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Superconductivity in the two-dimensional electron gas induced by high-energy optical phonon mode
and large polarization of the SrTiO3 substrate
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Pairing in one-atomic-layer-thick two-dimensional electron gas (2DEG) by a single flat band of high-energy
longitudinal optical phonons is considered. The polar dielectric SrTiO3 (STO) exhibits such an energetic phonon
mode and the 2DEG is created both when one unit cell FeSe layer is grown on its (100) surface and on the
interface with another dielectric like LaAlO3 (LAO). We obtain a quantitative description of both systems
solving the gap equation for Tc for arbitrary Fermi energy εF , electron-phonon coupling λ, and the phonon
frequency �, and direct (random-phase approximation) electron-electron repulsion strength α. The focus is
on the intermediate region between the adiabatic, εF >> �, and the nonadiabatic, εF << �, regimes. The
high-temperature superconductivity in single-unit-cell FeSe/STO is possible due to a combination of three
factors: high-longitudinal-optical phonon frequency, large electron-phonon coupling λ ∼ 0.5, and huge dielectric
constant of the substrate suppression the Coulomb repulsion. It is shown that very low density electron gas in the
interfaces is still capable of generating superconductivity of the order of 0.1 K in LAO/STO.
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I. INTRODUCTION

Single layer of iron selenide (FeSe) grown on a strong
polar insulator SrTiO3(001) (STO) exhibits superconductivity
[1–6] at surprisingly high temperatures (70 K to 100 K).
This is an order of magnitude larger than the parent bulk
material with the superconducting transition temperature [7]
Tc of 8 K. This suggests that the dominant mechanism of
creation of the superconductivity in the FeSe layer might
differ from that of the bulk FeSe and is caused by influence
of the STO substrate. To strengthen this point of view, the
high-resolution angle-resolved photoemission spectroscopy
(ARPES) experiments [5] and the ultrafast dynamics [3]
demonstrated the presence of high-energy phonons in STO.
The frequency of the oxygen longitudinal optical (LO) mode
reaches � ≈ 100 meV. In addition, it turns out that the
phonons couple strongly to the electrons in the FeSe layer
(the coupling constant was estimated to be [3] λ ∼ 0.5,
much larger than in the parent material, λ = 0.19). The band
is flat with only a small momentum transfer to electrons.
This identification is supported by the earlier ARPES on
STO surface states, which shows a phonon-induced hump
at approximately 100 meV away from the main band and
through inelastic neutron scattering [8]. The role of substrate
in assisting superconductivity is not limited to generation
of phonons. The polar STO has a huge dielectric constant
(estimated to be above ε = 1000 on the surface) and hence
suppresses Coulomb repulsion inside the FeSe layer.

The nature of electronic states within the FeSe layer is
by now quite settled experimentally. The Fermi surface of the
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single unit cell (1UC) consists of two electron pockets centered
around the crystallographic M-point (Brillouin zone corners)
with a band bottom below the Fermi level [5] εF = 60 meV.
This means that electrons form a two-dimensional electron
gas (2DEG) with small chemical potential. The novelty of
the superconducting system is that the occupied states are
close to the band edge, very far from the classic case. In both
conventional, Bardeen–Cooper–Schrieffer (BCS) and uncon-
ventional superconductors the chemical potential is the largest
energy scale in the problem (even in quasi-2D high-Tc cuprates
the chemical potential is an order of magnitude higher).
The scanning tunneling microscope (STM) experiment [6]
indicates that the order parameter is gapped (hence no nodes)
and, in addition, the quasiparticle interference pattern due to
magnetic and nonmagnetic impurities demonstrates that there
is no sign change of the order parameter between the two
electron pockets. Hence the in -plane order parameter has the
s-wave symmetry across the Fermi surface like conventional
superconductors (s++ in notations adopted for pnictides [9])

An early theory [10] focused on the screening due to
the STO ferroelectric phonons on antiferromagnetic spin
fluctuations mediated Cooper pairing in parent material FeSe.
It suggested that the phonons significantly enhance the Cooper
pairing and even might change the pairing symmetry. For the
electron-phonon coupling λ ∼ 1 the enhancement was large,
although perhaps not enough to explain the experiment. When
the interpocket electron-phonon scattering is also strong,
opposite-sign pairing will give way to equal-sign pairing. Later
[5], it was suggested that the interfacial nature of the coupling
assists superconductivity in most channels, including those
mediated by spin fluctuations.

Another idea [11] is to use both the electron pockets
at the Fermi surface band and the “incipient” hole band
below it also found in ARPES, namely generalizing to the
multiband model. The conclusion was that “a weak bare
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phonon interaction can be used to create a large Tc, even with
a spin fluctuation interaction which may be weakened by the
incipient band.” The difficulty is that the forward scattering
nature of the essential phonon processes then means that LO
phonons cannot contribute to the interband interaction. Gorkov
considered [12] polarization on the surface, screening, and
the STO surface LO phonon pairing. His conclusion is that
the LO phonon mediated pairing alone cannot account for
superconductivity at such high Tc.

The small chemical potential is typical for the STO
systems. Another related superconducting (with much lower
Tc) 2DEG system with even much smaller chemical potential
is the LaAlO3(LAO)-STO interface observed earlier [13]. The
microscopic origin of the superconductivity in the LAO/STO
system is already quite clear [14]. It is the BCS-like s-
wave pairing attributed to the same LO phonon modes
discussed above in context of the 1UC FeSe/STO system.
Spin fluctuations seem not to play any role in the pairing
leading to superconductivity. The phase diagram of LAO/STO
is qualitatively similar to the dome-shaped phase diagram of
the cuprate superconductors: In the underdoped region, the
critical temperature increases with charge carrier depletion.

The theoretical effort to understand the LAO/STO system
[15] has resulted in the realization that the Migdal-Eliashberg
theory of superconductivity, valid when the phonon frequen-
cies are much smaller than the electron Fermi energy, should
be generalized. This is not the case for polar crystals like
STO with sufficiently high optical-phonon frequencies, and,
consequently, the dielectric function approach proposed long
ago by Kirzhnits [16] and developed in Ref. [17] proved to be
useful. It was shown that the plasma excitations are important
at larger μ (reduce the electron-phonon coupling) and enable
us to explain the nonmonotonic behavior of Tc as function of
bias that changes chemical potential.

In this paper we further develop a theory of super-
conductivity in 1UC FeSe/STO and LAO/STO based on
the phononic mechanism, including effects of the screened
Coulomb repulsion. In the first stage, a simple model of
2DEG with pairing mediated by a dispersionless LO phonons
is proposed with Coulomb repulsion assumed to be completely
screened by huge polarization of STO (ε ∼ 3000 in 1UC
FeSe/STO). In this case, the gap equations of the Frohlich
model can be reduced (without approximations) to an integral
equation with one variable only and are solved numerically for
arbitrary Fermi energy εF , phonon frequency �, and electron-
phonon coupling λ < 1. An expression for the adiabatic and
nonadiabatic limits are derived and results for Tc compare
well with experiments on 1UC FeSe/STO. Then, in the second
stage, we include the random-phase approximation (RPA)
screened Coulomb repulsion (for somewhat smaller values
of dielectric constants are estimated [18] to be ε = 186 on
the STO side and ε = 24 on the LAO side) and solve a more
complicated gap equations numerically (without making use
of the Kirzhnits ansatz) for various εF and Coulomb coupling
constant. Both the adiabatic, εF >> � (conventional BCS),
and the nonadiabatic, εF << �, cases are considered and
compared with the local model studied earlier in the context
of Bose-Einstein Condensation (BEC) physics [19–22]. The
Coulomb repulsion results in significant reduction or even
suppression of superconductivity. A phenomenological model

for dependence of εF and λ on electric field for the LAO/STO
is proposed.

The paper is organized as follows. The basic 2DEG
phonon superconductivity model is introduced in Sec. II. The
general Gaussian approximation for weak electron-phonon
interactions and RPA screening is described in Sec. III. The
superstrong screening case (neglecting Coulomb repulsion
altogether) case is solved Sec. IV. The same calculation is
performed using the Kirzhnits approach in Sec. V. The general
case including the RPA screened Coulomb repulsion is inves-
tigated numerically in Sec. VI. The phenomenology of 1UC
FeSe/STO and LAO/STO and comparison with experiments
are discussed in Sec. VII followed by the Discussion and
Summary. Appendices A and B contain the derivation of
Gorkov equations and the 2D RPA neutralizing background
contribution, respectively.

II. THE LO PHONON MODEL OF 2D PAIRING

As mentioned above, various STO systems including 1UC
FeSe/STO (medium to low density) and interface LAO/STO
the (very low density) electron gas appears localized in a plane
of width of one unit cell (in FeSe layer or on the STO side,
respectively). The Hamiltonian of 2D electron gas contains
three parts:

H = He + Hph + He−ph, (1)

where

He =
∫

r

ψ†
σ

(
−�

2∇2

2m
− μ

)
ψσ + 1

2

∫
r.r ′

n(r)v
(
r − r ′)n(r ′),

(2)
and ψ†

σ ,ψσ are the creation and annihilation operators in 2D,
r = (x,y).

The charge density operator is

n(r) = ψσ†(r)ψσ (r), (3)

and μ is the chemical potential (Fermi energy). The electron-
electron interactions, not related to the crystalline lattice,
are described by potential v(r). The electrostatics on the
surface/interface is quite intricate [18], and we approximate
it by the Coulomb repulsion:

v(r) = e2

εr
, (4)

where ε is an effective 2D dielectric constant of the system. As
mentioned in the Introduction, the effective dielectric constant
is huge in STO at low temperatures due to the ionic movements.

Crystal vibrations in STO are highly energetic. The optical
phonon mode [8,14] with frequency near � = 100 meV is
most probably associated with pairing attractive electron-
electron force is the ferroelectric LO that involves the relative
displacement of the Ti and O atoms. The high-energy STO
oxygen LO phonon band mode is separated from all the other
phonon bands by a substantial energy gap [8]. The single
branch of the optical phonons described by the bosonic field
[23] φ(r) = ∑

k
1√
2
(b†ke

−ikr + bke
ikr ). The phonon part of the

Hamiltonian therefore is

Hph = 1

2

∫
r,r ′

φ(r)vph
(
r − r ′)φ(r ′), (5)
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where the phonon energy density vph(r − r ′) for the nearly flat
LO band is approximately local:

vph(r) = ��δ(r). (6)

Experiments demonstrated a substantial electron-phonon cou-
pling g. In fact, the collective mode energy is greater or
comparable to the width of the electron band. Importantly,
the electron-phonon coupling allows only a small momentum
transfer to the electron,

He−ph = g

∫
r

n(r)φ(r). (7)

Despite the simplifications, the model is far from being
solvable and standard approximations are applied in the
following section to obtain the critical temperature of the su-
perconductor. Various “bare” parameters like effective masses,
�, and the electron-electron and electron-phonon couplings
are renormalized as the interaction effects are accounted for.

III. THE PAIRING EQUATIONS

A. Matsubara action

We use the Matsubara time τ (0 < τ < �/T ) formalism
[23] with action corresponding to the Hamiltonian Eq. (1) (set-
ting � = 1), A[ψ,φ] = Ae[ψ] + Aph[φ] + Ae−ph[ψ,φ],with

Ae =
∫

r,τ

ψ∗
σ (r,τ )D−1ψσ (r,τ )

+1

2

∫
r,r ′,τ

n(r,τ )v(r − r ′)n(r ′,τ )

Aph = 1

2

∫
r,r ′,τ

φ(r,τ )d−1φ(r ′,τ );

Ae−ph = g

∫
r,τ

n(r,t)φ(r,t). (8)

Here the electron Green’s function is

D−1 = ∂τ − ∇2

2m
− μ, (9)

while that of the phonon field is

d−1 = (−∂2
τ + �2

)
δ(r − r ′). (10)

In Fourier space the action reads

Ae =
∑
pω

ψσ∗
pωD−1

pωψσ
pω

+1

2

∑
pωp1p2ω1ω2

vpψσ∗
p1ω1

ψσ
p1−p,ω1−ωψρ∗

p2ω2
ψ

ρ
p2+p,ω2+ω;

Aph = 1

2

∑
kω

φ∗
kωd−1

ω φkω; Ae−ph

= g
∑

pp1ωω1

ψσ∗
p1ω1

ψσ
p1−p,ω1−ωφpω (11)

with electronic,

D−1
p,ω = iω + εp; εp = p2/2m − μ, (12)

and optical phonon,

d−1
ω = ω2 + �2

�2
, (13)

propagators, respectively. The fermionic Matsubara frequen-
cies are ωn = πT (2n + 1), while for bosons ωn = 2πT n with
n being an integer. In 2D

vp = 2πe2

εp
. (14)

The action can be treated with the standard Gaussian approxi-
mation.

B. The pairing equations

The electronic action is obtained by integration of the
partition function over the phonon field,

Ze[ψ] =
∫

φ

e−A[ψ,φ] = e−Aeff
e [ψ]. (15)

The Gaussian integral is

Aeff
e [ψ]

=
∑
ωp

ψσ∗
pωD−1

pωψσ
pω

+1

2

∑
ωω1ω2pp1p2

Vpωψσ∗
p1−p,ω1−ωψσ

p1ω1
ψρ∗

p2ω2
ψ

ρ
p2−p.ω2−ω,

(16)

where Vpω = V RPA
pω + V

ph
ω . The part of the effective electron-

electron attraction due to phonons is

V ph
ω = −g2 �2

ω2 + �2
. (17)

To take into account screening, we made the replacement vp →
V RPA

pω (the random-phase approximation) in 2D,

V RPA
pω = vp

[
1 + Nmvp

π

(
1 − x/

√
x2 + 1

)]−1

, (18)

where x = |ω|/(vF p) with v2
F = 2μ/m.

Performing the standard Gaussian approximation aver-
aging, see Appendix A, one arrives at the Gorkov equa-
tions for the normal,〈ψ↑I†

kω ψ
↓J
qν 〉 = δω−νδk−qδ

IJ Gkω (I,J =
1, . . . ,N are flavors), and the anomalous, 〈ψ↑I

kωψ
↓J
qν 〉 =

δω+νδk+qδ
IJ Fkω, Greens functions. The result is

−�∗
kωFkω + D∗−1

kω Gkω = 1 (19)

and

�kωGkω = −D−1
kω Fkω, (20)

where the gap function is defined by

�kω =
∑

p1ω1
Vp1−k,ω1−ωFp1ω1 . (21)

Near the critical point one can neglect higher orders in � in
Eq. (19), resulting in G = D∗. Substituting this into Eq. (20),
one gets: ∑

pν

∣∣Dpν

∣∣2Vp−k,ν−ω�pν = −�kω. (22)
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Using the explicit form of the propagator D, Eq. (12), the
equation takes a final form:

∑
pm

2NT

ω2
m + ε2

p

Vp−k,m−n�pm = −�kn. (23)

C. Simplification of the integral equations for critical
temperature for the s-wave pairing

Transforming to polar coordinates and using rotation invari-
ance, �pν = �pν , p = |p|, and then changing the variables to
εp = p2/2m − μ, the electronic part of the kernel of Eq. (23)
is ∫ �−μ

ε2=−μ

mNT

π

∑
n2

1

ω2
n2

+ ε2
2

Pε1ε2;n1−n2�ε2n2 = −�ε1n1 .

(24)
Here � is an ultraviolet cutoff of the order of atomic energy
scale �

2/2ma2 with lattice spacing a. The phonon part of the
kernel, Pε1,ε2,n = P RPA

ε1,ε2,n
+ P

ph
n , is

P ph
n = − g2�2

ω2
n + �2

, (25)

while in the screened Coulomb part is

P RPA
ε1,ε2,n

= e2

ε

∫ 2π

φ=0

{ √
2(s − r cos φ)+

+ 2e2

ε

[
1 − |ωn|/

√
ω2

n + 4μ(s − r cos φ)
]}−1

.

(26)

This formula along with the treatment of the neutralizing
background is derived in Appendix B. Here we have used
abbreviations

s = ε1 + ε2 + 2μ;

r = 2
√

(ε1 + μ)(ε2 + μ). (27)

To symmetrize the kernel viewed as a matrix, one makes
rescaling of the gap function

ηεn = 1√
ω2

n + ε2
�εn, (28)

leading to eigenvalue equation∫ �−μ

ε2=−μ

∑
n2

Kε1n1;ε2n2ηε2n2 = ηε1n1 , (29)

where the symmetric matrix is

Kε1n1;ε2n2 = −mNT

π

1√
ω2

n1
+ ε2

1

√
ω2

n2
+ ε2

2

Pε1ε2,n1−n2 . (30)

Critical temperature is obtained when the largest eigenvalue
of the matrix K is the unit. This was done numerically by
discretizing variable ε. The numerical results for the full model
are presented in Sec. IV; however, since the screening of the
STO is very strong, we first neglect the Coulomb repulsion
altogether. This allows a significant simplification.

IV. SUPERCONDUCTIVITY IN THE
LO PHONON MODEL

In this case, the theory Eqs. (2) and (5) has three parameters
(in addition to temperature), the optical phonon frequency �,
the electron-phonon coupling g, and chemical potential μ.
We first relate the bare coupling g to the “binding energy
Ec” conventionally determined in the BCS-BEC crossover
studies [19,21,22]. Then, since this simplified model will be
applied to the 1UC FeSe on STO, one prefers to parametrize
the electron gas via carrier density n related to the Fermi
energy by εF = π�

2n/m instead of chemical potential μ.
Following the standard practice, Tc is found by solving the
second Gorkov equation [Eq. (22)]. This is compared with
a simpler Kirzhnits approach applied to the present case in
the next section. To simplify the presentation and without
too much loss of generality we take the number of flavors
N = 1.

A. Binding energy

It is customary [19,22] to relate the electron-phonon
coupling g to the energy of the bound state Eb ≡ 2Ec

created by this force in quantum mechanics in vacuum (the
two-particle sector of the multiparticle Hilbert space). We
use the binding energy to estimate the parameter range
in which chemical potential μ approaches the Fermi en-
ergy εF defined above. In 2D the threshold scattering ma-
trix element for total energy E at zero momentum obeys
the integral Lippmann-Schwinger equation for scattering
amplitude:

�(ω,ν,2E) = −V
ph
ω−ν − 1

2π

∫
ρ

V
ph
ω−ρf (ρ,E)�(ρ,ν,2E),

(31)

where

f (ρ,E) = 1

(2π )2

∫
p

1

p2/2m + E + iρ

1

p2/2m + E − iρ

= m

2π

∫ �

ε=E

1

ε2 + ρ2
= m

4|ρ|
(

1 − 2

π
arctan

E

|ρ|
)

.

(32)

The equation Eq. (31) coincides with the sum of “chain
diagrams” at zero chemical potential in the many-body theory
with � being the “renormalized coupling” [24]. The bound
state (there is only one such bound state in 2D) with binding
energy 2Ec is found as a singularity of �(ω,ν,2E). It occurs
at an energy for which the matrix of the linear equation (31)
has zero eigenvalue, so the eigenvector ψ(ρ) obeys∫

ρ

[
2πδ(ω − ρ) + V

ph
ω−ρf (ρ,Ec)

]
ψ(ρ) = 0. (33)

Changing the variables, ψ(ρ) = f (ρ,E)−1/2η(ρ), this equa-
tion can be presented as the unit eigenvalue problem

mg2

2π

∫
ρ

K(ω,ρ)η(ρ) = η(ω), (34)
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FIG. 1. The 2D binding energy per electron of two electrons in
the bound state created by the attraction due to LO dispersionless
phonon branch with frequency �. The (bare) coupling strength λ is
in a wide range, λ ∼ 0–3.5. The essential exact dependence found
numerically (dots) is compared with weak coupling (the solid line)
and results obtained using the local model (dashed line).

with a symmetric kernel

K(ω,ρ)

= 1

4

√
1

|ω|
(

1 − 2

π
arctan

Ec

|ω|
)

1

|ρ|
(

1 − 2

π
arctan

Ec

|ρ|
)

× �2

(ω − ρ)2 + �2
. (35)

It turns out that the unit eigenvalue is the maximal eigenvalue of
this positive definite matrix. The discretized version of Eq. (34)
was diagonalized numerically. The results are presented in
Fig. 1.

Solution found numerically is well fitted by

2π

mg2
= 1

λ
≈ 1

2
sinh−1

[
�(� + πEc)

πEc(� + Ec)

]
, (36)

where the 2D dimensionless electron-phonon coupling (per
spin) is defined as λ = mg2

2π�2 . As will be demonstrated in the
following subsections, the interesting range of couplings will
obey εF >> Ec and thus [22] we always replace μ by εF .

It has the correct asymptotics at both weak and strong
coupling, so

Ec

�
= 1

2 sinh
[

2
λ

]
⎧⎨
⎩1 − sinh

[
2

λ

]

+
√(

1 − sinh

[
2

λ

])2

+ 4

π
sinh

[
2

λ

]⎫⎬
⎭.

(37)

At weak coupling,

Ec/� = 2

π
e−2/λ << 1, (38)

and hence one can use a local “instantaneous” electron-phonon
interaction model, with Eq. (25) approximated by

P ph
n = − g2�2

ω2
n + �2

≈ −g2θ (� − |ωn|), (39)

to describe this limit. In the instantaneous model the electron-
phonon interaction is assumed to vanish on the scale of �.
In Eq. (42), it is clear that in whole range of parameters of
interest the first term is replaced by π/2. The results for Ec

are consistent with the BEC literature [22], see the dashed line
in Fig. 1. Note that the dimensionless pre-exponential factor
in Eq. (38) is determined to be 2

π
while our notation for �

does not coincide with the Chubukov notation, which is, in
our notation, 2

π
�.

B. The energy independence of the gap function

Equation (24) in the limit e2 → 0 is

g2mT

2π

∑
n2

∫ �−εF

ε2=−εF

1

ω2
n2

+ ε2
2

�2(
ωn1 − ωn2

)2 + �2
�ε2n2

= �ε1n1 . (40)

Since the left-hand side of the equation is independent of ε2, the
gap function is independent of energy: �εn = �n. Substituting
this, one gets a one-dimensional integral equation,

λT
∑

n2

�2(
ωn1 − ωn2

)2 + �2
�n2

∫ �−εF

ε2=−εF

1

ω2
n2

+ ε2
2

= λ
∑

n2

�2f
(
ωn2

)
(
ωn1 − ωn2

)2 + �2
�n2 = �n1 , (41)

where the integral is

f (ω) = T

|ω|
(

arctan
� − εF

|ω| + arctan

[
εF

|ω|
])

. (42)

Changing of variables, ηn = √
f (ωn)�n, makes the kernel

matrix of the integral equation,∑
n2

Kn1n2 (T )ηn2 = ηn1 , (43)

symmetric,

Kn1n2 (T ) = λ

√
f
(
ωn1

)
f
(
ωn2

)
�2

(
ωn1 − ωn2

)2 + �2
. (44)

C. Numerical procedure and results

The eigenvalue equation Eq. (43) is solved numerically by
diagonalizing sufficiently large matrix Kn1n2 (T ). The index
−Nω/2 < n < Nω/2 with the value Nω = 256 used. At this
value of Nω the results are already independent of the UV
cutoff �. The critical temperature for given λ, εF and � is
determined from the requirement that the largest eigenvalue of
K(T ) is 1. The results presented as functions of εF in Fig. 2
in whole range of εF and Fig. 3 for εF < �.
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FIG. 2. The critical temperature of a 2DEG-LO phonon super-
conductor (the Coulomb repulsion is assumed to screened out by the
substrate). Tc in units of the phonon frequency � is given as a function
of the Fermi energy in whale range of εF /� for the dimensionless
electron-phonon coupling (from top to bottom): λ = 0.5,0.34,0.25.
The adiabatic (BCS) limit is a dashed line. The solid line is the result
of the local theory.

D. Adiabatic and nonadiabatic (local interaction model) limits

In the strongly adiabatic situation, εF >> �, one can take
the εF → ∞ limit in which the matrix simplifies, f (ω) ≈ πT

|ω| ,

KBCS
n1n2

(T )= λ
√|n1 + 1/2||n2 + 1/2|

{[
2π T

�
(n1 − n2)

]2 + 1
} .

(45)

This can be fitted by the phenomenological McMillan-like
formula (dashed lines in Fig. 2),

T adiab
c (λ) ≈ 0.75 � exp

[
−1

λ

]
. (46)

In the opposite strongly nonadiabatic limit, Ec << εF << �,
the local model defined in subsection A can be used. The
gap equation Eq. (41) for frequency independent �n = �

FIG. 3. The critical temperature of a 2DEG-LO phonon supercon-
ductor in the low temperatures range in units of the phonon frequency
� for λ = 0.5,0.34,0.25. Solid line is the result of the local theory.

simplifies into

λ
∑�/(2πTc)

n2=−�/(2πTc)
f
(
ωn2

)
� = �. (47)

The solution exists for

λTc

∑�/(2πTc)

n=−�/(2πTc)

1

|ωn|
(

π

2
+ arctan

[
εF

|ωn|
])

= 1. (48)

At low temperatures the sum can be approximated by an
integral

λ

π

∫ �

ω=πTc

1

ω

(π

2
+ arctan

[εF

ω

])
= 1, (49)

one gets the formula

T local
c (λ) =

√
Ec(λ)εF =

√
2�εF

π
exp

[
−1

λ

]
. (50)

The curves are given in Fig. 3 (dashed lines) and compare well
with the simulated result (circles) for λ = 0.5,0.34,0.25 (from
top to bottom).

There exists an alternative approach to such calculations
(beyond the Gaussian approximation adopted here), see Ref.
[20] in which the correlator at zero chemical potential is
subtracted. We do not use it, but very recently Chubukov et al.
found [22] that for the local instantaneous model the results
are identical. It is instructive to compare the direct numerical
simulation with a simpler approximate semianalytic Kirzhnits
method that is applied to the model in the following section.

V. COMPARISON WITH THE KIRZHNITS ANSATZ

A. Application of the Kirzhnits method to the LO phonon model

Integral equations in general [Eqs. (43)] are very compli-
cated and typically approximated by simpler one-dimensional
integral equations. It was first proposed long ago by Kirzhnits
[16,17] and later developed for the dielectric function approach
to novel superconductors [15]. In this section the units of
� = m = � = 1 and physical frequency (not Matsubara) are
used. Spectral representation of the dispersionless optical
phonon contribution to inverse dielectric constant is

σ (k,E) = ε

e2
λkδ

(
1 − E2). (51)

The gap equation for the quantity characterizing the anomalous
average Fp defined by Kirzhnits [16] reads,

�(p) = − e2

2πε

∫
k

B(εk)

|p − k|

×
[

1 − 2
∫ �

E=0

σ (|p − k|,E)

E + |εk| + ∣∣εp

∣∣
]
�(k), (52)

where

B(εk) = tanh (εk/2Tc)

2εk

. (53)

Substituting Eq. (53) into Eq. (52), and transforming the
variable k to the energy, one obtains:

�(p) = λ

∫ �−εF

εk=−εF

B(εk)

1 + |εk| + ∣∣εp

∣∣�(k). (54)
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FIG. 4. Comparison with the critical temperature of the Kirzhnits
ansatz approximation for a wide range of Fermi energies. The
brown dots are the same as in Fig. 2 for λ = 0.5 while the solid
line is the result of the instantaneous (local) theory. The Kirzhnits
approximation Tc calculated numerically is given by blue dots, while
the dashed and solid blue lines are the weak-coupling approximation
analytic results at leading and the next to leading order, respectively.

Symmetrization of the kernel, �(p) = √
B(εp)ηp, one ob-

tains:

λ

∫ �−εF

ε2=−εF

√
B(ε1)B(ε2)

1 + |ε1| + |ε2|η2 = η1. (55)

This is solved numerically for εF = 0.5,1,5�, and λ = 0.5
with the ultraviolet cutoff � = 15� in the upper limit of
integral in Eq. (55) with number of values of energy Nε =
4000, so the step is smaller than (εF + �)/Nε ∼ 10−2. The
results are presented in Figs. 4 and 5.

It is possible to obtain a closed analytic expression only at
weak coupling.

FIG. 5. Comparison with the critical temperature of the Kirzhnits
ansatz approximation for a small Fermi energies. The brown dots are
the result of numerical solution of the gap equation and are the same
as in Fig. 2 for λ = 0.5 and 0.34, where the solid line is the result of
the instantaneous theory. The Kirzhnits approximation Tc, calculated
numerically, is given by blue dots, while the dashed and solid blue
lines are the weak-coupling approximation analytic results at leading
and the next to leading order, respectively.

B. Weak coupling

At small coupling the critical temperature can be estimated
analytically using the asymptotic theory from Zubarev [25]:

Tc = 2

π
eγE εF e− 1

λ eζ (εF ,λ), (56)

where

ζ (εF ,λ) =
∫ ∞

ε=−εF

1

2|ε|
[

φε

1 + |ε| − �(εF − ε)

]
. (57)

Equation determining φε ≡ ηε/ηε=0 for small temperatures is
approximated in our case by:

φε − λ|ε|
2(1 + |ε|)

∫ ∞

ε′=−εF

φε′

(1 + |ε| + |ε′|)(1 + |ε′|)

= 1

1 + |ε| . (58)

This is solved iteratively to second order, φε = φ(0)
ε + λφ(1)

ε ,

φε = 1

1 + |ε| + λφ(1)
ε

φ(1)
ε = 1

2(1 + |ε|)
{

1 + 2εF

(1 + εF )
− 1

|ε| log
(1 + |ε|)2(1 + εF )

1 + |ε| + εF

}
.

(59)

Substituting this into Eq. (57) one obtains

ζ (εF ,λ) = ζ 0(εF ) + λζ 1(εF ) + O
(
λ2
)

ζ (0)(εF ) =
∫ ∞

ε=−εF

1

2|ε|
{

1

(1 + |ε|)2 − �(εF − ε)

}

= −1

2

{
1 + 2εF

1 + εF

+ log [εF (1 + εF )]

}
. (60)

The second correction,

ζ (1)(εF ) =
∫ ∞

ε=−εF

φ(1)
ε

2|ε|(1 + |ε|) , (61)

still can be calculated analytically via hypergeometric function
but is cumbersome. It is regular and for λ = 0.5 corrects the
analytic result shown in Figs. 4 and 5 as a dotted line into
the one (solid line) closer to numerical solution. The formula
works better for the nonadiabatic regime, Fig. 5, than in the
adiabatic limit, Fig. 4.

The approximate formula neglecting the second-order
correction in the adiabatic regime, εF > �, is

Tc = 2

π
eγE εF e− 1

λ exp
[−1 − log [εF ]

]
= 2

π
eγE−1�e− 1

λ ≈ 0.41� e− 1
λ . (62)

The coefficient is significantly smaller than the fit to the
numerical solution, Eq. (46). In the opposite nonadiabatic limit

Tc = 2

π
eγE εF e− 1

λ exp

[
−1

2
{1 + log [εF ]}

]

= 2

π
eγE−1/2

√
�εF e− 1

λ ≈ 0.69
√

�εF exp

[
−1

λ

]
. (63)
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FIG. 6. Suppression of the critical temperature of a 2DEG phonon
superconductor the RPA screened Coulomb repulsion. Tc in units of
the phonon frequency � for λ = 0.32 is given as a function of the
chemical potential for the following dimensionless effective Coulomb
repulsion strength α defined in Eq. (64). From top to bottom: α =
0 (the phonon model, red dots), α = 5 × 10−3 (brown dots), α =
10−2 (yellow), α = 2 × 10−2 (green), α = 3 × 10−2 (blue), α = 4 ×
10−2 (violet), α = 5 × 10−2 (pink), and α = 6 × 10−2 (dark red). The
curves are well approximated by the interpolating formula, Eqs. (65).

To conclude the critical temperature in the Kirzhnits
approach is generally underestimated by 30% in the adiabatic
limit and is precise in the nonadiabatic limit. Within the range
of applicability the general tendency is correct. Next we tackle
a more complicated model incorporating the effect of the
screened Coulomb repulsion.

VI. THE EFFECT OF THE COULOMB REPULSION

The eigenvalue equation Eq. (29) with the kernel including
the RPA dynamically screened Coulomb repulsion, Eq. (26), is
solved numerically by diagonalizing sufficiently large matrix
Kn1ε1,n2ε2 (T ). In the presence of moderately screened Coulomb
repulsion, to describe the LaAlO3/STO (LaO/STO) interfaces,
the chemical potential is practically equal to the Fermi
energy εF .

The integral over the angle φ in Eq. (26) was performed
numerically (720 subdivisions). The neutralizing background
was subtracted (the screening is dynamic, so the interaction
is generally still long range, see Appendix B). The Matsubara
index is in the range −Nω/2 < n < Nω/2 with the value Nω =
16 used. The energy cutoff was in the range � = 3εF (for
nonadiabatic values εF = 0.5, 1) and up to � = 15εF in the
adiabatic regime. Number of values of energy Nε = 256, so the
step is smaller than (εF + �)/Nε ∼ 2.4 × 10−3. Convergence
was checked against higher values of �, Ne, and Nω.

The critical temperature for given λ, m, εF , and � is
determined from the requirement that the largest eigenvalue
of K(T ) is 1. The use units in which � = � = m = 1. In these
units the Coulomb couplings become

α = e2m1/2

ε�1/2�
. (64)

For � = 1000 K, m = me, ε = 3000 one gets α = 6 × 10−3 .
The results presented in Fig. 6 in the Coulomb coupling range

5 × 10−3–7 × 10−2 are sufficient for our purposes. One clearly
observes the Coulomb suppression that is not homogeneous in
εF . At εF comparable with � or slightly smaller (the smallest
simulated value is εF = 0.5�), one observes that at larger α

an approach to the BCS limit is slower.
A reasonable interpolation formula for all the values is

Tc(�,εF ,λ) = 0.8 � exp

[
− 2

λ − 1.2α

� + 3εF

� + 6εF

]
. (65)

We use this formula to discuss the interface superconductivity
in the next section.

VII. APPLICATION TO SUPERCONDUCTIVITY IN 1D
FESE/STO SUBSTRATE AND RELATED MATERIALS

A. 1UC FeSe/STO

Based on experiments described in the Introduction, the
following parameters should be used in the simple LO model
of Sec. IV. The phonon frequency was estimated by ARPES [5]
in the � = 80–100 meV range and by the ultrafast dynamics
[3] to be � = 106 meV. The dimensionless electron-phonon
coupling constant was estimated (using a model with a flat
phonon spectrum) from the intensity ratios in ARPES [5]
to be λ = 0.5, consistent with λ = 0.48 from the ultrafast
dynamics [3]. The critical temperature estimates were rather
scattered and dependent on the method. While the critical
temperature deduced from the gap in tunneling is Tc = 70 K,
magnetization experiments [4] indicate that Tc = 85 K and
the ultrafast[3] dynamics gives Tc = 68 K. The temperature
was directly measured in transport[2] to be 100 K. The Fermi
surface [5] for the electron pockets is located at εF = 60 meV.

In the simplified model of Sec. II (neglecting completely
the Coulomb repulsion due to the huge dielectric constant
of STO) the only parameters determining Tc are λ, �, and
εF . This is presented in Figs. 2 and 3. Taking � = 100 meV,
εF = 60 meV, one obtains, for λ = 0.5, Tc = 77 K, see the
dotted line in Figs. 2 and 3. This is within the experimentally
possible range. The 2UC FeSe/STO already has three pockets
and resembles the parent material more than 1UC FeSe/STO.

B. Interface superconductivity in LAO/STO

In this case the dielectric constant is one order of mag-
nitude smaller (ε0 = 186 on the STO side and ε0 = 24 on
the LAO side, see Ref. [18] where accurate electrostatics
was considered) than in 1UC FeSe/STO. Consequently, the
Coulomb repulsion cannot be neglected, especially in view
of very low Tc ∼ 0.2 K. Therefore we have to use the
full model of Sec. IV. In this case one takes N = 1 and
effective mass m = 1.65me (where me is the electron mass
in a vacuum). Recently [14], the electron-phonon coupling
and chemical potential were measured by tunneling from
the underdoped to the overdoped region. Generally, in the
underdoped region, the chemical potential rises linearly with
the gate voltage Vg , εF (Vg) = μ0(1 + ηVg), with the slope η =
1.8 × 10−3 V−1 and is saturated in the overdoped region at
value μ0 = 30 meV. The electron-phonon coupling apparently
decreases very slowly, λ = λ0(1 − γVg), where λ0 = 0.28 is
the undoped value and γ = 1.1 × 10−4 V−1 is the slope. Our
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FIG. 7. Tc as a function on gate voltage Vg .

approximate formula Eq. (65) in this case gives the dependence

Tc

(
Vg

) = 0.8 � exp

×
[
− 2

λ0
(
1 − γVg

)− 1.2α

1 + 3μ0
(
1 + ηVg

)
1 + 6μ0

(
1 + ηVg

)
]

.

(66)

Taking a measured value for the LO4 mode � = 99.3 meV
lets us estimate the Coulomb repulsion constant as

α = e2m1/2

εeff�1/2�
= 0.09

for εeff = 200. Substituting these values, one obtains the fit to
experimental values of Ref. [14], see Fig. 7.

Qualitatively, there are two conflicting tendencies at play.
The reduction of the electron-phonon coupling with Vg reduces
Tc, while the increase of εF (the charging appears according
to experiment only in the underdoped region) increases Tc.
The overall effect is that in the underdoped case the second
tendency prevails, while in the overdoped only the first exists.
This explains the “dome” shape.

VIII. DISCUSSION AND SUMMARY

Pairing in one atomic layer thick two-dimensional electron
gas on a strongly dielectric substrate by a single band of
high-energy longitudinal optical phonons is considered in
detail. The phonon band is assumed to be nearly dispersionless
with frequency �. The polar dielectric SrTiO3 exhibits such
an energetic phonon mode and the 2DEG is created both when
one unit cell FeSe layer is grown on its (100) surface and
on the interface with another dielectric like LaAlO3. Both the
adiabatic, εF >> �, and the nonadiabatic, εF << �, cases
are considered and compare well with conventional weak
coupling BCS and with the local instantaneous interaction
model (describing the nonadiabatic regime close to the BEC
crossover [19–22] still assuming that εF >> Ec, where 2Ec

is the binding energy, so the pairing is the BCS type rather
than BEC), respectively. The focus was, however, on the
intermediate region. The reason is that in several novel
materials this is precisely the case. In particular, in high Tc one
unit cell FeSe on STO the Fermi energy is a bit smaller than the

phonon frequency εF = 0.65�. In interface superconductors
like LaAlO3/STO interfaces the ration is smaller εF /� ∼ 0.3
still well above the nonadiabatic limit. It turns out that in the
crossover region the critical temperature decreases very slowly
as a function of εF , up to εF = 0.1�, see Figs. 2 and 3, and
only then drops fast to zero.

The critical temperature was calculated within the weak-
coupling model of superconductivity. The theory was applied
to two different realizations of such a system: 1UC FeSe/STO
and LaAlO3/STO interfaces. There is a reduction in the nearly
instantaneous electron-electron Coulomb repulsion due to
screening by STO, but we believe it is much smaller for the
essentially retarded effective electron-electron interaction due
to phonons. This reduction due to STO is thus taken into
account by the electron-electron interaction. Similarly, we
use the “dressed” electron and phonon Green functions with
parameters (electron density of states, the phonon frequency).
The numerical solution of the gap equation at α = 0 was
compared with an often-utilized Kirzhnits dielectric approach
for arbitrary ratio εF /�. The validity of the Migdal theorem in
the nonadiabatic case was not assumed (discussed recently in
Ref. [26]). This comparison demonstrated excellent agreement
between two theories in the nonadiabatic range while in the
adiabatic region the Kirzhnits theory gives lower Tc than the
numerical solution of the gap equation.

We conclude that, despite small electron concentration, very
high critical temperatures observed recently are consistent with
the mostly phononic mechanism already due to combination
of two peculiar properties of the system. First, since the
optical phonon frequencies � are very large and electrons
reside in small pockets, � is larger than εF . Second, due to
the huge dielectric constant of STO the Coulomb repulsion
is strongly suppressed inside the layer leading to small α.
The required value of the electron-phonon coupling in the
superconducting layer is λ ∼ 0.5 in 1UC FeSe/STO and
λ ∼ 0.2 in LAO/STO. In low-Tc LAO/STO the less-suppressed
Coulomb repulsion results in significant reduction or even
suppression of superconductivity. A phenomenological model
for dependence of εF and λ on electric field for the LAO/STO
is proposed.

The main insight from this work therefore is that a small
value of εF is not an obstacle to achieve Tc of order 0.1 � as
long as λ is sufficiently large and the Coulomb repulsion is
effectively suppressed by polarization of the 3D substrate.

Note added. Very recent experiment [27] strengthens the
assumptions made in the present work about the nature
of superconductivity in 1UC FeSe on STO with measured
electron-phonon coupling in the layer as high as λ = 1.
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APPENDIX A: DERIVATION OF THE PAIRING
EQUATIONS

We derive the Gorkov equations within the functional
approach starting with the effective action [Eq. (16)]. The
partition function as a functional of sources χσ

pω is

Z[χ ] =
∫

ψ

exp

[
−Ae[ψ] +

∫
pω

(
ψσ

pωχ∗σ
pω + χσ

pωψ∗σ
pω

)]
.

(A1)

The free energy, F[χ ] = − log Z[χ ], defines the effective
action and the “classical fields” via

A(ψ) = F[χ ] +
∫

pω

(
ψσ

pωχ∗σ
pω + χσ

pωψ∗σ
pω

)
;

ψσ
pω = δF[χ ]

δχ∗σ
pω

,ψ∗σ
pω = −δF[χ ]

δχσ
pω

, (A2)

where the sources are expressed via the first functional
derivative of A,

χσ
pω = −δA[ψ]

δψ∗σ
pω

,χ∗σ
pω = δA[ψ]

δψσ
pω

. (A3)

The inverse propagators, the second derivatives, form a
Nambu matrix:

�σρ
pωqν = δ2A

δψ
ρ
qνδψσ

pω

; �σρ
pωqν = δ2A

δψ
ρ
qνδψσ

pω

;

�σ∗ρ
pωqν = δ2A

δψ
ρ
qνδψσ∗

pω

. (A4)

Green’s functions also form a Nambu matrix,

Gρσ
qνpω = 〈

ψσ∗
pωψρ

qν

〉 = − δ2F
δχ

ρ∗
qν δχσ∗

pω

;

Gρ∗σ∗
qνpω = − δ2F

δχ
ρ
qνδχσ

ω

;

Gρσ∗
qνpω = 〈

ψσ
pωψρ

qν

〉 = − δ2F
δχ

ρ∗
qν δχσ

pω

. (A5)

The two Nambu matrices obey �ACGCB = δAB , which con-
stitute the Gorkov equations.

Let us now calculate �. The Gaussian average first
derivatives, assuming only anomalous averages, are

χσ
pω = D−1

pωψσ
pω − Vp−p2,ω−ω2ψ

κ∗
p3ω3

〈
ψσ

p2ω2
ψκ

p−p2+p3, ω−ω2+ω3

〉
.

(A6)

The second derivatives are

�σ∗ρ
pωqν = δσρδωνδpqD

−1
pω;

�σρ
pωqν = Vq−p2,ω−ω1δ−p1−p2+q+pδω−ω1−ω2+ν

〈
ψσ∗

p1ω1
ψρ∗

p2ω2

〉
.

(A7)

Using the translation symmetry,〈
ψ1

pωψ2
qν

〉 = δω+νδp+qFpω,

�σρ
pωqν = 〈

ψ1∗
pωψ2

qν

〉 = δσρδp+qδω+νD
−1
pω , (A8)

the equation �ACGCB = δAB becomes Eqs. (19) and (20).

APPENDIX B: LONG-RANGE RPA SCREENED COULOMB REPULSION

In Eq. (26) one detail was not presented: subtraction of the neutralizing background. Since at nonzero frequency the screened
repulsion does not become short ranged, the neutralizing background should be taken into account. For our purposes the jellium
model suffices [23]. To this end, one needs the infrared cutoff L. The results for sufficiently large L converge (numerical
simulations were performed for L = 30�+εF

Nε−1 ).

The electronic part of the kernel Eq. (26), in our units of � = m = � (unit of length �/
√

�m), is

P RPA
p,k,ω = e2

ε

⎧⎨
⎩ε|p − k|

2πe2
+ 1

π

⎛
⎝1 − |ω|√

ω2 + v2
F |p − k|2

⎞
⎠
⎫⎬
⎭

−1

− 2πe2

εL
δ( p − k), (B1)

transformed to polar coordinates (using the rotation invariance) and then changing to the energy variable εp = p2/2 − εF results
in

P RPA
ε1,ε2,n

= e2

ε

∫ 2π

φ=0

1

A + 2B
− 2e2

εL
δ(ε1 − ε2); (B2)

A = ε

e2

{√
2[ε1 + ε2 + 2εF − 2

√
(ε1 + εF )(ε2 + εF ) cos φ] + π

L

}
;

B = 1 − |ω − ν|√
ω2

n + 4μ[ε1 + ε2 + 2εF − 2
√

(ε1 + εF )(ε2 + εF ) cos φ]
.
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