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Abstract. Most previous solutions for groundwater flow in-

duced by localized recharge assumed either aquifer incom-

pressibility or two-dimensional flow in the absence of the

vertical flow. This paper develops a new three-dimensional

flow model for hydraulic head variation due to localized

recharge in a rectangular unconfined aquifer with four

boundaries under the Robin condition. A governing equation

describing spatiotemporal head distributions is employed.

The first-order free-surface equation with a source term

defining a constant recharge rate over a rectangular area

is used to depict water table movement. The solution to

the model for the head is developed with the methods of

Laplace transform and double-integral transform. Based on

Duhamel’s theorem, the present solution is applicable to flow

problems accounting for arbitrary time-dependent recharge

rates. The solution to depth-average head can then be ob-

tained by integrating the head solution to elevation and di-

viding the result by the aquifer thickness. The use of a rect-

angular aquifer domain has two merits. One is that the in-

tegration for estimating the depth-average head can be ana-

lytically achieved. The other is that existing solutions based

on aquifers of infinite extent can be considered as special

cases of the present solution before the time when the aquifer

boundary had an effect on head predictions. With the help of

the present solution, the assumption of neglecting the verti-

cal flow effect on the temporal head distribution at an ob-

servation point outside a recharge region can be assessed by

a dimensionless parameter related to the aquifer horizontal

and vertical hydraulic conductivities, initial aquifer thick-

ness, and the shortest distance between the observation point

and the edge of the recharge region. The validity of assum-

ing aquifer incompressibility is dominated by the ratio of the

aquifer specific yield to its storage coefficient. In addition, a

sensitivity analysis is performed to investigate the head re-

sponse to the change in each of the aquifer parameters.

1 Introduction

The water table rises due to localized recharge, such as rain-

fall, lakes, and agricultural irrigation, into the regional area

of the aquifer. Excess recharge may cause soil liquefaction or

wet basements of buildings. Groundwater flow behavior in-

duced by recharge is therefore crucial in water resource man-

agement. The Boussinesq equation has been extensively used

to describe horizontal flow without the vertical component in

unconfined aquifers (e.g., Ireson and Butler, 2013; van der

Spek et al., 2013; Yeh and Chang, 2013; Chor and Dias,

2015; Hsieh et al., 2015; Liang and Zhang, 2015; Liang et al.,

2015). The equation can be linearized by assuming uniform

saturated aquifer thickness for developing its analytical so-

lution. Marino (1967) presented quantitative criteria for the

validity of the linearized Boussinesq equation. The criteria

are introduced in the next section.

The rate of localized recharge can be a constant for the

long term but should be dependent of time for the short term

(Rai et al., 2006). An exponentially decaying function of

time is usually used for recharge intensity decreasing from a

certain rate to an ultimate one. An arbitrary time-dependent

recharge rate is commonly approximated as the combination

of several linear segments of time to develop analytical solu-

tions for water table rise subject to the recharge.
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Analytical models accounting for water table rise due to

the recharge region of an infinite-length strip are reviewed.

One-dimensional (1-D) flow perpendicular to the strip is

considered while the flow along the strip is assumed ignor-

able. These models deal with aquifers of infinite or finite ex-

tent with various types of outer boundary conditions. Han-

tush (1963) considered an aquifer of infinite extent with-

out a lateral boundary. Rao and Sarma (1980) considered an

aquifer of finite extent with two constant-head (also called

Dirichlet) boundaries. Later, they developed a solution (Rao

and Sarma, 1984) for a finite-extent aquifer between no-flow

and constant-head boundaries. Latinopoulos (1986) deliber-

ated on a finite-extent aquifer between two boundaries, one

of which is under the Robin condition and the other is un-

der either the Dirichlet or no-flow condition. The recharge

rate is treated as a periodical pulse consisting of constant

rates for rainy seasons and zero for dry seasons. Bansal and

Das (2010) studied an aquifer extending semi-infinitely from

a Dirichlet boundary and overlying a sloping impervious

base, and indicated that the change in groundwater mound

induced by a strip-shaped recharge region increases with the

base slope.

A variety of analytical models were presented to describe

water table rise for 2-D flow induced by rectangle-shaped

recharge into unconfined aquifers. The differences between

these solutions are addressed below. Hantush (1967) consid-

ered an infinite-extent aquifer with localized recharge hav-

ing a constant rate. Manglik et al. (1997) handled an arbi-

trary time-varying rate of recharge into a rectangular aquifer

bounded by no-flow stratum. Manglik and Rai (1998) inves-

tigated flow behavior based on an irregularly time-varying

rate of recharge into a rectangular aquifer with the lateral

boundary under the Dirichlet condition. Bruggeman (1999)

introduced an analytical solution for steady-state flow in-

duced by localized recharge into a vertical strip aquifer be-

tween two Robin boundaries. Chang and Yeh (2007) consid-

ered one localized recharge and multiple extraction wells in

an anisotropic aquifer overlying an impervious sloping bed.

They indicated that the aquifer anisotropy and bottom slope

notably influence water table distributions. Bansal and Tel-

oglou (2013) explored the problem of a groundwater mound

subject to multiple localized recharges and withdrawal wells

in an unconfined aquifer overlying a semi-permeable base.

They indicated that groundwater mound rises as the aquifer

hydraulic conductivity decreases.

Some articles discussed water table rise near circle-shaped

recharge regions and thus considered radial groundwater

flow, which is symmetric to the center of the region. Rai

et al. (1998) presented an analytical model describing wa-

ter table growth subject to an exponentially decaying rate

of recharge in a circle-shaped unconfined aquifer with an

outer Dirichlet boundary. Illas et al. (2008) considered the

same model but a leaky aquifer. They indicated that leak-

age across the aquifer bottom significantly influences spa-

tiotemporal water table distributions despite a small amount

of the leakage. On the other hand, some researchers con-

sidered radial flow having the vertical component near a

circle-shaped recharge region of an infinite-extent uncon-

fined aquifer. A first-order free-surface equation as the top

boundary condition of the aquifer is applied to describe wa-

ter table rise. Zlotnik and Ledder (1992) developed analyti-

cal models for describing the distributions of hydraulic head

and flow velocity due to constant-rate recharge. They found

that models neglecting aquifer compressibility overestimate

the magnitudes of the head and flow velocity. Ostendorf et

al. (2007) derived an analytical model for head variation due

to an exponentially decaying rate of recharge. Predictions

of their solution agreed well with the field data obtained in

the Plymouth–Carver aquifer in southeastern Massachusetts

given by Hansen and Lapham (1992).

Some studies developed a 3-D flow model based on the

Laplace equation, which neglects the aquifer compressibility

effect. Dagan (1967) derived an analytical solution for the

velocity potential caused by regional recharge into an uncon-

fined aquifer of infinite thickness. Zlotnik and Ledder (1993)

also developed an analytical solution for the same model but

considered finite thickness for the unconfined aquifer. Pre-

dictions of their solutions indicate that groundwater flow is

horizontal in the area beyond 150 % of the length or width of

a rectangular recharge region.

It would be informative to summarize the abovementioned

models in Table 1. The solutions to the models are classified

according to flow dimensions into 1-D, 2-D, 3-D, and radial

flows and further categorized according to aquifer domain,

aquifer boundary conditions, recharge region, and recharge

rate. The table shows that those solutions assume neither

vertical flow nor aquifer incompressibility. In addition, the

Dirichlet and no-flow conditions considered by some of those

solutions are not applicable to a boundary having a semi-

permeable stratum, but the Robin condition is. The former

two conditions are indeed special cases of the third one.

The objective of this paper is to develop a new mathe-

matical model for depicting spatiotemporal hydraulic head

distributions subject to localized recharge with an arbitrary

time-varying recharge rate in a rectangular-shaped uncon-

fined aquifer. The four boundaries are considered under the

Robin condition, which can reduce to the Dirichlet or no-flow

condition. A governing equation describing 3-D transient

flow subject to the effect of aquifer compressibility is used.

A first-order free-surface equation with a source term repre-

senting recharge rate is chosen to describe the top boundary

condition. The transient head solution of the model is derived

by the methods of Laplace transform, double-integral trans-

form, and Duhamel’s theorem. The sensitivity analysis based

on the present solution is performed to study the head re-

sponse to the change in each of the hydraulic parameters. On

the basis of the solution’s predictions, the effect of the Robin

boundaries on time-dependent head distributions at obser-

vation points is investigated. A quantitative criterion under

which the Robin condition reduces to the Dirichlet or no-flow
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Figure 1. Schematic diagram of a rectangular-shaped unconfined aquifer with localized recharge (a) top view (b) cross section view.

condition is provided. In addition, quantitative criteria for the

validity of two assumptions of aquifer incompressibility and

no vertical flow are provided, and errors arising from the as-

sumptions in the hydraulic head are also discussed. Temporal

head distributions accounting for transient recharge rates are

demonstrated as well.

2 Methodology

2.1 Mathematical model

A mathematical model is developed for describing spa-

tiotemporal hydraulic head distributions induced by local-

ized recharge in a rectangular unconfined aquifer as illus-

trated in Fig. 1a. The four boundaries of the aquifer are

considered under the Robin condition. The aquifer has the

widths of l and w in x and y directions, respectively. The

recharge uniformly distributes over a rectangular region hav-

ing widths a and b in x and y directions, respectively. The

lower left corner of the region is designated at (x1, y1). The

shortest distances measured from the edge of the region to

boundaries 1, 2, 3, and 4 are denoted as d1, d2, d3, and

d4, respectively. The shortest distance between the edge of

the region and an observation point at (x, y) is defined as

d =min(
√
(x − xe)2 + (y − ye)2), where (xe, ye) is a co-

ordinate on the edge. The initial aquifer’s thickness is B as

shown in Fig. 1b.

The governing equation describing 3-D transient head dis-

tributions in a homogeneous and anisotropic aquifer is ex-

pressed as

Kx
∂2h

∂x2
+Ky

∂2h

∂y2
+Kz

∂2h

∂z2
= Ss

∂h

∂t
, (1)

where t is time, h(x, y, z, t) represents the hydraulic head,

Kx , Ky , and Kz are the hydraulic conductivities in x, y, and

z directions, respectively, and Ss is the specific storage. The

initial static water table is chosen as the reference datum

where the elevation head is set to zero. The initial condition

is therefore written as

h= 0 at t = 0. (2)

The Robin conditions specified at the four sides of the aquifer

are defined as

∂h

∂x
−

K1

Kxb1

h= 0 at x = 0, (3)

∂h

∂x
+

K2

Kxb2

h= 0 at x = l, (4)

∂h

∂y
−

K3

Kyb3

h= 0 at y = 0, (5)

∂h

∂y
+

K4

Kyb4

h= 0 at y = w, (6)

where subscripts 1, 2, 3, and 4 represent the boundaries at

x= 0, x= l, y= 0, and y=w, respectively, and K and b are

the hydraulic conductivity and width of the medium at the

aquifer boundary, respectively. Note that Eqs. (3)–(6) reduce

to the Dirichlet condition when b (i.e., b1, b2, b3, or b4) is

set to zero and the no-flow condition when K (i.e., K1, K2,

K3, or K4) is set to zero. The aquifer lies on an impermeable

base denoted as

∂h/∂z= 0 at z=−B. (7)

The first-order free-surface equation describing the response

of water table to recharge over the rectangular region can be

written as (Zlotnik and Ledder, 1993)

Kz
∂h

∂z
+ Sy

∂h

∂t
= Iuxuy at z= 0, (8a)

ux = u(x− x1)− u(x− x1− a), (8b)

uy = u(y− y1)− u(y− y1− b), (8c)

where Sy is the specific yield, I is a recharge rate, and u( ) is

the unit step function. Equation (8a) involves the assump-

tion of I�Kz and the simplification from non-uniform sat-

urated aquifer thickness below z=h to a uniform thickness

Hydrol. Earth Syst. Sci., 20, 1225–1239, 2016 www.hydrol-earth-syst-sci.net/20/1225/2016/
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below z= 0 (Dagan, 1967). Marino (1967) indicated that

the simplification and assumption are valid when the wa-

ter table rise is smaller than 50 % of the initial water ta-

ble height (i.e., |h|/B < 0.5) and the recharge rate is smaller

than 20 % of the hydraulic conductivity (i.e., I/Kz< 0.2).

On the other hand, the effect of unsaturated flow above the

water table on the model’s predictions can be ignored when

σB ≥ 103, where σ is a parameter to define the relative

hydraulic conductivity as k0= exp (−σz) in the Richards’

equation (Tartakovsky and Neuman, 2007). Tartakovsky and

Neuman (2007) achieved agreement on aquifer drawdown,

which was evaluated by their analytical solution based on

Eq. (1) for saturated flow and Richards’ equation for unsat-

urated flow, and by the Neuman (1974) solution based on

Eqs. (1) and (8a) with I = 0 when σB = 103 (i.e., the case of

κD = 103 in Fig. 2 in Tartakovsky and Neuman, 2007).

Dimensionless variables and parameters are defined as fol-

lows

h=
h

B
, x =

x

d
, y =

y

d
, z=

z

B
, l =

l

d
, w =

w

d
,

x1 =
x1

d
, y1 =

y1

d
, a =

a

d
, b =

b

d
, κz =

Kzd
2

KxB2
,

t =
Kx t

Ssd2
, κy =

Ky

Kx
, κ1 =

K1d

Kxb1

, κ2 =
K2d

Kxb2

,

κ3 =
K3d

Kyb3

, κ4 =
K4d

Kyb4

, ξ =
I

Kz
, ε =

Sy

SsB
, d1

=
d1

d
, d2 =

d2

d
, d3 =

d3

d
, d4 =

d4

d
, (9)

where the overbar denotes a dimensionless symbol. Notice

that the variables in the horizontal and vertical directions are

divided by d and B, respectively. According to Eq. (9), the

mathematical model, Eqs. (1)–(8c), can then be expressed as

∂2h

∂x2
+ κy

∂2h

∂y2
+ κz

∂2h

∂z2
=
∂h

∂t
, (10)

h= 0 at t = 0, (11)

∂h

∂x
− κ1h= 0 at x = 0, (12)

∂h

∂x
+ κ2h= 0 at x = l, (13)

∂h

∂y
− κ3h= 0 at y = 0, (14)

∂h

∂y
+ κ4h= 0 at y = w, (15)

∂h/∂z= 0 at z=−1, (16)

Figure 2. Temporal distributions of the dimensionless head pre-

dicted by the Manglik et al. (1997) solution for a no-flow boundary,

the Manglik and Rai (1998) solution for a Dirichlet boundary, and

the present solution with κz= 1 for a Robin boundary.

∂h

∂z
+
ε

κz

∂h

∂t
= ξuxuy at z= 0, (17a)

ux = u(x− x1)− u(x− x1− a), (17b)

uy = u
(
y− y1

)
− u

(
y− y1− b

)
. (17c)

2.2 Analytical solution

The mathematical model, Eqs. (10)–(17c), can be solved by

the methods of Laplace transform and double-integral trans-

form. The former transform converts h(x, y, z, t) into h̃(x,

y, z, p), ∂h/∂t into p h̃−h|t=0, and ξ ux uy into ξ ux uy/p,

where p is the Laplace parameter and h|t=0 equals zero in

Eq. (11). After taking the transform, the model becomes a

boundary value problem expressed as

∂2h̃

∂x2
+ κy

∂2h̃

∂y2
+ κz

∂2h̃

∂z2
= ph̃, (18)

with boundary conditions ∂h̃/∂x− κ1 h̃= 0 at x= 0,

∂h̃/∂x+ κ2 h̃= 0 at x= l, ∂h̃/∂y− κ3 h̃= 0 at y= 0,

∂h̃/∂y+ κ4 h̃= 0 at y=w, ∂h̃/∂z= 0 at z=−1, and

∂h̃/∂z+ εp h̃/κz= ξ ux uy/p at z= 0. We then apply the

properties of the double-integral transform to the problem.

One can refer to the definition in Latinopoulos (1985, Table I,

aquifer type 1). The transform turns h̃(x, y, z, p) into ĥ(αm,

βn, z, p), ∂2h̃/∂x2
+ κy(∂

2h̃/∂y2) into −(α2
m+ κy β

2
n) ĥ,

where (m, n)∈ 1, 2, 3, . . . ∞, and eigenvalues αm and βn
are the positive roots of the following equations:
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tan
(
lαm

)
=
αm (κ1+ κ2)

α2
m− κ1κ2

(19)

and

tan(wβn)=
βn (κ3+ κ4)

β2
n − κ3κ4

. (20)

In addition, ux uy defined in Eqs. (17b) and (17c) is trans-

formed into UmUn given by

Um =

√
2Vm√

κ1+
(
α2
m+ κ

2
1

)[
l+ κ2/

(
α2
m+ κ

2
2

)] , (21)

Un =

√
2Vn√

κ3+
(
β2
n + κ

2
3

)[
w+ κ4/

(
β2
n + κ

2
4

)] , (22)

with

Vm = {κ1 [cos(αmx1)− cos(αmχ)]

−αm [sin(αmx1)− sin(αmχ)]}/αm, (23)

Vn =
{
κ3

[
cos

(
βny1

)
− cos(βnψ)

]
−βn

[
sin
(
βny1

)
− sin(βnψ)

]}
/βn, (24)

where χ = x1+ a and ψ = y1+ b.

Equation (18) then reduces to an ordinary differential

equation as

κz
∂2ĥ

∂z2
−

(
p+α2

m+ κyβ
2
n

)
ĥ= 0. (25)

Two boundary conditions are expressed, respectively, as

∂ĥ/∂z= 0 at z=−1 (26)

and

∂ĥ

∂z
+
εp

κz
ĥ=

ξ

p
UmUn at z= 0. (27)

Solving Eq. (25) with Eqs. (26) and (27) results in

ĥ (αm,βn,z,p)=
ξUmUncosh[(1+ z)λ]

p(pεκzcoshλ+ κzλsinhλ)
, (28)

where

λ=

√(
p+α2

m+ κyβ
2
n

)
/κz. (29)

Inverting Eq. (28) to the space and time domains gives rise

to the following analytical solution:

h(x,y,z, t)=ξ

∞∑
m=1

∞∑
n=1

(
φm,n+φ0,m,n+

∞∑
j=1

φj,m,n

)
FmFnUmUn (30a)

with

φm,n =
cosh

[
(1+ z)λm,n

]
κzλm,nsinhλm,n

, (30b)

φ0,m,n =−2λ0,m,ncosh
[
(1+ z)λ0,m,n

]
exp

(
−γ0,m,nt

)
/η0,m,n, (30c)

φj,m,n =−2λj,m,n cos
[
(1+ z)λj,m,n

]
exp

(
−γj,m,nt

)
/ηj,m,n, (30d)

η0,m,n = γ0,m,n

[
(1+ 2εκz)λ0,m,ncoshλ0,m,n +

(
1− εγ0,m,n

)
sinhλ0,m,n

]
, (30e)

ηj,m,n = γj,m,n
[
(1+ 2εκz)λj,m,n cosλj,m,n +

(
1− εγj,m,n

)
sinλj,m,n

]
, (30f)

λm,n =
√
fm,n/κz; γ0,m,n = fm,n − κzλ

2
0,m,n; γj,m,n = fm,n + κzλ

2
j,m,n, (30g)

fm,n = α
2
m+ κyβ

2
n, (30h)

Fm =

√
2[αm cos(αmx)+ κ1 sin(αmx)]√

κ1+
(
α2
m+ κ

2
1

)[
l+ κ2/

(
α2
m+ κ

2
2

)] , (30i)

Fn =

√
2
[
βn cos(βny)+ κ3 sin(βny)

]√
κ3+

(
β2
n + κ

2
3

)[
w+ κ4/

(
β2
n + κ

2
4

)] , (30j)

where j ∈ 1, 2, 3, . . . ∞ and eigenvalues λ0,m,n and λj,m,n
are determined, respectively, by the following equations:

tanλj,m,n =−ε
(
fm,n+ κzλ

2
j,m,n

)
/λj,m,n (31)

and

−εκzλ
2
0,m,n+ λ0,m,n+ εfm,n

εκzλ
2
0,m,n+ λ0,m,n− εfm,n

= exp
(
2λ0,m,n

)
. (32)

Notice that Eqs. (19), (20), and (31) have infinite posi-

tive roots owing to the trigonometric function tan( ) while

Eq. (32) has only one positive root. The method to find αm,

βn, λj,m,n, and λ0,m,n is introduced in Sect. 2.3. One can refer

to Appendix A for the derivation of Eq. (30a). The first term

on the right-hand side (RHS) of Eq. (30a) is a double series

expanded by αm and βn. The series converges within a few

terms because the power of αm (or βn) in the denominator of

φm,n in Eq. (30b) is two more than that in the nominator. The

second term on the RHS of Eq. (30a) is a double series ex-

panded by αm and βn, and the third term is a triple series

expanded by αm, βn, and λj,m,n. They converge very fast

due to exponential functions in Eqs. (30c) and (30d). Con-

sider (m, n)∈ (1, 2, . . . , N = 30) and j ∈ (1, 2, . . . , Nj = 15)

for the default values of dimensionless parameters and vari-

ables in Table A1 for calculation. The number of terms in

one or the other double series is 30× 30= 900 and in the

triple series is 30× 30× 15= 13 500. The total number is

therefore 900× 2+ 13 500= 15 300. We apply Mathematica

FindRoot routine to obtain the values of αm, βn, and λj,m,n
and Sum routine to compute the double and triple series. It
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takes about 8 s to finish calculation for t = 105 with a per-

sonal computer with Intel Core i5-4590 3.30 GHz processor

and 8 GB RAM. In addition, the series is considered to con-

verge when the absolute value of the last term in the double

series of φm,n is smaller than 10−20 (i.e., 10−50< 10−20 in

this case). That value in the other double or triple series may

be even smaller than 10−50 due to exponential decay.

The use of finite aquifer domain has two merits. One is

that the solution to depth-average head, defined as
0∫
−1

h(x,

y, z, t) dz, can be analytically integrated. The integra-

tion variable z appears only in the functions of cosh[(1+

z)λm,n] in Eq. (30b), cosh[(1+ z)λ0,m,n] in Eq. (30c) and

cos[(1+ z)λj,m,n] in Eq. (30d). The solution to depth-

average head therefore equals Eq. (30a), where these three

functions are replaced by sinhλm,n/λm,n, sinhλ0,m,n/λ0,m,n,

and sin λj,m,n/λj,m,n, respectively. The other merit is that

the present solution is applicable to head predictions in

aquifers of infinite extent before the dimensionless time

to have lateral aquifer boundary effect on the predictions.

Wang and Yeh (2008) reported a time criterion defined as

tcr= 0.03(1+ ε)R
2
, where R=R/d denotes a shortest di-

mensionless distance from the lateral boundary to the edge of

the recharge region. This criterion is, in effect, a boundary-

effect time when the hydraulic head is affected by the aquifer

boundary. Existing solutions based on aquifers of infinite

extent can therefore be considered as special cases of the

present solution before the boundary-effect time.

2.3 Calculation of eigenvalues

The eigenvalues αm, βn, λj,m,n, and λ0,m,n can be determined

by Newton’s method with initial guess values (IGVs) set to

be the vertical asymptotes of the functions on the left-hand

side (LHS) of Eqs. (19), (20), (31), and (32), respectively.

Hence, IGVs for αm are α′+ δ if α′<(κ1 κ2)
1/2 and α′− δ

if α′>(κ1 κ2)
1/2, where α′= (2m− 1)π/(2l) and δ is a small

value of 10−8 to avoid being right at the vertical asymptotes.

Similarly, IGVs for βn are β ′+ δ if β ′<(κ3 κ4)
1/2 and β ′− δ

if β ′>(κ3 κ4)
1/2, where β ′= (2n− 1)π/(2w). In addition,

IGVs for λj,m,n are (2j − 1)π/2+ δ, and the IGV for λ0,m,n

is δ+ [(1+ 4κz fm,n ε
2)1/2− 1]/(2ε κz) obtained by setting

the denominator of the LHS function of Eq. (32) to zero and

solving the resultant equation.

2.4 Solution for time-varying recharge rate

The present solution, Eq. (30a), is applicable to arbitrary

time-dependent recharge rates on the basis of Duhamel’s the-

orem expressed as (e.g., Bear, 1979, p. 158)

hI t = hI0+

t∫
0

∂ξt (τ )

∂τ
h(t − τ)/ξdτ, (33)

where hI t signifies a dimensionless head solution for a time-

dependent recharge rate ξt (τ ) with t replaced by τ , hI0 is

Eq. (30a) in which ξ is replaced by ξt (0), and h(t − τ) is

also Eq. (30a) with t replaced by t − τ . If Eq. (33) is not

integrable, it can be discretized as (Singh, 2005)

hN =

N∑
i=1

1ξi

1t
η(N − i+ 1), (34a)

with

1ξi = ξi − ξi−1, (34b)

η(M)=

t∫
0

h(M1t − τ)dτ, (34c)

where hN represents a numerical result of dimensionless

head h at t =1t ×N , 1t is a dimensionless time step,

ξi and ξi−1 are dimensionless recharge rates at t =1t × i

and t =1t × (i− 1), respectively, and η(M), called ramp

kernel, depends on Eq. (30a) in which t is replaced by

M1t − τ . The integration result of Eq. (34c) can be denoted

as Eq. (30a) where φm,n is replaced by φm,n t and two expo-

nential terms in Eqs. (30c) and (30d) are replaced, respec-

tively, by exp(−Mγ0,m,n1t)[−1+ exp(γ0,m,n1t)]/γ0,m,n

and exp(−Mγj,m,n1t)[−1+ exp(γj,m,n1t)]/γj,m,n.

2.5 Sensitivity analysis

The sensitivity analysis is administered to assess the change

in the hydraulic head in response to the change in each of the

hydraulic parameters. The normalized sensitivity coefficient

of the hydraulic head to a specific parameter can be expressed

as

Sc,t =
∂h/B

∂Pc/Pc
=

∂h

∂Pc/Pc
, (35)

where Pc is the cth parameter in the present solution, Sc,t is

the coefficient at a time to the cth parameter, and h is the

present solution, Eq. (30a). The derivative in Eq. (35) can be

approximated as

Sc,t =
h(Pc+1Pc)−h(Pc)

1Pc/Pc
, (36)

where 1Pc is an increment chosen as 10−3Pc (Yeh et al.,

2008).
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Figure 3. Temporal distributions of the dimensionless head pre-

dicted by the Manglik and Rai (1998) solution based on 2-D flow

and the present solution for 3-D flow with various κz.

3 Results and discussion

Previous articles have discussed groundwater mounds in re-

sponse to localized recharge into aquifers with various hy-

draulic parameters (e.g., Dagan, 1967; Rao and Sarma, 1980;

Latinopoulos, 1986; Manglik et al., 1997; Manglik and Rai,

1998; Rai et al., 1998; Chang and Yeh, 2007; Illas et al.,

2008; Bansal and Das, 2010; Bansal and Teloglou, 2013).

Flow velocity fields below groundwater mounds have also

been analyzed (Zlotnik and Ledder, 1992, 1993). This sec-

tion therefore focuses on the transient behavior of hydraulic

head at an observation point with the aid of the present so-

lution. The default values of the parameters and variables

for calculation are noted in Table A1. In Sect. 3.1, transient

head distributions subject to Dirichlet, no-flow and Robin

boundary conditions are compared. In Sect. 3.2, the effect

of vertical flow on the head distribution is investigated. In

Sect. 3.3, errors arising from assuming aquifer incompress-

ibility (i.e., Ss= 0) to develop analytical solutions are dis-

cussed. In Sect. 3.4, the response of the hydraulic head to

transient recharge rates based on Eq. (33) is demonstrated.

In Sect. 3.5, the sensitivity analysis defined by Eq. (36) is

performed.

3.1 Effect of lateral boundary

The Robin condition can become the Dirichlet or no-flow

condition, depending on the magnitudes of κ1 d1 for Eq. (12),

κ2 d2 for Eq. (13), κ3 d3 for Eq. (14), and κ4 d4 for Eq. (15).

We consider a symmetrical aquifer system with l=w= 22,

d1= d2= d3= d4= 10, and κ1= κ2= κ3= κ4. The magni-

tudes of κ1 d1, κ2 d2, κ3 d3, and κ4 d4 are the same and de-

fined as κ . The curves of h versus t plotted by the present

solution, Eq. (30a), for κ = 10−3, 10−2, 10−1, 1, 10, 100,

and 200 are shown in Fig. 2. The curves h versus t are

plotted from the Manglik et al. (1997) solution with the no-

flow condition (i.e., κ = 0), the Manglik and Rai (1998) so-

lution with the Dirichlet condition (i.e., κ→∞), and the

present solution with the Robin condition. Before t = 104,

these curves give the same magnitude of h at a fixed dimen-

sionless time t , since the lateral aquifer boundary has been

beyond the place where groundwater is affected by localized

recharge. After t = 104, the curves for the cases of κ = 10−2,

10−1, 1, 10, and 100 deviate from each other gradually as

time increases. A larger magnitude of κ between κ = 10−2

and κ = 100 causes a smaller h at a fixed t . On the other

hand, the present solution for the cases of κ = 10−3 and 10−2

agrees well with the Manglik et al. (1997) solution based on

κ = 0 and that for the cases of κ = 100 and 200 predicts the

same result as the Manglik and Rai (1998) solution based on

κ→∞. We may reasonably conclude that the Robin condi-

tion reduces to the no-flow condition when κ ≤ 10−2 and the

Dirichlet condition when κ ≥ 100.

3.2 Effect of vertical flow

Dimensionless parameter κz (i.e., Kz d
2/(Kx B

2))

dominates the effect of vertical flow on transient

head distributions at an observation point. Consider

κ1 d1= κ2 d2= κ3 d3= κ4 d4= 100 for lateral aquifer

boundaries under the Dirichlet condition as discussed in

Sect. 3.1. The temporal distributions of h predicted by the

present solution, Eq. (30a), with κz= 0.01, 0.1, 1, and 10

are demonstrated in Fig. 3. The temporal distribution of h

predicted by the Manglik and Rai (1998) solution based on

2-D flow without the vertical component is taken in order to

address the effect of vertical flow. The figure reveals that h

increases with κz when κz≤ 1. The difference in h predicted

by both solutions indicates the vertical flow effect. The

Manglik and Rai (1998) solution obviously overestimates

the head. The vertical flow prevails, and its effect should be

taken into account when κz< 1, indicating a thick aquifer,

a small ratio of Kz/Kx , and/or an observation point near

a recharge region. On the other hand, the present solution

for the cases of κz= 1 and 10 agrees well with Manglik

and Rai (1998) solution, indicating that the vertical flow

effect is ignorable when κz≥ 1. We can recognize from the

agreement that existing solutions neglecting the vertical flow

effect give good predictions when κz≥ 1.

3.3 Effect of specific storage

Some of the existing models use the Laplace equation as a

governing equation by assuming Ss= 0 (e.g., Singh, 1976;

Schmitz and Edenhofer, 1988; Zlotnik and Ledder, 1993).

The assumption is valid when ε (i.e., Sy/(SsB)) is larger than

a certain value. This section quantifies the value. The Zlotnik

and Ledder (1993) model based on the 3-D Laplace equa-
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Figure 4. Temporal distributions of the dimensionless head for (a) κz= 10 and (b) κz= 10−2 predicted by the Zlotnik and Ledder (1993)

solution based on the assumption of Ss= 0 and the present solution relaxing the assumption.

tion, Eq. (1) with Ss= 0, is taken for comparison with the

present model using Eq. (1) with Ss 6= 0. The dimensionless

variables of s, x, y, z, t , X, and Y in their model are replaced

by h/ξ , (κz)
1/2 x, (κz)

1/2 y, z, κz t/ε, (κz)
1/2 a, and (κz)

1/2 b,

respectively, for ease of comparisons. Consider the cases of

κz= 10−2 for an observation point located at a 3-D flow area

and κz= 10 for the point located at a 2-D flow area as dis-

cussed in Sect. 3.2. The assumption can be assessed through

the comparison in the dimensionless heads predicted by both

solutions for ε= 1, 10, 102, and 103 as shown in Fig. 4a

for κz= 10 and Fig. 4b for κz= 10−2. The present solution

predicts a steady-state h of 0.074 in Fig. 4a and 0.054 in

Fig. 4b after certain times due to lateral Dirichlet bound-

aries (i.e., κ1 d1= κ2 d2= κ3 d3= κ4 d4= 100) as discussed

in Sect. 3.1. In contrast, their solution predicts h, which in-

creases with t due to the absence of lateral boundaries. When

ε= 1 and 10, both solutions give different values of h for

both cases of κz= 10−2 and κz= 10 before t = 100, indicat-

ing that the assumption of Ss= 0 causes inaccurate h. When

ε= 102 and 103, both solutions predict very close results of

h for both cases before the time of approaching steady-state

h. These results lead to the conclusion that the assumption of

Ss= 0 is valid when ε≥ 100 for 3-D and 2-D flow cases.

3.4 Transient recharge rate

Most articles (e.g., Rai et al., 1998; Chang and Yeh,

2007; Illas et al., 2008; Bansal and Teloglou, 2013) de-

fine a transient recharge rate as It (t)= I1+ I0 exp(−r t)

(i.e., ξt (t)= ξ1+ ξ0 exp(−γ t) for a dimensionless rate)

where ξt = It/Kz, ξ1= I1/Kz, ξ0= I0/Kz, γ = r Ss d
2/Kx ,

and r is a decay constant. The rate exponentially declines

Figure 5. Temporal distributions of the dimensionless head subject

to a transient recharge rate predicted by the Ramana et al. (1995)

solution, the Zlotnik and Ledder (1993) solution, and the present

solution with κz= 1, κ = 100, and ε= 100.

from an initial value of I1+ I0 to an ultimate value of

I1. In the present solution, Eq. (30a), can be applied for

the response of the head to the transient rate based on

Eq. (33). Substituting ∂ξt (τ )/∂τ =−γ ξ0 exp(−γ τ) into

Eq. (33) and integrating the result for τ from τ = 0 to τ = t

yields hI0 plus Eq. (30a), where ξ in Eq. (30a), φm,n in

Eq. (30b), exp(−γ0,m,n t) in Eq. (30c), and exp(−γj,m,nt)

in Eq. (30d) are replaced by ξ0, φm,n[exp(−γ t)− 1],

γ [exp(−γ t)− exp(γ0,m,n t)]/(γ0,m,n+ γ ), and γ [exp(−γ
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Figure 6. Temporal distributions of the normalized sensitivity coefficients of the hydraulic head at the observation points of (a) (x, y,

z)= (555, 500, −10) and (b) (x, y, z)= (800, 500, −10) to the changes in parameters a, b, Kz, Ss, K1, Sy, and Kx .

t)− exp(γj,m,n t)]/(γj,m,n+ γ ), respectively. Similarly, the

Zlotnik and Ledder (1993) solution can also be used to ob-

tain the head subject to the transient rate by substituting it

into Eq. (33) and then integrating the result using numeri-

cal approaches. Now, we consider the Ramana et al. (1995)

solution depicting 2-D flow induced by the transient rate in

rectangular aquifers with the lateral boundaries under the

Dirichlet condition. Figure 5 shows the temporal distribu-

tions of h for the transient rate predicted by these three so-

lutions when κz= 1, κ = 100, and ε= 100. The present so-

lution agrees well with the Ramana et al. (1995) solution.

We can recognize from the agreement that, even for transient

rates, the Robin condition reduces to the Dirichlet condition

when κ ≥ 100 (i.e., κ1 d1= κ2 d2= κ3 d3= κ4 d4= 100) as

discussed in Sect. 3.1 and the vertical flow effect is ignor-

able when κz≥ 1 as discussed in Sect. 3.2. Moreover, agree-

ment on h estimated by the present solution and the Zlotnik

and Ledder (1993) solution before t = 3× 103 will make it

clear that, even for transient rates, assuming aquifer incom-

pressibility (i.e., Ss= 0) is valid when ε≥ 100 as discussed

in Sect. 3.3.

3.5 Sensitivity analysis

Consider point A of (555, 500, −10 m) at a 3-D flow re-

gion (i.e., κz< 1) and point B of (800, 500, −10 m) at

a 2-D flow region (i.e., κz≥ 1) as discussed in Sect. 3.2.

Localized recharge distributes over the square area of

450 m≤ x ≤ 550 m and 450 m≤ y ≤ 550 m. The distance d

herein is set to 5 m for point A and 250 m for point B. The

aquifer system is of isotropy with Kx =Ky and symmetry

with K1=K2=K3=K4 for conciseness. To investigate the

responses of the hydraulic heads at these two points to the

change in each of a, b, Ss, Sy, Kx (or Ky), Kz, and K1

(or K2, K3, and K4), the sensitivity analysis is performed

by Eq. (36). The curves of the normalized sensitivity coef-

ficient Sc,t versus t for these seven parameters are shown

in Fig. 6a for point A and Fig. 6b for point B. The figure

shows that the hydraulic heads at both points are more sen-

sitive to the changes in a, b, Kx , and Sy than those in the

others. This may indicate that a flow model should include

at least these four parameters. The figure also shows that the

heads at points A and B are insensitive to the change in K1

because of κ1 d1= 4500> 100 as discussed in Sect. 3.1. In

addition, Sc,t to Kz for point A is nonzero after t = 0.4 day

due to κz= 6.25× 10−3< 1 as discussed in Sect. 3.2. In con-

trast, Sc,t to Kz for point B is very close to zero over the en-

tire period because of κz= 15.625> 1. Moreover, the heads

at points A and B are insensitive to the change in Ss due to

ε= 500> 100 as discussed in Sect. 3.3.

4 Conclusions

A mathematical model is developed to depict spatiotemporal

head distributions induced by localized recharge with an ar-

bitrary time-varying rate in a rectangular unconfined aquifer

bounded by Robin boundaries with different hydraulic pa-

rameters. A governing equation for 3-D flow is considered.

A first-order free-surface equation with a source term rep-

resenting the recharge is employed for describing the water

table movement. The analytical head solution of the model

is obtained by applying the Laplace transform, the double-

integral transform, and Duhamel’s theorem. The use of rect-

angular aquifer domain leads to two merits. One is that the

integration for the solution to the depth-average head can be

analytically done. The other is that existing solutions based

on aquifers of infinite extent are special cases of the present

solution when the recharge time is less than the boundary-

effect time. The present solution is applicable under the con-
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ditions of aquifer homogeneity, |h|/B < 0.5, I/Kz< 0.2, and

σB ≥ 103 due to Eq. (8a) neglecting the effect of unsaturated

flow above water table (Marino, 1967; Tartakovsky and Neu-

man, 2007). The sensitivity analysis is performed to explore

the response of the head to the change in each of hydraulic

parameters. With the aid of the present solution, the follow-

ing conclusions can be drawn:

1. With respect to affecting h at observation points,

the Robin condition specified at x= 0 reduces

to the Dirichlet condition when κ1 d1≥ 100

(i.e., K1 d1/(Kx b1)≥ 100) and no-flow condition

when κ1 d1≤ 10−2. The quantitative criteria for

κ1 d1 are applicable to κ2 d2, κ3 d3, and κ4 d4 for the

Robin conditions specified at x= l, y= 0, and y=w,

respectively.

2. The vertical flow causes a significant decrease in the

hydraulic head at an observation point when κz< 1

(i.e., Kz d
2/(Kx B

2)< 1). When κz≥ 1, the effect of

vertical flow on the head is ignorable, and conventional

models considering 2-D flow without the vertical com-

ponent can therefore predict accurate results.

3. The 3-D Laplace equation based on the assumption

of Ss= 0 can be regarded as a flow governing equa-

tion when ε≥ 100 (i.e., Sy/(SsB)≥ 100) for the whole

aquifer domain. Otherwise, head predictions based on

the Laplace equation are overestimated.

4. The abovementioned conclusions are also applicable to

problems of groundwater flow subject to recharge with

arbitrary time-varying rates.
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Appendix A: Derivation of Eq. (30a)

We begin with function G(p) from Eq. (28):

G(p)=
cosh[(1+ z)λ]

p(pεκzcoshλ+ κzλsinhλ)
, (A1)

with

λ=

√(
p+ fm,n

)
/κz, (A2)

where fm,n=α
2
m+ κy β

2
n . Equation (A1) is a single-value

function to p in the complex plane because it satisfies

G(p+)=G(p−), where p+ and p− are the polar coordinates

defined, respectively, as

p+ = ra exp(iθ)− fm,n (A3)

and

p− = ra exp[i(θ − 2π)] − fm,n, (A4)

where ra represents a radial distance from the origin at

p=−fm,n, i=
√
−1 is the imaginary unit, and θ is an ar-

gument between 0 and 2π . Substitute p=p+ in Eq. (A3)

into Eq. (A2), and we have

λ=
√
ra/κz exp(iθ/2)=

√
ra/κz[cos(θ/2)+ i sin(θ/2)]. (A5)

Similarly, we can have

λ=
√
ra/κz exp[i(θ − 2π)/2] = −

√
ra/κz

[
cos(θ/2)

+i sin(θ/2)
]

(A6)

after p in Eq. (A2) is replaced by p− in Eq. (A4). Substi-

tution of Eqs. (A3) and (A5) into Eq. (A1) yields the same

result as that obtained by substituting Eqs. (A4) and (A6) into

Eq. (A1), indicating that Eq. (A1) is a single-value function

without branch cut and its inverse Laplace transform equals

the sum of residues for poles in the complex plane.

The residue for a simple pole can be formulated as

Res= lim
p−ϕ

G(p)exp(pt)(p−ϕ), (A7)

where ϕ is the location of the pole of G(p) in Eq. (A1). The

function G(p) has infinite simple poles at the negative part

of the real axis in the complex plane. The locations of these

poles are the roots of the following equation:

p(pεκzcoshλ+ κzλsinhλ)= 0, (A8)

which is obtained by setting the denominator in Eq. (A1) to

zero. Obviously, one pole is at p= 0, and its residue based on

Eqs. (A1) and (A7) with λm,n=
√
fm,n/κz can be expressed

as

φm,n = cosh
[
(1+ z)λm,n

]
/
(
κzλm,nsinhλm,n

)
. (A9)

The locations of other poles of G(p) are the roots of the fol-

lowing equation:

pεκzcoshλ+ κzλsinhλ= 0, (A10)

which is the expression in the parentheses in Eq. (A8).

One pole is between p= 0 and p=−fm,n. Let λ= λ0,m,n,

and Eq. (A2) becomes p=−fm,n+ κz λ
2
0,m,n. Substi-

tuting λ= λ0,m,n, p=−fm,n+ κz λ
2
0,m,n, cosh λ0,m,n

= [exp λ0,m,n+ exp(−λ0,m,n)]/2, and sinhλ0,m,n= [exp

λ0,m,n− exp(−λ0,m,n)]/2 into Eq. (A10) and rearranging the

result leads to Eq. (32). The pole is at p=−fm,n+ κz λ
2
0,m,n

with a numerical value of λ0,m,n. With Eq. (A1), Eq. (A7)

equals

Res=
cosh[(1+ z)λ]

p(pεκzcoshλ+ κzλsinhλ)
exp(pt)(p−ϕ). (A11)

Apply L’Hospital’s rule to Eq. (A11), and then we have

Res=
−2λcosh[(1+ z)λ]

p
[
(1+ 2εκz)λcoshλ+ (1− εp)sinhλ

] exp(pt). (A12)

The residue for the pole at p=−fm,n+ κz λ
2
0,m,n can be de-

fined as

φ0,m,n =
−2λ0,m,ncosh[(1+ z)λ0,m,n]exp

(
−γ0,m,nt

)
γ0,m,n

[
(1+ 2εκz)λ0,m,ncoshλ0,m,n +

(
1− εγ0,m,n

)
sinhλ0,m,n

] , (A13)

which is obtained by Eq. (A12) with λ= λ0,m,n and

p=−fm,n+ κz λ
2
0,m,n=−γ0,m,n. On the other hand, in-

finite poles behind p=−fm,n are at p= γj,m,n, where

j ∈ 1, 2, 3, . . . ∞. Let λ=
√
−1λj,m,n, and Eq. (A2)

yields p=−fm,n− κz λ
2
j,m,n. Substituting λ=

√
−1λj,m,n,

p=−fm,n− κz λ
2
j,m,n, cosh(

√
−1λj,m,n)= cos λj,m,n, and

sinh(
√
−1λj,m,n)=

√
−1 sin λj,m,n into Eq. (A10) and re-

arranging the result gives rise to Eq. (31). These poles

are at p =−fm,n− κzλ
2
j,m,n with numerical values of

λj,m,n. On the basis of Eq. (A12) with λ=
√
−1λj,m,n

and p=−fm,n− κz λ
2
j,m,n=−γj,m,n, the residues for these

poles at p=−fm,n− κz λ
2
j,m,n can be expressed as

φj,m,n =
−2λj,m,n cos

[
(1+ z)λj,m,n

]
exp

(
−γj,m,nt

)
γj,m,n

[
(1+ 2εκz)λj,m,n cosλj,m,n +

(
1− εγj,m,n

)
sinλj,m,n

] . (A14)

As a result, the inverse Laplace transform for Eq. (A1)

is the sum of Eqs. (A9) and (A13) and a simple

series expended in the RHS function in Eq. (A14)

(i.e., φm,n+φ0,m,n+

∞∑
j=1

φj,m,n). Finally, Eq. (30a) can be

derived after taking the inverse double-integral transform for

the result using the following formula (Latinopoulos, 1985,

Eq. 14):

h(x,y,z, t)=ξ

∞∑
m=1

∞∑
n=1

(
φm,n+φ0,m,n+

∞∑
j=1

φj,m,n

)
FmFnUmUn, (A15)

where ξ and UmUn result from ξ UmUn in Eq. (28).
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