
 Job-Level Algorithms for Connect6 Opening Book Construction 165

JOB-LEVEL ALGORITHMS FOR CONNECT6 OPENING BOOK CONSTRUCTION

Ting han Wei1, I-Chen Wu1, Chao-Chin Liang1, Bing-Tsung Chiang1, Wen-Jie Tseng1, Shi-Jim Yen2, and

Chang-Shing Lee3

Hsinchu, Hualien, and Tainan / Taiwan

ABSTRACT

This article investigates the use of job-level (JL) algorithms for Connect6 opening book

construction. In the past, JL proof-number search (JL-PNS) was successfully used to solve

Connect6 positions. Using JL-PNS, many opening plays that lead to losses can be eliminated

from consideration during the opening game. However, it is unclear how the information of

unsolved positions can be exploited for opening book construction. For this issue, the current

article first proposes four heuristic metrics when using JL-PNS to estimate move quality. The

article then proposes a JL upper confidence tree (JL-UCT) algorithm and three heuristic

metrics that work with JL-UCT. Of the three, the best way to estimate move quality for JL-

UCT is the number of nodes in each candidate move’s subtree. In order to compare the

heuristic metrics among the two algorithms objectively, we proposed two kinds of

measurement methods to analyze the suitability of these metrics when choosing best moves

for a set of benchmark positions. Experimental results show that the node count heuristic

metric for JL-UCT outperforms all other heuristic metrics, including the four for JL-PNS. We

then verify the results by constructing three separate opening books using the top three

performing heuristic metrics. Competitive play also shows that the node count heuristic metric

for JL-UCT is most suitable among the currently proposed heuristic metrics for Connect6

opening book construction.

1. INTRODUCTION

In the field of computer games, an opening book refers to the technique of storing a pre-calculated database

of, typically, the best moves to play and their corresponding evaluation values at the beginning of the

game. Since computing time is often limited during competitions, the use of opening books allows a

program to offload the time cost to any point before the competition, where time constraints are not an

issue. In addition to saving time during play, opening books may also be constructed to provide a more

accurate move evaluation. For these reasons, the construction of opening books is often critical in

designing a strong game-playing program (Buro, 1999; Hyatt, 1999; Lincke, 2001).

While manual construction of opening books have shown success in the early days, recent efforts have

mostly been focused on the automatic generation of opening books (Buro, 1999; Hyatt, 1999; Lincke,

2001; Audouard, Chaslot, Hoock et al., 2009; Chaslot, Hoock, Pérez et al., 2009; Gaudel, Hoock, Pérez et

al., 2011). The automatic generation of opening books is especially important to the game of Connect6, a

relatively young game that was introduced in 2005 (Wu and Huang, 2006), since few expert game records

are available for opening book generation. In the past, many search algorithms such as alpha-beta search

(Knuth and Moore, 1975) and Monte Carlo tree search (MCTS) were applied to explore new opening

moves automatically, as done in Awari (Lincke, 2001), Othello (Buro, 1999; Lincke, 2001), Amazons

(Karapetyan and Lorentz, 2006; Kloetzer, 2011), and Go (Audouard, Chaslot, Hoock et al., 2009; Baier

and Winands, 2011).

Job-level (JL) computing was proposed by Wu et al. (2011a; 2013) to help solve positions by multiple

simultaneous execution of game-playing programs as jobs. Based on JL computing, the JL proof-number

1 Dept. of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu / Taiwan. Email:

icwu@cs.nctu.edu.tw; tinghan.wei@gmail.com;
2 Dept. of CS and Inf. Engineering, National Dong-Hwa University, 1, Scc, Da Hsueh Rd., Shou-Feng, Hualien 974 /

Taiwan. Email: sjyen@csie.ndhu.edu.tw
3 Department of Computer Science and Information Engineering, National University of Tainan, Tainan 700 / Taiwan.

Email: leecs@mail.nutn.edu.tw

mailto:icwu@cs.nctu.edu.tw

166 ICGA Journal September 2015

search (JL-PNS) algorithm was proposed, solving various Connect6 positions successfully with significant

speedups. Saffidine, Jouandeau, and Cazenave (2012) also used JL-PNS to solve positions of

Breakthrough. Chen, Wu, Tseng et al. (2014) proposed a JL alpha-beta search (JL-ABS) algorithm to help

construct a Chinese chess opening book. Other opening book generation methods similar to JL methods

include the meta MCTS method proposed by Chaslot, Hoock, Pérez et al. (2009), and the job queue by

Schaeffer, Burch, Björnsson et al. (2007).

Using JL-PNS (Wu, Lin, Lin et al., 2011a; Wu, Lin, Sun et al., 2013), many opening plays that lead to

losses can be eliminated from consideration. However, a major drawback to opening book generation using

JL-PNS is that it does not yield a good estimate value of positions if the search is terminated before a

solution can be obtained. Since many opening positions tend to be difficult to solve, a large amount of

computation spent on expanding opening positions may be wasted, if the results from the computation are

not used for other purposes. To make most of these computations useful, we attempt to use these results to

help construct an opening book.

To utilize these results, four heuristic metrics are proposed to distinguish the best move from all possible

candidate moves during JL-PNS analysis. However, none of these heuristic metrics can indicate move

quality universally. The main reason is that PNS is designed to prove/solve positions, not to estimate the

strengths of positions.

To solve these issues, we also propose a JL upper confidence tree (JL-UCT) algorithm. Opening positions

are viewed as multi-armed bandit problems (Auer, Cesa-Bianchi and Fischer, 2002), where each possible

move from a given position is treated as a choice. UCT has been successful in balancing between exploiting

good moves and exploring new possibilities like the common MCTS (Browne, Powley, Whitehouse et al.,

2012). One of the heuristic metrics for JL-UCT simply chooses the move with the maximum number of

nodes, as most MCTS methods do.

In order to compare these metrics objectively, we propose two kinds of measurement methods to analyze

the suitability of these metrics for a set of benchmark positions. We also use the three best performing

metrics to construct opening books, and conduct competitive play over a collection of 100 openings to

determine which metric and algorithm results in the strongest opening book. The results show that the

heuristic metric of node count using JL-UCT outperforms all the others in most cases.

The organization of this article is as follows. Section 2 presents related work. This includes a brief

introduction to Connect6 and the game program NCTU6, JL-PNS, and other JL algorithms for opening

position analysis. Section 3 outlines the JL-PNS heuristic metrics that are devised to pick out the best

candidate move during opening position analysis by JL-PNS, while Section 4 describes the JL-UCT

algorithm. Section 5 describes the experiments performed and gives a discussion of the experiment results.

Lastly, we make concluding remarks in Section 6. An earlier version of this article was published in (Wei,

Wu, Liang et al., 2014). This article includes, in addition to the contents of the previous version, the

description on opening book construction and the opening book competitive play experiments.

2. PREVIOUS WORK

Below we discuss three types of previous work. They are: Connect6 and NCTU6 (in Subsection 2.1), job-

level proof-number search (in Subsection 2.2), and other modified or job-level-like methods for opening

book generation (in Subsection 2.3).

2.1 Connect6 and NCTU6

Connect6 is a k-in-a-row game proposed by Wu and Huang (2006b). In this game, the first of two players,

Black, starts the game by placing a single black stone on an empty square of a typical 19x19 Go board.

Each subsequent move is then played by Black or White alternately using two stones of his color on empty

squares, starting with White’s response to Black’s first move. The first player that is able to get six

consecutive stones in a line (horizontally, vertically or diagonally) wins. For simplicity of discussion, we

call consecutive stones live if they are not blocked at either end, or dead if they are blocked at exactly one

end. A common strategy in Connect6 involves playing live-fours (L4), creating a so-called double threat

where the opponent must block both ends of the pattern with two stones or lose immediately. Another

 Job-Level Algorithms for Connect6 Opening Book Construction 167

example of a double threat involves playing two dead-fours (D4), where each D4 is a single threat. Winning

by continuously forcing the opponent to block double threats is a common strategy.

NCTU6 is a Connect6 program that was developed by a team consisting of some authors of this article. It

has won all Connect6 tournaments and man-machine championships (Wu and Yen, 2006a; Wu and Lin,

2008; Lin and Wu, 2009; Wu, Lin, Tsai et al., 2011b; Wei, Tseng, Wu et al., 2013). It consists of a solver

component, which uses threat space search (Wu and Lin, 2010), and an alpha-beta search component (Wu,

Tsai, Lin et al., 2012). Two features of NCTU6 are particularly important in the scope of this article.

First, NCTU6 is able to verify victories involving continuous threats, or when such methods fail to find a

solution, give an estimate of a position’s strength based on the program’s evaluation function. The resulting

estimate is categorized into 13 distinct game statuses. A winning position for Black is categorized as

“B:W”; “B4” indicates the game is extremely favourable for Black, while “B3”, “B2”, and “B1” indicate

Black's advantage in decreasing order. The five game statuses from White’s perspective are “W:W”, “W4”,

“W3”, “W2”, and “W1”, also in decreasing order from White winning to the position being slightly

favourable for White. For positions where neither player has an advantage, there are three game statuses.

“Stable” indicates that the evaluation values for subsequent moves are unlikely to fluctuate significantly.

There are two unstable statuses, “unstable1” and “unstable2”, where the evaluation fluctuations are greater

for the latter. It is worth noting, however, that evaluation function fluctuations may also exist for one-sided

advantage positions that are evaluated as B1/W1 through B4/W4 as well.

The second important feature of NCTU6 is that a set of prohibited moves can be given in addition to the

position we wish NCTU6 to evaluate. NCTU6 will then calculate and suggest the best move to play that

does not exist in the set of prohibited moves, given the input position. If NCTU6 cannot come up with a

suggestion that does not exist in the prohibited set without losing, it will consider the position to be a loss

with respect to the prohibited set. This feature is critical in applying NCTU6 to the job-level computing

model, which we will describe in the next section.

2.2 Job-Level Proof-Number Search

This section reviews the JL-PNS algorithm. The overall JL computing model is briefly explained (in

Subsection 2.2.1), followed by the generic best-first job-level search (BF-JL search) in Subsection 2.2.2.

Proof-number search (PNS) and the process of applying it to BF-JL search are then summarized in

Subsection 2.2.3.

2.2.1 Job-Level Computing Model

The job-level computing model starts by defining two parties: the client, whose role is to dynamically

create tasks, and the JL system, the role of which is to complete these dynamically created tasks. The JL

system is comprised of a collection of workers, who are responsible for the computation of jobs. When

used in a search algorithm, for example, the client maintains a game tree and may choose a position (which

corresponds to a node in the game tree) to encapsulate the move generation and evaluation of this position

into a job. The system notifies the client when there are idle workers, at which time the client, who plays

a passive role, submits jobs that are pending execution. The worker then evaluates this position and returns

the result to the client via the JL system.

2.2.2 Best-First Job-Level Search

To apply the JL computing model to a generic best-first search algorithm, we must identify the common

components that are shared. In the scope of computer games, a typical search operation consists of a game

tree, for which each node represents a position, while the edges of the tree represent a move from one

position to another. There are three common phases to search algorithms such as PNS or MCTS. These

three phases are selection, execution, and update. The common data structures and behaviors can be

consolidated into a JL framework to minimize BF-JL search development efforts. The design and

framework abstraction is discussed in further detail in (Wei, Liang, Wu et al., 2015).

168 ICGA Journal September 2015

2.2.3 Job-Level Proof-Number Search Algorithm

PNS is an algorithm that outperforms many variants of alpha-beta search when solving game trees (Allis,

Van der Meulen and Van den Herik, 1994). This is made possible by utilizing the proof-number (PN) and

disproof-number (DN) of each explored game tree node. For an arbitrary node 𝑛, its PN/DN counts the

minimum number of child nodes that must be expanded before 𝑛 can be solved as a winning/losing

position. To be more specific: for an AND node, (1) its PN is the sum of its children’s PN, since each child

needs to be solved for the AND node to be considered proven, and (2) its DN is the minimum of its

children’s DN, since from the opponent’s point of view, the AND node is a losing position as soon as one

of its children can be solved as a loss. For an OR node, (3) the PN is the minimum of its children’s PN,

and (4) the DN is the sum of its children’s DN.

During the selection phase of PNS, the node that contributes the most to solving the root node of the game

tree is chosen. At an OR node, the child with the smallest PN is chosen. Conversely, at an AND node, the

child with the smallest DN is chosen. This process is repeated until we arrive at a leaf node, which is called

the most proving node (MPN). The MPN is then expanded through evaluation, and its corresponding

PN/DN is then updated along its path to the root node.

To apply PNS to the BF-JL search for Connect6, we use the PNS algorithm for the selection and update

phases, while the execution phase is encapsulated as jobs by the client. The workers in this case execute

multiple simultaneous instances of NCTU6, each ready to evaluate jobs. As mentioned earlier in the

description of NCTU6, the game tree is gradually expanded by supplying each worker with two pieces of

information for every job: (a) the position that needs to be examined, and (b) a set of prohibited moves

that cannot be returned. When a result is returned to the client, it adds the new node to the game tree and

to the set of prohibited moves in the current level so that existing nodes will not be repeatedly added.

Domain knowledge can be used to accelerate the overall BF-JL search process by initializing the PN/DN

of each node based on game statuses given by NCTU6. For example, the PN/DN of a position with B4 are

set to 1/18, those for B3 are 2/12, etc. The details of the settings are in (Wu, Lin, Lin et al., 2011a).

A second detail that is critical to the success of JL-PNS is avoiding the selection of the same MPN multiple

times before its result is returned. To solve this problem, an extra phase is added to the BF-JL search

algorithm called the pre-update phase. The pre-update phase is placed after the selection phase but before

the execution phase, such that the selected node can be flagged to avoid being chosen multiple times.

2.3 Other Job-Level or Job-Level-Like Methods for Opening Book Generation

In (Chen, Wu, Tseng et al., 2014), a JL-ABS method was used to help construct a Chinese chess opening

book, where the emphasis was on avoiding weak spots when dropping out of an opening book. The idea

is that out-of-book positions should still be evaluated as good with respect to the game-playing program.

Chaslot, Hoock, Pérez et al. (2009) proposed the meta Monte Carlo tree search method in which a two-

tiered MCTS is performed to automatically generate an opening book for the game of Go. The typical

MCTS simulation phase uses a fast routine that follows simple policies, putting very little emphasis on

playing strength. The meta MCTS method replaces this simulation policy by a full game-playing program,

which also uses MCTS but in the typical fashion. The upper level is the first tier of the overall algorithm

that selects nodes that are worthy of expansion, while MoGo was used for the lower level. This method

has been applied with success to 7x7 Go position analysis (Chou, Chou, Doghmen et al., 2012).

3. HEURISTIC METRICS FOR JOB-LEVEL PROOF-NUMBER SEARCH

To apply JL-PNS to opening book generation, we must first attempt to devise a method of distinguishing

good candidate moves from bad ones. A heuristic metric quantifies move quality. This allows us to choose

a move to play for any positions that were searched but not solved by ranking candidate moves according

to each heuristic metric. During the construction of the opening book, a heuristic metric is chosen in

advance. The highest-ranked moves according to the heuristic metric are then saved. Four heuristic metrics

that are closely related to the principles of PNS were used to generate the NCTU6 opening book. They are:

Node Count (Subsection 3.1), Proof-Number/Disproof-Number (Subsection 3.2), Minimax Evaluation

Value (Subsection 3.3), and the Hybrid Metric (Subsection 3.4).

 Job-Level Algorithms for Connect6 Opening Book Construction 169

3.1 Node Count

PNS is designed to favor exploring moves that allow it to solve a position using the least number of

explorations, instead of the strongest moves to play. However, we observe that an MPN as well as its

ancestors, which all lie on the most proving path (MPP), still tend to be strong moves. Thus, it is likely

that the node that is more often included in the MPP tends to be stronger than its fewer included siblings.

Nodes that are more often included in the MPP will have a larger number of nodes in their subtrees, so we

may say that nodes with a higher node count are more likely to be stronger moves.

However, there is no guarantee that the node with the largest node count is the best move to play, so the

node count metric alone should not be used as a definite sign of a good move. However, it is an important

metric to consider when other metrics are used together.

3.2 Proof-Number/Disproof-Number Ratio

The PN and DN are critical to PNS in that they allow the algorithm to locate nodes which contribute most

to solving a position. As explained in the PNS review earlier, the PN/DN for a specific node n is the

minimum number of child nodes that need to be evaluated in order to prove that n is a winning/losing

position. Therefore, we may deduce that a lower PN means that n is likely to be favourable, since it is

closer to winning than another node which has a high PN. Similarly, a lower DN is likely to be

unfavourable, since n is closer to losing.

To use this as a heuristic metric, we must keep in mind that both PN and DN for a node need to be

considered. To do this, we consider the ratio between the PN and DN of a node as a valid heuristic metric.

In practice, the PN is divided by the DN, and nodes with the lowest ratio are chosen as the best move when

constructing the opening book.

Domain knowledge from NCTU6 is used in the form of PN/DN initialization during JL-PNS. With this in

mind, the PN/DN ratio is a mostly adequate metric. However, there are two drawbacks with this metric.

First, the actual move quality is highly dependent on the node count metric. In many cases, PN/DN values

while the number of child nodes is still relatively small do not indicate move quality definitively. In other

words, the PN/DN ratio cannot be used as an indication of move quality with confidence if the node count

is not sufficiently large for the node. Second, minimax evaluations are not considered when using the

PN/DN ratio metric. Situations may also arise where nodes with similar PN/DN ratios but distinctly

different evaluation values are treated similarly when they should not be.

3.3 Minimax Evaluation Value

The minimax value of each internal node, which is computed by NCTU6, can be used to give a rough

estimate of the strength of each position. This metric, however, is more of an intermediate one that can be

used by another metric rather than a practical one on its own. It is often worse than the other metrics since

Connect6 can be a highly unstable game. As described in Subsection 2.1, game statuses may vary rapidly,

so the minimax evaluation plays a largely variable role in the game’s outcome.

3.4 Hybrid Metric

The hybrid method combines the PN/DN ratio with NCTU6’s game status estimation to form a heuristic

metric. Upon receiving evaluation results, the client stores the game status of the newly expanded node,

then updates this information upwards to the root node of the game tree in a minimax fashion. When

choosing the best move to play, the candidate move with the best game status is chosen. Since there are

only 13 distinct game statuses, it is not uncommon to see several candidate moves share the best game

status. The minimum PN/DN ratio is then used as the tie-breaker when determining the best move to play.

While this metric is more accurate than the PN/DN metric, it also depends highly on the node count. The

hybrid metric score may still be untrustworthy if the number of nodes in the subtree is insufficient.

170 ICGA Journal September 2015

4. JOB-LEVEL UPPER CONFIDENCE TREE

In this section, we propose the JL-UCT algorithm in Subsection 4.1. Next, the upper confidence bound

(UCB) function that is used to balance exploration and exploitation is provided for discussion in Subsection

4.2. We discuss the pre-update policy that is used for JL-UCT in Subsection 4.3. Lastly, we list the three

heuristic metrics that may be used with JL-UCT book generation in Subsection 4.3.

4.1 Algorithm Description

There are two tiers of the JL-UCT search. The upper tier is similar to MCTS, where the selection phase

chooses the node that has the highest score according to the UCB function, maintaining a UCT as the

algorithm continues the search. This upper tier is managed by the JL client. The lower tier consists of the

execution phase of the generic job-level algorithm. An existing game-playing program, in this case

NCTU6, is used as a worker that evaluates and suggests the best possible move for the selected node from

the upper tier after excluding any prohibited moves. A pre-update phase is added to avoid repeatedly

selecting the same node as a job (see Subsection 4.3). Once a node is evaluated by a worker, the best move

to play for that position and its corresponding win rate are returned to the client. The win rate is then used

to update the UCT from the leaf node to the root node by increasing the visit count of the evaluated node

by 1, and recalculating the aggregate win rate of the evaluated node and its ancestors. This process is

continued until the root position is solved, or if the pre-defined number of jobs has been completed.

4.2 Upper Confidence Bound Function

For the selection phase of the UCT, we chose the commonly used UCB1 function (Browne, Powley, Whitehouse

et al., 2012).

𝑊𝑅 + 𝐶√
𝑙𝑜𝑔(𝑁𝑝)

𝑁

where 𝑊𝑅 is the win rate for the Black player of the node, 𝐶 is a pre-defined constant, 𝑁𝑝 is the parent visit

count, and 𝑁 is the visit count of the node itself. Similar to JL-PNS, the parameters that are used in the UCB

function need to be initialized using domain knowledge from NCTU6. The game statuses returned by NCTU6

are converted into the following win rate initializations.

Status B:W B4 B3 B2 B1 Stable Unstable 1 Unstable 2 W1 W2 W3 W4 W:W

Win Rate

(%)

100 90 80 70 60 50 50 50 40 30 20 10 0

Table 1: JL-UCT win rate initialization.

4.3 Pre-update Phase

To ensure that the JL algorithm does not choose the same node multiple times during the selection phase,

we used the virtual loss policy (Wu, Lin, Lin et al., 2011a). That is, once a node is selected for expansion,

its win rate value is temporarily set to 0% if the move associated with the node is one played by Black, or

100% if it is played by White. By setting the virtual value of the node to a loss, JL-UCT is guaranteed to

avoid choosing the same node in subsequent selection phases. Once the job results have been received, the

node win rate value is then updated according to the results, removing the virtual loss and allowing the

node to be chosen again.

4.4 Heuristic Metrics for JL-UCT

Below, we list the three heuristic metrics for JL-UCT: Node Count (Subsection 4.4.1), Win Rate

(Subsection 4.4.2), and Upper Confidence Bound Value (Subsection 4.4.3).

4.4.1 Node Count

Similar to the reasoning given in the description for JL-PNS, the number of nodes that belong to a subtree

is an intuitive indicator of the move strength that is associated with the root of the subtree. While JL-UCT

 Job-Level Algorithms for Connect6 Opening Book Construction 171

prefers to devote resources to nodes that have a higher win rate, this is subtly different from JL-PNS where

the node that contributes the most to proving the game is given higher priority.

4.4.2 Win Rate

Different from typical MCTS, JL-UCT does not contain a simulation phase where a simple program plays

according to a preset policy until game resolution. Therefore the win rates that are used here depend mostly

on the initialization values as described in 4.4.1. From this perspective, this metric suffers from the same

drawback as the metrics in JL-PNS, where values may not be trustworthy if the node count is insufficient.

4.4.3 Upper Confidence Bound Value

This metric is the one that the JL-UCT algorithm uses during the selection phase to choose the node that

is most worthy of expansion. Since the UCB1 function tries to balance exploration with exploitation, this

metric will tend to try different options even when they may be weak choices. Therefore this metric exists

more as a conceptual point of observation rather than a practical indicator during opening book generation.

5. EXPERIMENTS AND DISCUSSION

We conduct three types of experiments to determine the best way to construct Connect6 opening books.

For the first experiment, which is described in Subsection 5.1, we solve a set of benchmark positions using

the two algorithms JL-PNS and JL-UCT. In the second experiment, which is described in Subsection 5.2,

we devise two methods to analyze the effectiveness of each heuristic metric used by the two algorithms.

For the third experiment, which we describe in Subsection 5.3, the three top performing heuristic metrics

were used to construct three separate opening books. Competitive play between the same program using

differing opening books was performed on a set of 100 openings, which are different from the benchmark

positions used in the first experiment.

5.1 Solving Game Positions

In the first experiment, we compare the performance between JL-PNS and JL-UCT by using them to solve

a set of 22 benchmark game positions, where each can be solved as winning for the first player to move.

The benchmark was chosen from the 35 Connect6 positions provided in (Wu, Lin, Sun et al., 2013) in the

following way. Among these positions, 15 can be solved as winning for the first player to move and 20 as

losing. We chose the 15 winning positions and created 7 more winning positions out of the 20 losing ones

by using their parent positions as the root node instead. We omit the 13 remaining losing positions because

their solution trees are too large and therefore too time-consuming.

The experiment was designed this way because we are interested in comparing how efficiently an

algorithm is able to converge on a single winning move. With a win position for the first player, only one

winning move needs to be found for the proof. If we were to choose losing positions for the first player to

play instead, all child moves will need to be solved as losses for the first player to play. This is

advantageous to JL-PNS since there is no urgency to locate the winning moves, as all moves will eventually

be proven as losses, and PNS is inherently superior when it comes to solving game positions. We did not

choose unsolved positions for the benchmark because it is difficult to devise an objective metric when the

winning move is not known.

The experiment was conducted on an 8-core grid consisting of Intel Pentium E2180s. For clarity of

discussion, we now define 𝑟 as the root position of a benchmark, 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑘 as child moves of 𝑟,

where 𝑘 is the total number of possible candidate moves from 𝑟. As described above, for each benchmark,

𝑟 is solved as a win for the first player. This implies that some child move, denoted by 𝑐𝑤, can be proven

as a win. It is worth mentioning that for some benchmarks there exists more than one 𝑐𝑤. Let 𝑛𝐴 denote

the total number of nodes required to solve 𝑟, using algorithm 𝐴.

172 ICGA Journal September 2015

Fig. 1: Number of nodes required to solve each benchmark.

Average

nodes

Median number of

nodes

Number of positions in the benchmark

where the method requires less nodes

Average ratio of nodes

(
JL−PNS

𝐽𝐿−𝑈𝐶𝑇
)

JL-PNS 732 377 8
1.286

JL-UCT 491 297 14

Table 2: Comparison between JL-PNS and JL-UCT.

The experiment results for 𝑛𝑃𝑁𝑆 and 𝑛𝑈𝐶𝑇 are as shown in Fig. 1. The benchmarks were numbered

according to the increasing order of 𝑛𝑃𝑁𝑆. While PNS is intuitively more suitable for solving positions, we

can see that JL-UCT does not perform worse than JL-PNS. In some cases, JL-UCT can even find solutions

significantly faster than JL-PNS. From the results, JL-UCT tends to guide its search towards 𝑐𝑤 much

earlier and spends less resources verifying the non-winning child moves than JL-PNS in OR trees (winning

positions), thereby saving precious computational resources.

5.2 Measuring the Quality of Various Heuristic Metrics

We now attempt to measure the quality of various heuristic metrics that are used by JL-PNS and JL-UCT.

We introduce two ways of measuring heuristic metric quality, which we will refer to as the 𝜀 measuring

method (Subsection 5.2.1) and the 𝜃 measuring method (Subsection 5.2.2). Namely, heuristic metrics are

used to pick the best move to play when a solution cannot be found, while 𝜀 and 𝜃 are used to measure the

quality of heuristic metrics.

We define 𝑚𝑖
𝜋 as the best move that is chosen by the metric π when the 𝑖th job result has been received

and its corresponding node has been added in the update phase. That is, 𝑚𝑖
𝜋 is the best chosen move by 𝜋,

after only 𝑖 jobs have been completed in the JL system. For example, when we are using JL-PNS, 𝑚1
𝑃𝑁𝐷𝑁

is the best move to play from 𝑟 according to the PN/DN metric after exactly 1 job has been completed.

Using our notation, we can see that 𝑚𝑁
𝑃𝑁𝐷𝑁 = 𝑐𝑤, where 𝑁 = 𝑛𝑃𝑁𝑆.

5.2.1 The 𝜺 Measuring Method

To evaluate the quality of each heuristic metric, we then recorded

{𝑚𝑖
𝑃𝑁𝑆−𝑁 , 𝑚𝑖

𝑃𝑁𝐷𝑁, 𝑚𝑖
𝑀𝑖𝑛𝑖𝑚𝑎𝑥 , 𝑚𝑖

𝐻𝑦𝑏𝑟𝑖𝑑
}
𝑖=1,2,…,𝑛𝑃𝑁𝑆

 and {𝑚𝑖
𝑈𝐶𝑇−𝑁, 𝑚𝑖

𝑊𝑖𝑛𝑟𝑎𝑡𝑒 , 𝑚𝑖
𝑈𝐶𝐵}

𝑖=1,2,…,𝑛𝑈𝐶𝑇
 for all

benchmarks. Since all benchmarks are solvable, the winning child move 𝑐𝑤 for each benchmark is also

known. For any value of 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛𝐴 , we say that the metric 𝜋 will pick the correct move if

𝑚𝑖
𝜋 = 𝑐𝑤 . We can then express the last job for which a metric 𝜋 is unable to pick the correct move as:

𝜀𝜋 = argmax
𝑖
(𝑚𝑖

𝜋 ≠ 𝑐𝑤).

In other words, the specified heuristic metric converged on the correct move 𝑐𝑤 after 𝜀𝜋 jobs. Therefore,

the smaller 𝜀𝜋 is, the better the metric is for the following reason. Assume that a position can be solved

eventually with 𝑛𝐴 nodes, where 𝑛𝐴 is unknown (and quite possibly very large). Then, it is likely that the

JL search may stop before 𝑟 is solved. Between two algorithms, the algorithm with a smaller 𝜀𝜋 is more

likely to pick the correct move 𝑐𝑤, even if we do not know what 𝑐𝑤 or 𝑛𝐴 are, since it converges earlier.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u

m
b

er
 o

f
N

o
d

es

Benchmark

JL-PNS JL-UCT

 Job-Level Algorithms for Connect6 Opening Book Construction 173

For example, in an extreme case, if for a certain benchmark, 𝜀𝑈𝐶𝑇−𝑁 has a value of 0 using the JL-UCT

node count heuristic metric, we know that at any given time the subtree of 𝑐𝑤 is always the biggest among

all other candidate move subtrees. Consequently, if we stop the JL-UCT algorithm at any time, we will be

able to pick the correct move to play if we decide to use the node count heuristic metric. Of course, we

will not know for certain the move to play is the correct one unless the benchmark is completely solved,

but we may conjecture that an algorithm with smaller values of 𝜀𝜋 can find the correct move more often

than an algorithm with a larger value.

The results for JL-PNS, JL-UCT, and the best performing metrics for both algorithms are shown in Fig. 2,

Fig. 3 and Fig. 4. Since we are interested in examining the ratio between two heuristic metrics, for example

𝜀𝑃𝑁𝑆−𝑁 and 𝜀𝑃𝑁𝐷𝑁, and also since 𝜀𝜋 values may vary from less than 10 to well over 1000, we use the base

10 logarithmic scale for all figures in this article. All values of 𝜀𝜋 are added by 1 so that we may analyze

the experiment data with division and the logarithm function.

Fig. 2: JL-PNS metric comparison using last incorrect job 𝜀𝜋. All values of 𝜀𝜋 are added by 1 so that the data

may be plotted on a logarithmic scale.

Fig. 3: JL-UCT metric comparison using last incorrect job 𝜀𝜋. All values of 𝜀𝜋 are added by 1 so that the data

may be plotted on a logarithmic scale.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝜀𝜋+ 1

Benchmark

PNS-N PNDN Minimax Hybrid

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝜀𝜋 + 1

Benchmark

UCT-N Winrate UCB

174 ICGA Journal September 2015

Fig. 4: Best performing metrics PNS-N and UCT-N comparison using last incorrect job 𝜀𝜋. All values of 𝜀𝜋 are

added by 1 so that the data may be plotted on a logarithmic scale.

We examine the various JL-PNS heuristic metrics in Fig. 2, the JL-UCT heuristic metrics in Fig. 3, and

the best performing heuristic metric from the two methods above are compared in Fig. 4. For JL-PNS, the

node count metric outperformed the hybrid method in nearly all benchmarks. While the PN/DN ratio is

much better than the minimax evaluation metric, it does not perform as well as the hybrid metric.

From the JL-UCT results in Fig. 3, we can see that the upper confidence bound value is the worst metric.

This is reasonable, since the upper confidence bound value is designed so that it balances between

exploration and exploitation, therefore even poor choices may be indicated as the most suitable move every

once in a while. The win rate metric performs reasonably well, but is overall inferior to the node count

metric. For many benchmarks, the node count metric is able to stay fixed on the correct move from the

very beginning.

The best metric from JL-PNS is compared with JL-UCT in Fig. 4. While JL-UCT performs much better

for many benchmarks, it sometimes appears to perform worse than JL-PNS, such as in benchmark 2, 8, 9,

10, and 17. Further investigation indicated that while the node count metric seemed to focus on the moves

other than the correct move for most of the game in these benchmarks, these seemingly incorrect moves

can in fact be solved as well. This fits our intuition that JL-UCT seems to put more emphasis on locating

strong moves, which then often lead to solving the position. This is in strong contrast to JL-PNS, which

puts solving positions first and foremost for all occasions.

The total sum of 𝜀𝑃𝑁𝑆−𝑁 for all benchmarks is 5394, while the total sum of 𝜀𝑈𝐶𝑇−𝑁 is 3855. The base-10

logarithm of the ratio between these two metrics,
𝜀𝑃𝑁𝑆−𝑁+1

𝜀𝑈𝐶𝑇−𝑁+1
 , is summed for all benchmarks, yielding a

result of 4.103. For two identical metrics, this logarithmic sum should have a value of 0. Therefore we can

see that 𝜀𝑈𝐶𝑇−𝑁 is the superior metric.

5.2.2 The 𝜽 Measuring Method

We now define a second way of measuring the quality of heuristic metrics. While 𝜀𝜋 is concerned with the

last job for which a metric 𝜋 makes an incorrect choice, we are also interested in the total number of times

the metric will lead to an incorrect choice. We define the number of times a metric 𝜋 chooses incorrect

moves for a solved position as follows:

𝜃𝜋 = |{𝑚𝑖
𝜋|𝑚𝑖

𝜋 ≠ 𝑐𝑤}|

As a different way of measuring heuristic metric performance, 𝜃𝜋 is interpreted differently from 𝜀𝜋 in the

following aspect. Consider an extreme case where 𝜀𝜋 = 𝑛𝐴 − 1 and 𝜃𝜋 = 1. From 𝜀𝜋, the metric 𝜋 is

poor since we will surely pick 𝑐𝑤 after 𝑛𝐴 jobs are completed. In contrast, from 𝜃𝜋, the metric is good

since we fail to pick 𝑐𝑤 only once, at the time when 𝑛𝐴 − 1 jobs are completed. However, in general, if

𝜀𝜋 is small like 1, it implies that 𝜃𝜋 is small too and that the heuristic metric is superior; and if 𝜃𝜋 is high

like 𝑛𝐴 − 1, it implies that 𝜀𝜋 is high too and that the heuristic metric is inferior.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝜀𝜋 + 1

Benchmark

PNS-N UCT-N

 Job-Level Algorithms for Connect6 Opening Book Construction 175

Fig. 5, Fig. 6 and Fig. 7 show the comparison between the algorithms and metrics using 𝜃𝜋. The gap

between the hybrid metric and the PNS-N metric is not as large as when comparing by 𝜀𝜋. In fact, the

𝜃𝐻𝑦𝑏𝑟𝑖𝑑 is slightly smaller than 𝜃𝑃𝑁𝑆−𝑁 when their values are close, but the PNS-N metric makes up for

this disadvantage for benchmarks 2, 7, 12 and 20, where the ratio between 𝜃𝐻𝑦𝑏𝑟𝑖𝑑 and 𝜃𝑃𝑁𝑆−𝑁 is more

than 100-fold. Meanwhile, the gap between 𝜃𝑈𝐶𝑇−𝑁 and 𝜃𝑊𝑖𝑛𝑟𝑎𝑡𝑒 is also smaller than when comparing by

𝜀𝜋, but it is clear that UCT-N is still the superior metric. For benchmarks 2, 8, 9, 17, UCT-N performs

worse than PNS-N, similar to Fig. 4.

Fig. 5: JL-PNS metric comparison using number of incorrect jobs 𝜃𝜋. All values of 𝜃𝜋 are added by 1 so that

the data may be plotted on a logarithmic scale.

Fig. 6: JL-UCT metric comparison using number of incorrect jobs 𝜃𝜋. All values of 𝜃𝜋 are added by 1 so that

the data may be plotted on a logarithmic scale.

Fig. 7: Best performing metrics PNS-N and UCT-N comparison using number of incorrect jobs 𝜃𝜋. All values

of 𝜃𝜋 are added by 1 so that the data may be plotted on a logarithmic scale.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝜃𝜋 + 1

Benchmark

PNS-N PNDN

Minimax Hybrid

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝜃𝜋 + 1

Benchmark

UCT-N Winrate UCB

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝜃𝜋 + 1

Benchmark

PNS-N UCT-N

176 ICGA Journal September 2015

Again, we calculate the sum of 𝜃𝑃𝑁𝑆−𝑁 and 𝜃𝑈𝐶𝑇−𝑁 for all benchmarks, with values of 4938 and 3461,

respectively. We then calculate the sum of log10 (
𝜃𝑃𝑁𝑆−𝑁+1

𝜽𝑈𝐶𝑇−𝑵+1
) for all benchmarks for a value of 5.010. We

can again see that the JL-UCT algorithm and the UCT-N metric is superior. In addition, since the positions

chosen as our benchmarks are all solved, JL-PNS tends to be advantageous in solved positions. For

unsolved positions, our conjecture is that JL-UCT would perform even better.

5.3 Evaluating Opening Book Quality Through Competitive Play

We now construct opening books using the three top performing heuristic metrics determined by the

previous experiment. Namely, we will use the node count heuristic metric for both JL-PNS and JL-UCT,

and the hybrid heuristic metric for JL-PNS. The details of the opening book construction method will be

described in Subsection 5.3.1, and the experiment will be described in Subsection 5.3.2.

5.3.1 Opening Book Construction

An opening book can be generated using any BF-JL search algorithm by providing several opening

positions, then attempting to solve them using the BF-JL search. Since most opening positions are difficult

to solve, we must also specify the maximum number of node expansions, so that the BF-JL search does

not run indefinitely. Once the BF-JL search has completed, either due to the opening position being solved

or when the node expansion limit has been reached, the search tree is then stored into an external file,

where moves and their corresponding evaluation values can be retrieved easily by the game program. In

this article, we choose to store the search tree using SQLite, a relatively simple transactional SQL database

engine which NCTU6 may read via a locally accessible file.

In order to exploit transpositions and, in turn, reduce book size, a hash key is calculated for each node in

the search tree using Zobrist hashing (Zobrist, 1970). The edges (all the moves) in the search tree, are

stored in the database. For each entry in the moves table, we store the hash key of the game position prior

to making the move, and the hash key of the game position after making the move. In addition, we define

two values, the move status and the score, so that the game program may utilize the opening book. There

are three move statuses: win, loss, and general, which tell the game program whether the corresponding

move is winning, losing, or neither. During play, the game program will prioritize choosing winning

moves, then general moves according to score.

The scores of the moves can be calculated in various ways depending on the heuristic metrics described

above. For example, if the score is calculated using the move count heuristic metric, the score of a

particular move is calculated by dividing the visit count of the move by the total visit count of its siblings.

For all general moves, the game program can be designed to either pick the move with the best score, or

choose a move according to a probability distribution that corresponds with the score. In practice, the latter

option is more often used, since an opponent may take advantage of the game program’s predictability

otherwise. The probability distribution can be naïve, where the probability of choosing a move is

proportional to its score. Alternatively, there are more sophisticated methods of mapping scores to

probabilities, such as softmax or epsilon-greedy. For the purposes of this article, the best move is always

chosen to allow for a consistent experiment. In other words, the best move to play is given the maximum

score, while all other candidate moves are given a score of 0. The criteria for which the best move is chosen

is described in the heuristic metric sections above (Section 3 and Subsection 4.4).

5.3.2 Experiment Setup and Discussion

We use a set of commonly played openings on the website Little Golem (2015) for the next experiment.

Of the 176 openings collected in (Wu, Tsai, Lin et al., 2012), 100 were chosen at random for the

construction of three opening books using the node count heuristic metric for JL-PNS and JL-UCT, and

the hybrid heuristic metric for JL-PNS. The openings used in this experiment are not related to the set of

benchmark positions used in the first and second experiments. The JL node limit was set to 3000, and the

game program was configured to always choose the best move to play. With 3000 node expansions, each

opening required about 8 hours to compute using JL-PNS and JL-UCT. This works out to roughly 33 days

with the 100 randomly chosen openings. The significant time cost required to construct the openings is the

main reason why only 100 of the 176 openings were used.

 Job-Level Algorithms for Connect6 Opening Book Construction 177

The three opening books were then used by the same version of NCTU6 that was used during the opening

book generation to play against each other. The competition benchmarks consisted of the 100 openings

used, so that it is guaranteed that at least the first move would be played by the book. For each pair of

programs, each opening was to be played twice for fairness (the first program plays first, and the second

program responds, and vice versa), for a total of 200 games per pair of programs. This competition scheme

is also run using the JL framework, as described in more detail in (Wei, Liang, Wu et al., 2015).

 Total Games Win Draw Win Rate

UCT-N vs. PNS-N 200 105 15 0.5625

UCT-N vs. PNS-hybrid 200 107 13 0.5675

PNS-hybrid vs. PNS-N 200 94 15 0.5075

Table 3: Comparison of opening book generation methods.

From Table 3, we can see that UCT-N performs better than both heuristic metrics for JL-PNS, and PNS-

hybrid is slightly better than PNS-N when playing directly against each other.

Lastly, we compare the playing strength of NCTU6 with and without using opening books. The PNS-N,

PNS-PA, and UCT-N opening books were able to achieve a winning rate of 0.54, 0.5225, and 0.61 against

NCTU6 without an opening book, respectively. This confirms that UCT-N is the strongest of the three JL-

based methods.

6. CONCLUSION

In this article, we applied the previously proposed JL-PNS algorithm to active Connect6 opening book

construction. Since PNS is not designed to provide estimates of position strength, we proposed a set of

four heuristic metrics that enable us to indicate the best move to play after a game tree has been generated.

These four metrics are the node count, proof/disproof-number ratio, minimax evaluation value, and a

hybrid method that uses both proof/disproof-numbers and the game status, which is generated by the

minimax evaluation value. Experiments show that for solved positions, the node count heuristic metric

performs the best. In contrast, during competitive play, the opening book generated by the hybrid metric

performs slightly better than the book generated by the node count metric for JL-PNS.

We then propose the JL-UCT algorithm, which treats opening positions as multi-armed bandit problems.

JL-UCT uses the common UCB1 function as its selection criterion in conjunction with the game playing

program acting as the expansion mechanism. Experiments show that for solved positions, JL-UCT is

capable of providing good interim estimates of position strength, and can locate the best move to play more

accurately, even from very early stages of the search. The above conclusions are also supported through

competitive play. The opening book generated by JL-UCT with the node count heuristic metric is most

effective, compared with the node count and hybrid methods with JL-PNS.

Future research topics include the tuning of JL-UCT win rate value initializations, additional features in

the UCB1 function that deals with variance and instability, and the possibility of applying other multi-

armed bandit models.

ACKNOWLEDGEMENTS

The authors would like to thank the National Center for High-performance Computing (NCHC) for

computer time and facilities, and thank the Ministry of Science and Technology of the Republic of China

(Taiwan) for financial support of this research under contract numbers MOST 102-2221-E-009-069-MY2,

102-2221-E-009-080-MY2, 104-2221-E-009-127-MY2, and 104-2221-E-009-074-MY2.

178 ICGA Journal September 2015

7. REFERENCES

"Little Golem." (2015). From http://www.littlegolem.net.

"Sqlite Home Page." (2015). From http://www.sqlite.org/.

Allis, L. V., Van der Meulen, M. and Van den Herik, H. J. (1994). Proof-Number Search. Artificial

Intelligence, Vol. 66, No. 1, pp. 91-124.

Audouard, P., Chaslot, G., Hoock, J.-B., Pérez, J., Rimmel, A. and Teytaud, O. (2009). Grid Coevolution

for Adaptive Simulations: Application to the Building of Opening Books in the Game of Go. Applications

of Evolutionary Computing, pp. 323-332, Springer.

Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002). Finite-Time Analysis of the Multiarmed Bandit

Problem. Machine Learning, Vol. 47, No. 2-3, pp. 235-256.

Baier, H. and Winands, M. H. (2011). Active Opening Book Application for Monte-Carlo Tree Search in

19× 19 Go. 23rd Benelux Conference on Artificial Intelligence (BNAIC 2011).

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S.,

Perez, D., Samothrakis, S. and Colton, S. (2012). A Survey of Monte Carlo Tree Search Methods.

Computational Intelligence and AI in Games, IEEE Transactions on, Vol. 4, No. 1, pp. 1-43.

Buro, M. (1999). Toward Opening Book Learning. ICCA Journal, Vol. 22, No. 2, pp. 98-102.

Chaslot, G. M.-B., Hoock, J.-B., Pérez, J., Rimmel, A., Teytaud, O. and Winands, M. H. (2009). Meta

Monte-Carlo Tree Search for Automatic Opening Book Generation. Proc. 21st Int. Joint Conf. Artif. Intell.,

Pasadena, California.

Chen, J.-C., Wu, I.-C., Tseng, W.-J., Lin, B.-H. and Chang, C.-H. (2014). Job-Level Alpha Beta Search.

Computational Intelligence and AI in Games, IEEE Transactions on, Vol. 7, No. 1, pp. 28-38.

Chou, C.-W., Chou, P.-C., Doghmen, H., Lee, C.-S., Su, T.-C., Teytaud, F., Teytaud, O., Wang, H.-M.,

Wang, M.-H. and Wu, L.-W. (2012). Towards a Solution of 7x7 Go with Meta-MCTS. 13th Advances in

Computer Games, ACG 2011, Tilburg, the Netherlands, Vol. 7168, pp. 84-95, Springer, Heidelberg,

Germany.

Gaudel, R., Hoock, J.-B., Pérez, J., Sokolovska, N. and Teytaud, O. (2011). A Principled Method for

Exploiting Opening Books. 7th Computers and Games Conference, CG 2010, Kanazawa, Japan, Vol.

6515, pp. 136-144, Springer, Heidelberg, Germany.

Hyatt, R. M. (1999). Book Learning-a Methodology to Tune an Opening Book Automatically. ICCA

Journal, Vol. 22, No. 1, pp. 3-12.

Karapetyan, A. and Lorentz, R. J. (2006). Generating an Opening Book for Amazons. 4th Computers and

Games Conference, CG 2004, Ramat-Gan, Israel, Vol. 3846, pp. 161-174, Springer, Heidelberg,

Germany.

Kloetzer, J. (2011). Monte-Carlo Opening Books for Amazons. 7th Computers and Games Conference,

CG 2011, Vol. 6515, pp. 124-135, Springer, Heidelberg, Germany.

Knuth, D. E. and Moore, R. W. (1975). An Analysis of Alpha-Beta Pruning. Artificial Intelligence, Vol.

6, No. 4, pp. 293-326.

Lin, P.-H. and Wu, I. (2009). Nctu6 Wins Man-Machine Connect6 Championship 2009. ICGA Journal,

Vol. 32, No. 4, pp. 230.

Lincke, T. R. (2001). Strategies for the Automatic Construction of Opening Books. Second Computers and

Games Conference, CG 2000, Hamamatsu, Japan, Vol. 2063, pp. 74-86, Springer, Heidelberg, Germany.

http://www.littlegolem.net/
http://www.sqlite.org/

 Job-Level Algorithms for Connect6 Opening Book Construction 179

Saffidine, A., Jouandeau, N. and Cazenave, T. (2012). Solving Breakthrough with Race Patterns and Job-

Level Proof Number Search. 13th Advances in Computer Games, ACG 2011, Tilburg, the Netherlands,

Vol. 7168, pp. 196-207, Springer, Heidelberg, Germany.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P. and Sutphen, S. (2007).

Checkers Is Solved. Science, Vol. 317, No. 5844, pp. 1518-1522.

Wei, T.-H., Tseng, W.-J., Wu, I. and Yen, S.-J. (2013). Mobile6 Wins Connect6 Tournament. ICGA

Journal, Vol. 36, No. 3, pp. 178-179.

Wei, T.-H., Wu, I.-C., Liang, C.-C., Chiang, B.-T., Tseng, W.-J., Yen, S.-J. and Lee, C.-S. (2014). Job-

Level Algorithms for Connect6 Opening Position Analysis. Third Workshop on Computer Games, CGW

2014, ECAI 2014, Prague, Czech Republic. Computer Games, Vol. 504, pp. 29-44, Springer, Switzerland.

Wei, T., Liang, C.-C., Wu, I.-C. and Chen, L.-P. (2015). Software Development Architecture for Job-Level

Algorithms. ICGA Journal, Vol. 38, No. 3, pp 149-164.

Wu, I.-C., Lin, H.-H., Lin, P.-H., Sun, D.-J., Chan, Y.-C. and Chen, B.-T. (2011). Job-Level Proof-Number

Search for Connect6. 7th Computers and Games Conference, Kanazawa, Japan, Vol. 6515, pp. 11-22,

Springer, Heidelberg, Germany.

Wu, I.-C., Lin, H.-H., Sun, D.-J., Kao, K.-Y., Lin, P.-H., Chan, Y.-C. and Chen, P.-T. (2013). Job-Level

Proof Number Search. Computational Intelligence and AI in Games, IEEE Transactions on, Vol. 5, No. 1,

pp. 44-56.

Wu, I.-C. and Lin, P.-H. (2010). Relevance-Zone-Oriented Proof Search for Connect6. Computational

Intelligence and AI in Games, IEEE Transactions on, Vol. 2, No. 3, pp. 191-207.

Wu, I.-C. and Lin, P. (2008). Nctu6-Lite Wins Connect6 Tournament. ICGA Journal, Vol. 31, No. 4, pp.

240-243.

Wu, I.-C., Tsai, H.-T., Lin, H.-H., Lin, Y.-S., Chang, C.-M. and Lin, P.-H. (2012). Temporal Difference

Learning for Connect6. 13th Advances in Computer Games, ACG 2011, Tilburg, the Netherlands, Vol.

7168, pp. 121-133, Springer, Heidelberg, Germany.

Wu, I.-C. and Yen, S.-J. (2006). Nctu6 Wins Connect6 Tournament. ICGA Journal, Vol. 29, No. 3, pp.

157-158.

Wu, I. and Huang, D. (2006). Connect6. ICGA Journal, Vol. 28, No. 4, pp. 234-242.

Wu, I., Lin, Y.-S., Tsai, H.-T. and Lin, P.-H. (2011). The Man-Machine Connect6 Championship 2011.

ICGA Journal, Vol. 34, No. 2, pp. 103.

Zobrist, A. L. (1970). A New Hashing Method with Application for Game Playing. ICCA journal, Vol.

13, No. 2, pp. 69-73.

