ, X,
M, and R, respectively.
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QðT; TD; ni; uÞ ¼ TaΦ

�
m
kBT

;
μ̄

kBT
;
ℏvFqc
kBT

;
ℏ3v3F

nimu2kBT

�
:

ð7Þ

Herem ¼ jαðT − TDÞj, a is the exponent that characterizes
Q, and Φ is the universal scaling function. nimu2 character-
izes the disorder strength with nim being the density of
impurities and u being the potential strength due to
impurities. At T ¼ TD, m ¼ 0 and Eq. (7) reduce to the
same scaling forms near a zero-temperature QCP. The
critical region is thus extended to finite temperatures.
To explore the Fermonic criticality, we examine transport

and thermodynamical measurements. For this purpose, it is
necessary to include temperature effects due to the quasi-
particle lifetime τ. Following Ref. [25], we obtain the inverse
quasiparticle lifetime as 1=τ¼ðrVK=ϵdþλ−μÞ2½ðℏωÞ2þ
π2ðkBTÞ2=2ðϵdþλ−μÞ� with ℏω being the energy of the
quasiparticle [16]. By including the self-energy of holons in
the free energy, one obtains the heat capacity [16]. The
contribution to CðTÞ due to Dirac points obeys the scaling
lawwith exponenta ¼ 3 [16]. However, due to the fermionic
nature, the contribution to CðTÞ mainly comes from states
near the Fermi energy. Hence, unlike the classical critical
point, CðTÞ is smooth crossing T ¼ TD as indicated in
Fig. 3(a). On the other hand, the electric transport is
determined by available states near the Fermi energy and
is expected to be suppressed. By using theKubo formula, the
resistivity ρðTÞ is computed in the self-consistent Born
approximation [26]. The critical exponent is found to be
a ¼ −1 [16]. Figure 3(b) shows how ρðTÞ changes as the
system goes through the Dirac semimetallic phase. A peak is
exhibited due to the decreasing density of states. However,
due to finite temperature excitations, ρ is not infinite at TD.
Similarly, the magnetic susceptibility χðTÞ also exhibits
the Dirac semimetallic phase. The energy of a Landau

level in a magnetic field Bẑ is given by ϵss
0

n;qz ¼ −μ̄þ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEqz þ s0μBBÞ2 þ nℏ2ω2

B

q
with s; s0 ¼ �1, qz being the

wave vector along the z axis, μB being the Bohr magneton,

Eqz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ℏ2v2Fq

2
z

p
, and ℏωB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBv2F=cℏ

p
. χðTÞ is

then found by computing the grand potential Ω and χðTÞ ¼
−ð∂2Ω=∂B2ÞjB→0 [16]. Figure 3(c) shows the computed
χðTÞ with the scaling exponent being a ¼ 0. The diamag-
netic response is enhanced due to then ¼ 0Landau level that
resides at the Fermi energy [26]. For 3D Dirac semimetals,
the enhancement gets broadened as the n ¼ 0 Landau level
becomes a 1D band along the field direction [16].
Finally, we analyze effects on critical scalings

due to the off-site Coulomb interaction HC ¼
ðe2=2ϵÞPi;j½nðriÞnðrjÞ=jri − rjj�, where nðriÞ is the elec-
tron density at i site. On the T�

D surface, the effective
Hamiltonian is HK þHC. As shown in Ref. [12] for
graphene, there is a regime dictated by the Dirac point,
known as a Dirac liquid, in which the Coulomb interaction
induces logarithmic corrections in response functions.
The dimensionless parameter for the correction is
λ̄ ¼ e2=ðϵvFℏÞ. Following Ref. [12], a RG analysis is
performed by integrating out modes in qc=b < q < qc
with ¯λðbÞ and the temperature TðbÞ on the T�

D surface
obeying ½dλ̄ðbÞ=d lnðbÞ� ¼ −c̄ λ̄ðbÞ2 ½dTðbÞ=d ln b� ¼
TðbÞ½1 − c̄ λ̄ðbÞ�, where c̄ ¼ 2=3π. Hence HC is marginal
and its effects lie in the regime bounded by the
crossover scale b�. Setting nðb�Þ ¼ n0 and Tðb�Þ ¼ T0 ¼
ℏvFqc with n0 and T0 being the electron density and
temperature scale in the high temperature region [12],
the crossover temperature is found to be T�ðnÞ ¼
T0jn − 2j1=3½1þ c̄ðλ̄=3Þ lnðn0=jn − 2jÞ�. Here T0 weakly
depends on T�

D and hence T� is roughly a border line.
In Fig. 2(b), T� is indicated by blue dashed lines. Inside T�
in the Dirac liquid regime, responses of electrons get
corrections by factors of ΔðTÞ ¼ ½1þ c̄ λ̄ lnðT0=TÞ�.
Replacing vF by ΔðTÞvF, we find that the diamagnetic
susceptibility χ gets a further enhancement by the factor
ΔðTÞ in the Dirac liquid regime, while the conductivity and
the heat capacity get suppressed by factors of ΔðTÞ and
Δ3ðTÞ, respectively.
Discussion and conclusion.—The fermionic finite-

temperature critical point also occurs at 2D [16].
Experimentally, the critical point can be more easily realized
in 2D Kondo lattices, which are formed by introducing
adatoms on two-dimensional materials such as graphene
[27]. These critical points are protected as they result from
transitions between two topological phases and transitions
must go through gapless phases. Therefore, one expects that
Dirac semimetallic phases survive even if fluctuations that
are beyond the mean-field theory are included. In real
materials, λso and n are fixed so that the system is generally
not at QCP. However, our results show that quite generally,
by increasing temperature and tuning the electron number,
the Kondo lattice will pass through TD. Hence we expect
the results on measurements shown in Fig. 3 are applicable
to materials such as SmB6. In particular, a broad peak in
resistivity measurement similar to Fig. 3(b) was observed in

(a) (b) (c)

FIG. 3. Temperature dependence of (a) heat capacity in units of
kB, (b) resistivity in units of 0.1π2ℏ3vF=nDe2ϵc, (c) magnetic
susceptibility in units of nDe2vF=3π2c2ℏ. Inset figures show the
corresponding scaling functions. Here CðTÞ, ρðTÞ, and χðTÞ
exhibit scaling laws near TD with exponents a being 3, −1, and 0,
respectively.
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experiments [28], indicating that the Dirac semimetallic
phase may have been already observed.
In conclusion, we demonstrate that instead of always

being a gapped topological insulator below the Kondo
temperature shown in Ref. [14], the Kondo lattice can
become gapless by going through a finite-temperature
topological transition from a STI phase to a WTI phase.
At the transition, the Kondo lattice is a Dirac semimetal,
which exhibits finite-temperature relativistic symmetry
with nontrivial thermal responses. Our work opens a
new pathway to access the Dirac semimetallic phase and
explore the fermionic critical point in the same system.
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