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Abstract 

This paper is devoted to the analysis of the mean waiting time for a polling system with general service order sequence 
and nonexhaustive service discipline. We obtain an expression for the mean waiting time in terms of a so-called residual 
cycle time and derive a pseudoconservation law (PCL) to help improve the accuracy of estimations of the mean waiting 
time. By multiplying the estimations of the residual cycle times for all stations by equal and unequal constants, we obtain 
two separate solutions for the mean waiting time. We furthermore propose a heuristic method that combines these separate 
mean waiting times into a final solution for the mean waiting time. Numerical examples show that our combination method 
generates accurate estimations for the mean waiting times in both cyclic and general cases over all traffic loads. 

Keywords: Mean waiting time; General service order sequence; Nonexhaustive service discipline; Pseudoconservation law 

1. Introduction 

Polling systems have a wide range of applications. Takagi has made a very good survey in [ 11, which 
presents an overview of the art of polling model analysis, a comprehensive list of references, and some 
challenging problems. 

In this paper, we investigate the mean waiting time of a polling system with general service order 
sequence and nonexhaustive service discipline. The nonexhaustive service discipline has been adopted in 
the implementation of token-ring networks because of its perceived fairness [2,3], and the general order of 
service sequence is frequently encountered in practice [4,5] because it is an alternative priority scheme that 
gives stations high priority by listing them more often in the polling sequence. 
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Exact analysis of such a system is quite difficult; in general, only approximate analytical methods for 
estimating the mean waiting time for a cyclic service nonexhaustive polling system have been presented 
in the past. Srinivasan [2] proposed an approximate technique called Myopic Analysis of Cyclic Non- 
Exhaustive Service System (MACNESS) that appears to be very effective in obtaining the mean waiting 
times, in comparison with methods reported earlier. Boxma, Groenendijk and Weststrate [5] derived a 
pseudoconservation law (PCL) for systems in which stations were polled according to a general service 
order sequence and were served in a mixed service discipline. They, however, imposed a restriction that 
stations with nonexhaustive service discipline are served only once during a cycle. 

The pseudoconservation law provides an exact expression for a weighted sum of the mean waiting 
time of every station in terms of known parameters and can be used to improve the effectiveness of the 
approximation for the mean waiting time. Here, we extend the concept of stochastic decomposition of the 
workload to general service nonexhaustive polling systems and derive a pseudoconservation law for such 
systems. Subsequently, we obtain an expression for the mean waiting time, in which there is a term called 
the residual cycle time that plays an important role in determining the accuracy of the estimation of the 
mean waiting time. We multiply the residual cycle time by an equal constant for all stations and apply 
the PCL to improve the approximation of the residual cycle time and then the mean waiting time. Such 
an approximation method can improve accuracy for light traffic loads, nevertheless, it cannot maintain the 
same level of accuracy for heavy traffic loads. Hence, as in [3], we also present another method in which 
we multiply each residual cycle time by an unequal constant to obtain accurate estimations for heavy traffic 
loads. Furthermore, to improve the estimation accuracy for all traffic loads, we heuristically combine the 
two solutions for the mean waiting times obtained by assuming equal and unequal weights on the residual 
cycle times into a final solution for the mean waiting time. Numerical examples shown below illustrate 
that our combination method generates accurate estimations of the mean waiting times for both cyclic and 
general cases. 

This paper is organized as follows. In Section 2, the system model is described and the pseudoconservation 
law for the system is derived. In Section 3, the analytical approach for the mean waiting time is presented. 
In Section 4, several numerical examples are presented and discussed. We use the results of these examples 
to show the correctness of the derived PCL. Finally, concluding remarks are made in Section 5. 

2. The pseudoconservation law 

Consider a polling system that adopts a general order of service sequence and nonexhaustive service 
discipline. The polling system is assumed to have R stations and P stages, where the stage denotes the turn 
in the polling sequence [4]. We assume that customers arrive at station ‘Y according to an independent 
Poisson process with arrival rate h,, 1 f r I R. We let the service time of a customer in station r-. denoted 

by H,, be generally distributed with mean hr and the second moment hs2’ . An independent switchover time 

Ui between stage i and stage i + 1 is also assumed to be generally distributed, 1 5 i 5 P. Let ui and ui2) 
denote the mean and the second moment of Vi, respectively. In the following, all the indices corresponding 
to stages are in modulo- P arithmetic, where the result equals P if the remainder is zero. 

The pseudoconservation law (PCL) for general service nonexhaustive polling systems can be 
obtained by 
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p &p + & $p + k(l - ,y)hRipRi “2 “j = 2(1 - P> r=l I=1 i=l j=i ’ 

+ f: PR; “2 “i 2 [Uk-, + (1 - r&h&], 
i=l j=i ’ k=i+l 

(1) 

where Ri is the underlying station of stage i; ai is the first stage after stage i to correspond to the same 
underlying station Ri; nlP, II > 0, is the probability of the number of customers in station Ri at a scan 
instant of stage i ; ihi is the mean waiting time of a customer served in stage i ; p is the total load of the 
overall system, which is equal to the sum of the load of station Y (denoted by P,., pr = &Jr,), 1 5 r 5 R; 
u is the total mean switchover time in an entire service sequence, which is equal to xi’=, ui ; co is the mean 
whole cycle time, which is equal to u/l - p; C is the sum, defined in [5, (2.8)], given by 

n 

c i Cy=‘=, Xi ifm In, 

Xi = 

i=m CiP,mXi+C~x~Xi ifm>n+l; 

and C defined similarly, but modified to make it also suitable for the case of ai = i + 1, is given by 

0 ifm =n+ 1, 

Cy=‘=,Xi otherwise. 

The detailed derivation of the PCL is given in Appendix A. 
Our goal is to estimate the mean waiting time of a customer served in station r, denoted by w,., but it is 

Wi of stage i which is involved in PCL of (1). In order to relate the PCL with w,, 1 5 r 5 R, we obtain Wi 
in terms of WR; by 

Wi = ‘Ri COsi 

c1 - n,$ & IRk=Ri) Sk 
(2) 

where si is the mean number of customers at station Ri when the server scans stage i. The derivation of (2) 
is presented in Appendix B and the expressions for I$ and si (for stage i) are derived in Appendix C. 

3. The mean waiting time 

The mean waiting time of an arbitrarily selected customer served at station r consists of two components. 
The first is the mean residual cycle time measured from the labeled customer’s arriving epoch to the next 
server’s scan instant at station r; we denote the mean residual cycle time by E,. The second is the mean 
time measured from the next scan instant of the server at station r to the epoch of the labeled customer’s 
service-beginning; this mean time is equal to qr c,. fr for nonexhaustive service discipline, where qr (= h, w,) 

is the mean queue length in station Y and cz’ is the mean conditional cycle time of station r (the cycle 

time of station Y is the time between two successive scans at station r) if a customer is served at station Y. 



176 C. Chung-Ju, H. Lain-Chyr/Performance Evaluation 25 (1996) 173-191 

However, the cycle (vacation) time including (following) the service on the head of line (HOL) customer 
is different from the cycle (vacation) time including (following) the service on the other customers [2], 
because a labeled customer arriving during either service time or switchover time on the previous cycle 
of the HOL customer is likely to have a larger “interrupted” service time or switchover time (interrupted 
by the labeled customer). This is the so-called biasing effect [6, pp. 67,681. The larger interrupted service 
time or switchover time causes the cycle time that including the HOL customer to be larger than cr+’ . We 
here replace the above q,cF by q&k’ + dr in our sy stem, where dr is the mean value used to make up this 
difference. Therefore, the mean waiting time of a customer in station r, We is equal to (& + q,cTr + dr). 
And using Little’s formula, we have 

(1 - h,c,+’ )w, =&+d,. (3) 

Usually, Zr is greater than dr and so Er plays an important role in the accuracy of the estimation of w,. 
To make it easier for the readers to follow our analytical approach for finding dr , E, and cr+‘, we shall first 

introduce our notational conventions. We generally denote by ZV& the various kinds of (conditional) cycle 
times (N = c) or vacation times (N = v). The subscript “x” is used to represent the corresponding station 
or stage for the (conditional) cycle or vacation time; the subscript “y” is used to denote whether the server 
is in service at, on vacation from, or in switchover time from, a certain station or stage y when a labeled 
customer arrives at station r; and the superscript “z” is used to represent whether there is a customer served 
at a certain station or stage z during or before the conditional cycle or vacation time. When y is equal to 
+r, -r, i+ or i-, the server is in service at station Y, on vacation from station r. in service at stage i or 
in switchover time from stage i, respectively, when the labeled customer arrives. When z is equal to +r, 
i+ or i -, there is a service at station T, a service at stage i or no service at stage i, respectively, during or 
before the conditional cycle or vacation time. Note that r is used to denote the index of the station, while 
i is used to denote the index of the stage; “+” or “-” is put before the index of station r and is put after 
the index of stage i; and y is dependent on the labeled customer’s arrival epoch, but z does not correlate 
with the labeled customer. y or z will be omitted if the condition of y or z is not necessary, and x is equal 
to 0 when the notation represents a whole cycle. For example, the mean whole cycle time is denoted by cu. 
Furthermore, we use “*“, ““” or “-” above the notation “IV” to stand for the (conditional) cycle or vacation 
time including or after the service on the HOL customer, the (conditional) “residual” cycle or vacation 
time, or the (conditional) cycle or vacation time corresponding to a “stage”, respectively. 

We derive dr first. dr is equal to the difference between ir,_, and vr +r if the server is on vacation from 
station r and station r is not empty when the labeled customer arrives; it is equal to zero otherwise. ir,.,_,. 
is the mean conditional vacation time of station r after the HOL customer if the server is on vacation from 
station r when the labeled customer arrives and I$ is the mean conditional vacation time of station r if 
there is a server at station r before this vacation. The probability that the server is on vacation from station 
r and station r is not empty is 1 - cr - Pr, where k is the probability that station Y is empty and pr is the 
load of station r. Thus, we have 

4 = (1 - 6 - Pr)(G,-r - V,“). 

er in (4) can be approximated (similar to [2,7]) by 

(4) 

cr g 
1 - h,c,+’ 

1 - h,(v,+r - i;,_,)’ 
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$._r in (5) is the mean conditional residual vacation time of station r if the server is on vacation from 
station r when the labeled customer arrives. 

In a cyclic system, [2,8] made an assumption that Z, is thought of as equal for all r. However, Fuhrmann 
and Wang [3] reported that as the system becomes heavily loaded, there is a tendency for queues with 
relatively small values of c:’ to have larger values of E,. In a general system, we will consider E, to be 

proportional to C!2’/2Ci if the server is on the pseudocycle time of stage i and Ri = r, where Ci (Ej2’) is the 
first moment (the second moment) of the pseudocycle time of stage i . Here, the pseudocycle time of stage 
i is the time between the server’s scan instants at stage i and stage ai. The probability that the server is on 
the pseudocycle time of stage i is Ci /co. Thus E, can be expressed approximately as 

2, 2 K, (6) 

where 

2 

p) 2 0 (2) 
I t1 - nk)hRk + ui (2) - [(l - l&h&]2 - U:/ + &l - rr#zR, + U/J 

I 
) (7) 

k=i 

and K, is a variable that can be regarded as equal or unequal for all r. If K, is regarded as equal for all r, 
we denote K, by K,. Then the mean waiting time of a customer in station r in this case, denoted by 2~1: 
instead of wr, can be obtained by 

E-- 1 

wr = 1 _ +-,+r 
[ 

Ke (, ,F_ ) g + (1 - {r - Pr)(G-,-r - U:r)] . 
I l-r 

(8) 

We can use the PCL to obtain the constant Ke and then the mean waiting time w:. On the other hand, if K, 
is regarded as unequal for different stations r, we let K, = Ku/$, where K, is a constant and !& varies 
for different r. As in [3] for the cyclic case, we could let qr be mrc,fr , where m, is the total number of 
polls of station r in a polling sequence and c:’ is the mean conditional cycle time of station r if there is 

a service at station r; instead, however, we conducted a substantial number of experiments to determine a 
better qr. Our experiments showed that q,. is better chosen as m,i;i (@,. = m,?~), where 2: is the mean 
residual cycle time obtained via an alternative approach as follows. 

When the labeled customer arrives at station r, CL is equal to the mean conditional residual vacation time 

I$_~ if the server is on vacation from station r, and Zi is equal to (/~:~)/2h,) + Gr,+r if the server is serving 

the HOL customer in station r, where /z~~‘/~/z,. is the residual service time of the served customer and 
Gr,+r is the mean conditional vacation time of station r after the HOL customer if the server is in service 
at station r when the labeled customer arrives. The probability that the server is on vacation from station 
r is 1 - P,. , while the probability that the server is in service at station r is pr. As a result, Zi is equal to 

(l-pr)ir,-r+pr((h!2’/2hr)+A Vr,+r). This idea is intuitively correct, because the mean residual cycle time 
of a single-poll station is approximately twice the mean residual cycle time of a two-poll station. In other 
words, the mean residual cycle time multiplied by the number of polling times should be approximately 
equal for all stations. Therefore, if the estimated rn,ZL is larger (smaller) for a certain r than for others, then 
the Zr of that station r in (6) is overestimated (underestimated) and K, should be made smaller (larger) 
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to compensate for the overestimation (underestimation) by letting it be a constant K, divided by m,.E:. 
Therefore, E, in (6) can be expressed as 

v TV 
Cr = 2 mr 

( [ 
(1 -/&I&,-r + Pr ~~+d,+r)])-i.(i,~=r~L/2’. (9) 

Therefore, in this case the mean waiting time of a customer in station r, denoted by WY instead of r.ur, is 
given by 

w,U 2 ’ K, m, 

(H 
1 - h,c,+’ 2co 

(1 - Pr)Gr,-r + Pr (g + ;r,+r)])-’ *(i,zri$2’ 

+ [(I - tr - F&)(%,-r - v,+‘)l - (10) 

We can use the PCL in a similar manner to obtain the constant K, and then the estimated mean waiting 
time WY. 

Furthermore, we heuristically combine the mean waiting times w: and WY by letting 

w,c = (1 - p)w,” + pw,u, (11) 

where w: denotes the mean waiting time of station r in this combination method. We add weights of 
(1 - p) and p on r_uF and WY, respectively, because the estimation of w: is more accurate under light traffic 
conditions, while the estimation of WY is more accurate under heavy traflic conditions. The unknown 
parameters cr+‘, I+?‘, &,_,, i?r,+r and $,+ in the above derivation can be obtained in Appendix D. 

4. Numerical examples and discussion 

To clarify our analytical approach, we first state the numerical algorithm for the analysis below. 
Step 1 [Set initial values of no] 

l Set initial values of J$ by letting 

&CO r&l-- VisuchthatRi=r, 1iriR. 
mr 

Step 2 [Find new values of no] 

Obtain AZ:, (z) and AZ, (z) (defined in Appendix C and rj denotes the stage corresponding to the jth 
poll of station Y in the polling sequence) in (C.4). 
Generate a set of m, simultaneous equations derived from (C.2) and (C.3) for a given r, 1 5 r 5 R. 
Solve the m, simultaneous equations to find new values of ns, denoted by I?;, and normalize the solution 
by multiplying by a constant so as to match 

m,-&co= c I?,?, 1iriR. 
(i 1 Ri=r) 
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IF (Ai < a pre-determined threshold for all i) THEN 

Terminate the iteration. 

ELSE 

Repeat Step 2. 

Step 3 [Find mean queue lengths at scan instants] 
l Obtain the r$, y1 2 1, 1 I j 5 m,, 1 I r 5 R, from (C.2) recursively. 

a Obtain the mean queue length at scan instant of stage i , Si = C,“= I II . ~1 for 1 5 i 5 P . 
Step 4 [Find mean conditional cycle times and vacation times] 
l Find means of conditional cycle times and conditional vacation times in Appendix D. (Note that these 

mean conditional cycle times in (D.3), (D.6) and (D.9) are evaluated by an iterative method similar to 
that used in (C.6).) 

Step 5 [Obtain the mean waiting times w:, uly and t$] 
l Substitute 7.~:. of (8) (r.ui_ of (lo)), n,? and Sk for all k such that Rk is equal to Ri into (2) to express ulri 

in terms of Ki (K,). ’ 

l Use (1) of PCL to find K, and KU, and then obtain w: and WY for all Y. 
a Obtain the mean waiting time of station r, w: from (11). 

To assess the accuracy of our approximate analysis, we here show examples of cyclic systems, introduced 
in [2,3], and general systems; we conduct a system simulation and define an estimation error as 

R Prl(Wr - $)I 
estimation error = C x lOO%, 

r=l PWS 

where ws is the simulation result for the mean waiting time of station r and wr is our analytical result 
for the mean waiting time of station r. In Tables 1-6, the simulation results of the mean waiting times w: 
are indicated with 95% confidence intervals [ 10, Section 6.31; “Srinivasan”, “B&M’ and “F&W’ denote 
the results of the approximation methods from Srinivasan [2], Boxma and Meister [8], and Fuhnnann and 
Wang [3], respectively; and “C&H” denotes the approximation results from our analytical method. 

Our first example (Example 1) is an asymmetric cyclic service nonexhaustive polling system with the 
same arrival rates. The parameters of the system are assumed to be R = P = 16; h, = l/16 for all r; all 
service time distributions are exponential with h 1 = h7, h, = h l/3 for any r # 1, 7; and all switchover 
times are equal to 0.05. Table 1 shows that, under light and medium loads, Srinivasan, B&M and w: have 
very accurate results; w: is good; but WY is somewhat worse. Under heavy load, w: and WY have very 
accurate results; next, in order, are Srinivasan, w:, F&W and B&M. 

Our next example (Example 2) is an asymmetric cyclic service nonexhaustive polling system with the 
same service rates. The parameters of the system are assumed to be R = P = 16; h, = 0.16, r = 1, 2, 3,4; 
h, = 0.03, r = 5,6, . . . , 16; all service times are exponentially distributed with identical mean h, for all r; 

and all switchover times are equal to 0.05. Table 2 shows the results of the mean waiting times of stations. 
Under light load, all the methods are very accurate except w, . LJ Under medium load, Srinivasan and w: are 
very accurate; w: and WY are good; but B&M is somewhat worse. Under heavy load, F&W is the best; 
next, in order, are Srinivasan, w: and w:, but there is only a slight difference between these three methods; 
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Table 1 
The mean waiting times for an asymmetric cyclic system with the same arrival rates (Example 1) (see also [2, Table 71 and 
[3, Case 31). (Simulation result w: is indicated with 95% confidence interval) 

Method Station Load 

0.3 0.5 0.8 

@estimation error(%) 

W,” 

@estimation error(%) 

Srinivasan 

@estimation error(%) 

B&M (F&W) 

@estimation error(%) 

1 0.833 f 0.007 1.733 * 0.014 8.960 f 0.047 

2-6 0.796 f 0.006 1,600 f 0.012 8.004 f 0.041 
7 0.825 f 0.006 1.718 f 0.014 8.950 f 0.047 

8-16 0.796 f 0.006 1.593 It 0.012 7.993 * 0.041 

1 

2-6 
7 
8-16 

0.830,0.781 1.729, 1.567 9.526, 8.870 

0.798,0.819 1.596, 1.664 7.774,8.038 
0.830.0.870 1.729, 1.570 9.518, 8.937 
0.798,O.g 19 1.596, 1.664 7.774,8.040 
0.321, 3.777 0.278.5.735 3.851,0.543 

1 
2-6 
7 
8-16 

1 
2-6 
7 
8-16 

1 
2-6 
7 
8-16 

0.815 1.648 9.001 
0.804 1.630 7.985 

0.815 1.649 9.053 

0.804 1.630 7.987 
1.210 2.852 0.334 

0.835 1.752 9.349 
0.796 1.586 7.900 

0.835 1.752 9.340 

0.796 1.586 7.850 
0.218 0.878 2.153 

0.831 1.742 10.060 (7.950) 

0.797 1.590 7.540 (8.480) 

0.831 1.742 10.060 (7.950) 
0.797 1.590 7.540 (8.480) 

0.233 0.528 7.702 (7.595) 

I,$ is worse; and B&M is the worst. From these two examples of cyclic systems, we can conclude that our 
results are as good as Srinivasan’s and most of the estimation errors are within 5%. 

We now turn to examples of.polling systems with general order of service sequence. To assess the validity 
of our analysis, we here illustrate three general polling systems with different general orders of service 
sequence, service time distributions and switchover time distributions. The first example (Example 3) has 
system parameters R = 5, P = 10; service order sequence: { 1 2 3 1 4 1 5 3 1 4}; I.,.: (0.1 0.02 0.05 0.02 
O.Ol), ?- = 1,2, . . . ( 5; all service times are exponentially distributed with identical means h, for all r; and 

all switchover times are equal to 0.1. Table 3 lists the mean waiting times of ws, w:, WY and w:. w,E is 

more accurate than WY under light and medium loads, WY is more accurate than w: under heavy load and 
wF is more effective than w: and WY under all traffic loads. 

The next example (Example 4) is the same as Example 3 except that the service time distribution is 
hyperexponential with identical means h, for all r and the switchover time is exponential with mean 0.1; 
the hyperexponential distribution consists of three exponential distributions with mean = 0.5hr, h, and 
1.5h, in equal probability. The results of w:, w:, WY and w: are listed in Table 4. As in Table 3, w: is more 
effective than w: and WY under all traffic loads. The higher accuracy of w: compared with w: and WY 



Table 2 
The mean waiting times for an asymmetric cyclic system with the same service rates (Example 2) (see also 12, Table 121 and 
13, Case 41). (Simulation result UJ,” is indicated with 95% confidence interval) 

Method Station Load 

0.3 0.5 0.8 

WS 14 0.902 f 0.004 1.926 f 0.009 18.321 f 0.055 
5-16 0.716 f 0.006 1.262 f 0.011 3.570 f 0.019 

w,“. w,” 1-4 0.899.0.908 1.907, 1.951 17.618, 17.853 
5-16 0.7 17,0.704 1.276, 1.214 4.173. 4.002 

@estimation error(%) 0.263, 1.029 1.031,2.200 8.536. 5.99 1 

4 14 0.902 1.929 17.806 
5-16 0.713 1.245 4.036 

6.498 @estimation error(%) 0.151 0.585 

Srinivasan 14 0.901 1.922 
5-16 0.714 1.255 

@estimation error(%) 0.172 0.333 

B&M (F&W) I-4 0.897 1.884 
5-16 0.720 1.307 

@estimation error(%) 0.556 2.679 

17.901 
3.967 
5.471 

16.870 (18.500) 
3.140 (3.530) 
9.405 (1.029) 

- 
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Table 3 
The mean waiting times for an asymmetric general system with exponential service time and deterministic switchover time 
(Example 3). (Simulation result ws is indicated with 95% confidence interval) 

Mean waiting time 

WY 

w,“. w,” 

@estimation error(%) 

W,” 

@estimation error(%) 

Station 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

Load 

0.3 

0.859 f 0.009 
1.545 f 0.027 
1.096 f 0.014 
1.013 f 0.020 
1.453 * 0.035 

0.896, 0.682 
1.446, 1.973 
1.056, 1.156 
0.977, 1.026 
1.392, 1.863 
4.263, 15.988 

0.832 
1.604 
3.086 
0.992 
1.534 
2.700 

0.5 0.8 

- 2.763 f 0.020 18.835 f 0.072 
4.380 f 0.069 24.803 f 0.208 
3.408 f 0.035 23.217 f 0.127 
2.747 f 0.043 10.581 f 0.082 
3.937 I!= 0.084 16.517 f 0.175 

3.075, 2.412 20.158, 17.762 
3.757, 5.255 22.984,27.509 
3.165, 3.573 20.034,22.445 
2.733, 2.897 13.376, 13.587 
3.461, 4.663 17.411, 19.403 
9.498, 11.036 10.586, 8.485 

2.743 18.241 
4.506 26.604 
3.369 21.963 
2.815 13.545 
4.062 19.005 
1.345 7.207 
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Table 4 
The mean waiting times for an asymmetric general system with hyperexponential service time and exponential switchover 
time (Example 4). (Simulation result w,” is indicated with 95% confidence interval) 

Mean waiting time Station Load 

0.3 0.5 0.8 

@estimation error(%) 

w ,” 

; 
4 
5 

@estimation error(%) 

0.997 f 0.010 3.233 f 0.025 
1.707 f 0.032 4.934 f 0.079 
1.263 f 0.017 4.016 f 0.043 
1.141 ho.023 3.164 & 0.050 
1.685 f 0.044 4.514 * 0.100 

21.945 f 0.084 

27.860 f 0.233 
26.837 f 0.150 
11.628 f 0.090 

18.089 zt 0.194 

1.064, 0.791 3.597, 2.784 23.503,20.429 
1.604, 2.274 4.219, 6.037 26.151,31.584 
1.215, 1.341 3.642, 4.137 23.153,25.962 
1.124, 1.194 3.142, 3.365 15.315, 16.279 
1.543, 2.148 3.878, 5.362 19.496,22.689 
5.483, 17.052 10.171, 11.516 11.155, 10.876 

0.982 3.191 21.044 
‘1.805 5.128 30.497 
1.253 3.890 25.400 
1.145 3.253 16.086 
1.725 4.620 22.050 
1.654 2.237 9.267 

is because t.uF and t.$ compensate for each other-one is overestimated and the other is underestimated. 
From the two examples, we find the estimation errors of w: are within 5% under light and medium loads 
and within 10% under heavy load. 

We finally examine another polling system with more stations (Example 5), for which R = 8, P = 15; 
service order sequence: { 1 2 3 4 5 1 6 7 1 8 2 4 1 5 7); h,: (0.1 0.03 0.01 0.03 0.02 0.01 0.04 O.Ol), r = 
1,2,... , 8; all service times are deterministic and equal to 1; and all switchover times are exponentially 
distributed with identical means 0.1. Table 5 lists the mean waiting times of w:, w:, WY and w:. ,wF is 
more accurate than WY under light and medium loads, WY is better than w: under heavy load and w: is 
more effective than w: and WY under all traffic loads. 

Additionally, Table 6 shows the simulation results of the mean waiting times of stages and the RHS and 
LHS of the PCL for Example 3. The table verifies the validity of the PCL for the general order of service 
sequence. As a matter of fact, ail other examples are also checked, but the results are not shown here. 

5. Concluding remarks 

In this paper, we have presented a new method for analyzing the mean waiting time for a nonexhaustive 
polling system with general order of service sequence. We first derived a PCL to help improve the precision 
of estimations of the mean waiting time and obtained the mean waiting time in terms of a residual cycle 
time. We multiplied the estimated mean residual cycle time of each station by an equal or unequal constant 
and used the PCL to find the multiplication constants and then the corresponding solutions for the mean 
waiting times. The method to derive the mean waiting time obtained by multiplying by an equal constant 



w,“, w,” 

Table 5 

The mean waiting times for an asymmetric general system with deterministic service time and exponential switchover time 
(Example 5). (Simulation result ws is indicated with 95% confidence interval) 

_ 

Mean waiting time Station Load 

0.3 0.5 0.8 
_ 

ws 1 0.621 f 0.003 1.513 f0.007 9.709 f 0.030 
2 0.916 f 0.008 1.958 f 0.016 8.746 f 0.044 
3 1.483 f0.018 2.930 f 0.037 12.110 f 0.096 
4 0.893 f 0.007 1.943 f 0.016 8.702 f 0.044 
5 0.896 f 0.009 1.888 f 0.018 7.327 f 0.042 
6 1.482 f 0.018 2.925 f 0.037 12.205 f 0.098 
7 0.914 f 0.007 2.034 f 0.015 10.929 + 0.052 
8 1.469 f 0.018 2.924 zk 0.037 12.238 f 0.099 

1 0.643,0.549 1.617, 1.400 9.423, 9.203 
2 0.901,0.909 1.909, 1.945 9.086, 8.983 
3 1.464, 1.684 2.830, 3.281 12.570, 12.909 
4 0.886,0.917 1.890, 1.970 9.049, 9.165 
5 0.891.0.881 1.852, 1.823 8.048, 7.472 
6 1.464, 1.691 2.829, 3.301 12.566, 12.997 
7 0.908.0.944 1.979,2.085 10.337, IO.865 
8 1.464, 1.686 2.829, 3.287 12.569. 12.920 

1.938,7.433 4.343,5.414 4.154, 4.042 

1 0.615 1.509 9.248 

2 0.903 1.927 9.004 
3 1.530 3.055 12.841 
4 0.895 1.930 9.141 
5 0.888 1.838 7.587 
6 1.532 3.065 12.91 I 
7 0.919 2.032 10.759 
8 1.530 3.058 12.850 

@estimation error(%) 1.218 1.173 4.065 

@estimation error(%) 

W,c 
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Table 6 
Simulation results of the mean waiting times of stages and the LHS and RHS of pseudoconservation law (Example 3) 

Load Stage Mean waiting time of stage PCL 

LHS RHS 

0.3 l-5 0.855 1.545 1.102 0.878 1.044 0.300 0.298 
610 0.901 1.453 1.089 0.811 0.981 

0.5 l-5 2.857 4.380 3.423 2.691 2.820 1.499 1.506 
6-10 2.956 3.937 3.393 2.622 2.67 I 

0.8 l-5 19.771 24.803 23.139 17.956 10.662 13.763 13.885 
6-10 19.709 16.517 23.298 18.227 10.495 

- 
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is similar to that of Srinivasan, and the approach to derive the mean waiting time obtained by multiplying 
by an unequal constant is modified from the method of Fuhrmann and Wang. We further combined the 
two mean waiting times into a final solution. Five numerical examples were presented. We found that the 
estimations of the mean waiting time obtained by multiplying by an equal constant are generally good 
for light and medium loads; the estimations of the mean waiting time obtained by multiplying by unequal 
constants are generally good for heavy loads; and the estimations of the mean waiting time obtained by 
our combination method are effective for all traffic loads. The estimation errors of our combination method 
are in general within 5% for both cyclic and general cases and have almost the same accuracy as those 
of Srinivasan in the cyclic case, but Srinivasan’s approach cannot be used directly in the general order of 
service approximations. 
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Appendix A. The derivation of a pseudoconservation law for a general service nonexhaustive system 

We first define & as the mean amount of work in station Y as the server departs from stage i and 
ti = (1 - ~t~u)h~~ as the mean visit time at stage i, for 1 ( r 5 R and 1 I i 5 P. Here, the work in station 
r at a time epoch denotes the total service time of all customers in station r. If the time epoch is just on the 
service time of station r, the work includes the residual service time. 

We start from the following equation, derived from [l 1, (3.4)--(3.6)]: 

R 

c P R 
Prwr = 2(1 - &=r c 

r=l 

hrh;2) + $-$Iz) + +&$. 
i=l j=l 

(A.11 

Although [ 1 l] studied the cyclic service case, [ 11, (3.4)-(3.6)] are still suitable for our system because they 

do not involve the service order. cjr=t uj C,“=, 4; in the last term of (A.l) can be rewritten as 

kUj&j = FkUj@! = F F riE1 uj@_/ 
j=l r=l r=lj=l t-1 i=l j=ri 

(A.3 

where we decompose $/, j from ri to ri+t - 1 into two parts: the mean work left in station r at the server’s 
departure from stage ri, 47 and the mean work arriving at station r during the time interval between the 

SeIWX’S departures from Stage rj and Stage j, pr&i+I [u&l -I- tk]. If we replace ri by i so as to make 

c,“=, cy!r equivalent to CL, and replace tk by (1 - nf))h,yk, (A.2) becomes 
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(A.3) 

With respect to the nonexhaustive service discipline, similar to [I 1, (3.13), (3.14)], @ki in (A.3) is (1 -- 

n$h~, (iEi + h~~)h~~ and we know that C,“=t pr wr = C:=, Ipi Wi, where vi is the load of stage i. 

Consequently, the PCL for general service nonexhaustive polling systems is obtained by 

e(l -lCs) [%-pRiz:] Gi 
i=l 

p -&2) + &Ui” + k(l - Jr~)hRiPRj ak1 3 
= 2(1 - &=, i=l i=l j=i ’ 

+&,i “2’ ’ f: [td,_, + (1 - 7.&h&,]. 
i=l j=i ’ k=i+l 

(A-4) 

(A.4) can be simplified to become [ll, (3.22)] for a system with a cyclic service order sequence and 
nonexhaustive service discipline and can be extended to a system with a general service order sequence 
and mixed service disciplines (exhaustive, gated and nonexhaustive), where stages corresponding to the 
same station can have different service disciplines. we have verified the validity of (A.4) by simulations in 
Table 6. 

Appendix B. The derivation of Oi in terms of WRY 

Denote the number of customers waiting at station Ri when the server scans stage i by Si with mean 
si, 1 5 i 5 P, the probability of {& = n} by rr/, it > 0, and the probability generating function (pgf ) 

of Si by Si(z), where Si(Z) G C,“,unI!z”. The number of customers left in station Ri as a customer 

departs from that station at stage i is equal to the number of customers arriving at station Ri during the 
waiting time of the customer served at stage i and during the customer’s service time HR~ ; it is also equal 
to the number of customers in station Ri as the service begins minus one plus those customers arriving 
at station Ri during the service time of the customer. Consequently, the pgf of the number of customers 
arriving at station Ri during the waiting time of the customer served at stage i, denoted by Wi (z), is equal 
to [ (Si (z) - T$)/( 1 - no)] . z-’ . Because the arrival process is a Poisson process, the Laplace Stieltjes 

transform of the distribution function of the waiting time at stage i is Wi(l - (S/h&)). We differentiate 

]-I& (1 - (s/~R;))] and let s = 0 to obtain the mean waiting time I&, given by 

(B-1) 

On the other hand, wr can be regarded as the weighted sum of tIiJi for all i such that Ri = r; wr is expressed 
as 

(B.2) 
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where /?i is the departure rate of customers from stage i and is given by 

pi = (1 - Jr$/Q. 

Then, from (B.l)-(B.3) and noting that & 1 Ri=r)(l - ~0) = &co, Wr can be obtained by 

Wr = 

From (B.l) and (B.4), lZli can be expressed in terms of WRi as 

(B.3) 

(B.4) 

(B.5) 

Appendix C. The estimations of $ and si 

Denote (?:+ (e:-) to be the conditional pseudocycle time of stage i if there is a service (no service) at 

stage k and its mean is ci -k+ ($7; denote A;,i (A;,) to be the number of customers arriving at station r 

during cz: (CL,!,-, ) and its pgf is AZ:, (z) (A:‘:, (z)); and denote c$+ (of-) to be the probability of stage 
i having customers at a scan instant of stage i if there was a service (no service) at stage k [9]. 

Srj+l is equal to Az+I if Srj = 0 or equal to the sum of (Srj - 1) and AZ:, if Srj > 0. This relation can 
be expressed as 

Sri+* (Z) = nt,9 , . A;;,(z) + 2 n; . Zm-l - A;+i (z). Cl) 
m=l 

By comparing the coefficients of zn-’ on both sides of (C. l), we have 

(C-2) 

Substituting IZ = 1, n = 2, . . ., into (C.2) and performing a simple algebraic manipulation, we obtain Y$ 

expressed in terms of nt, ni , . . . J$ . . . . x:~, for n 2 1. Again, substituting J$ into mr summability- 

to-one criteria given by 

2 n;=l forlIj5m,, (C.3) 
n=O 

we obtain a total of mr simultaneous equations consisting of # , I$, . . . , nfm,. The $, 1 5 j 5 mr , 

can thus be obtained by solving these m, simultaneous equations via numerical algorithm if Az:r (z) and 

AZ;, (z) are known, 
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Under the assumption that the visit times of stages are independent, Az,i (z) and A:::, (z) can be 
obtained by 

A;:,(z) = H;(z) . U;(z) . 
rj+l-l 

fl 
i=rj+l 

([a?+ . H;;;(z) + 1 - ai”’ . U;(z)} , 

rj+l-1 

A;yl (z) = U,:.(z) . n 
i=rj+l 

([air,- . Hki(z) + 1 - czi”-1 . U/-(z)] , 

(C.4) 

where H;,(z) denotes the pgf of the number of customers arriving at a certain station r during H,,, 1 I 
r, r’ < R; Ulr (z) denotes the pgf of the number of customers arriving at station r during Ui, where 1 i r I R - 
and 1 (i 5 P;andnisdefinedas 

fi 

n~=‘=,xi ifmsnand(n-m+l) < i’ 

xi= 1 ifm = IZ + 1, 
i=m 

1 n,‘=,.Xi’fly=lXi ifm >n+l. 

If we regard our system as an approximately cyclic polling system with P independent stages and assume 
the arrival rate for stage i is equal to the departure rate for stage i, then we have 

c$+ = min@$+, l), 

qk- 
I 

= $1 - lc; - (1 - Tl~)“~+l. 

where 

$+ = u + hRk + min[(h& - /3!$;+, mRk 

Eq. (C.5) comes from the equation 

(1 - ?7,“) . ai”’ + 7ct . ai”- = 1 - ns 

and from [9, (9d) and (9e)] rewritten as 

a:+ = min(/$$+, l), 

cyk- I = min(/$$, 1). 

(C.5a) 

(CSb) 

l]hR, + c min(k,$+, mr)hr. (W 
r#Rk 

(C.7) 

(C.8a) 

(C.Sb) 

Eq. (C.7) always holds under any given n,! and x!. However, its validity is violated if piZbf or piC:- in 

(C.8) are greater than 1. Because /3i$- > 1 will certainly result in pit:+ > 1, we modify (C.8b) to be 

(C.5b) in our analysis in order to preserve the validity of (C.7). Note that the mean conditional cycle time 
$+ in (C.6) is computed by an iterative method. 

From (C.2)-(C.6), we find that there is a recursive relationship among no, AZ:, (z) and AT,, (z). The 

solutions for ns, AZ:, (z) and AT;, (z) can be found by an iterative method, which is described in Section 4. 

Consequently, we substitute the resulting rc; ‘s and the distributions of AZ:, ‘i and AZ:, ‘s into (C.2) to 

obtain 7tc, for all r, j and n, and then the mean queue lengths at scan instants si for all i can be obtained. 
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Appendix D. The derivations of cr+‘, v,+‘, i&, _r, i$,+r and D,_, 

The mean conditional cycle time of station r if there is a service at station r, cj!’ can be expressed as a 
weighted sum of the mean conditional pseudocycle time of stage i if there is a service at stage i, denoted 
by Ei+. cr+’ is given by 

(D-1) 

where ti’ is obtained by 

a;-1 
-i+ - 
ci = c uk i- ‘Ri i- c min 

k=i 
(‘i+ ;gl z;k~k~ ;g, I&) h,. 03.2) 

V#Ri 

The function Z& in (D.2) is equal to 1 if 7~ = Rk and is equal to 0 otherwise; ck’ denotes the mean 
conditional whole cycle time if there is a service at stage i and is given by 

C;+ 2 U + hRi + min[cF(hR; - /$), mRi - l]hR, + c R-Ii@,+&,, m,)h,. 
V#Ri 

(D.3) 

Consequently, the mean conditional vacation time of station r if there is a service at station I- before this 
vacation, vr+’ can be obtained by I$’ = cr+’ - h,. 

The mean conditional residual vacation time of station r if the server is on vacation from station r when 
the labeled customer arrives, ii,_, is given by [2, (15)] 

ii,_, E c - 
(i) Ri#r} ’ (pip, 

’ UilCO v 
* G,i+ + C - 

i=l 1 - &. * urli-v 
(D-4) 

where Cpi is the load of stage i and Cpi = fij hRi, and i)r,i+ (G,,i_) denotes the mean conditional residual 
vacation time of station r if the server is in service at (in switchover time from) stage i when the labeled 
customer arrives. ijr,i+ for stage i, Ri # r, and ij,i- for stage i are obtained by 

ht2! P-1 
” 
Vr,i+ z & + c uk+xmh Ri # r, 

1 k=i vfr 

(2) i 

G,i- g b + ‘2 Uk + C min 

G-1 r’-1 

C&+_ c z:k~k~ c I$ h,, 
I k=i+l v#r k=i+l k=i+l 

(D.5) 

where c$+ (ch:T_) is the mean conditional whole cycle time if the server is in service at (in switchover 

time from) stage i when the labeled customer arrives and there is a service at stage yi ; ri is a notation for 

the first stage after stage i that corresponds to station ‘Y’, 1 5 i, ri 5 P. c&i’, for stage i, Ri # r and 

cb’T_ are given by 
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ri+ 
h(2) 

cu,i+ 2 ~4 -k F -k hr i- min(ck’,f+(h& - pi), mR; - l)hR, + min(cL’T+(h, - B,.i), m, - l)h, 
4 

+ c min(c<Lh,,mq)h,, Ri # r, 0.6) 
v#Ri.r 

r’+ u!2’ 
cO,~_ 2 u - pi + k + hr + min(cblF_(h, - /3,-i), m, - l)h, + C min(cblT_A,, m,)h,. 

1 rlfr 

The mean conditional vacation time of station r after the HOL customer in station r if the server is in 
service at station r when the labeled customer arrives, Gr,+r is obtained by 

(D.7) 

where Cr,i+ is the mean conditional vacation time of station r after the HOL customer if the server is in 

service at stage i when the labeled customer arrives. Gr,i+ for stage i, Ri = r, can be obtained by 

n;-I 

Gr,i+ 2 C uk + C min Cai+ ( o,l+ kz, z;,~k~ ;g, I:,) h,, Ri = ‘3 (D.8) 
k=i a#& 

where ciii?+ is the mean conditional whole cycle time if the server is in service at stage i and Ri = r when 

the labeled customer arrives and there is also a service at stage ai. czi’, for Ri = r is given by 

hc2) 

u+:+ c min(ct’lcA,,, m,)h, mR, = 1, 

R, V#Ri ’ 

Uif ‘v 
‘O.i+ = ’ 

ht2) 

u + 2 -k hRi + min[c$T+(ARi - pi - &>, mRi - 2]hR, 

+c min(c:Lh?, m,)h, 
of& ’ 

mR, > 1. 

(D-9) 

The mean conditional vacation time of station r after the HOL customer if the server is on vacation from 
station r when the labeled customer arrives, fir, _,. is given by [2, (17)] 

iTr.-). z ’ Ui/CO A 

(i,R;fr)l “, CrYi++g 1 -pPr *ur&* c 
- . (D.lO) 

where i)r,i+ (Cr,i_) denotes the mean conditional vacation time of station r after the HOL customer if the 
server is in service at (in switchover time from) stage i when the labeled customer arrives. Cr.i+ for stage 
i, Ri # r and Gr.i- for i are obtained by 
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k=ri ri i 

(D.11) 

where cbir+ (cb’T_) is the mean conditional whole cycle time if the server is in service at (in switchover 

time fro;) stag; i when the labeled customer arrives and there is a service at stage ri and is given in (D.6). 
Note that C,., + should be greater than uz’. 
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