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Abstract. Most previous solutions for groundwater flow in-
duced by localized recharge assumed either aquifer incom-
pressibility or two-dimensional flow in the absence of the
vertical flow. This paper develops a new three-dimensional
flow model for hydraulic head variation due to localized
recharge in a rectangular unconfined aquifer with four
boundaries under the Robin condition. A governing equation
describing spatiotemporal head distributions is employed.
The first-order free-surface equation with a source term
defining a constant recharge rate over a rectangular area
is used to depict water table movement. The solution to
the model for the head is developed with the methods of
Laplace transform and double-integral transform. Based on
Duhamel’s theorem, the present solution is applicable to flow
problems accounting for arbitrary time-dependent recharge
rates. The solution to depth-average head can then be ob-
tained by integrating the head solution to elevation and di-
viding the result by the aquifer thickness. The use of a rect-
angular aquifer domain has two merits. One is that the in-
tegration for estimating the depth-average head can be ana-
lytically achieved. The other is that existing solutions based
on aquifers of infinite extent can be considered as special
cases of the present solution before the time when the aquifer
boundary had an effect on head predictions. With the help of
the present solution, the assumption of neglecting the verti-
cal flow effect on the temporal head distribution at an ob-
servation point outside a recharge region can be assessed by
a dimensionless parameter related to the aquifer horizontal
and vertical hydraulic conductivities, initial aquifer thick-
ness, and the shortest distance between the observation point
and the edge of the recharge region. The validity of assum-
ing aquifer incompressibility is dominated by the ratio of the

aquifer specific yield to its storage coefficient. In addition, a
sensitivity analysis is performed to investigate the head re-
sponse to the change in each of the aquifer parameters.

1 Introduction

The water table rises due to localized recharge, such as rain-
fall, lakes, and agricultural irrigation, into the regional area
of the aquifer. Excess recharge may cause soil liquefaction or
wet basements of buildings. Groundwater flow behavior in-
duced by recharge is therefore crucial in water resource man-
agement. The Boussinesq equation has been extensively used
to describe horizontal flow without the vertical component in
unconfined aquifers (e.g., Ireson and Butler, 2013; van der
Spek et al., 2013; Yeh and Chang, 2013; Chor and Dias,
2015; Hsieh et al., 2015; Liang and Zhang, 2015; Liang et al.,
2015). The equation can be linearized by assuming uniform
saturated aquifer thickness for developing its analytical so-
lution. Marino (1967) presented quantitative criteria for the
validity of the linearized Boussinesq equation. The criteria
are introduced in the next section.

The rate of localized recharge can be a constant for the
long term but should be dependent of time for the short term
(Rai et al., 2006). An exponentially decaying function of
time is usually used for recharge intensity decreasing from a
certain rate to an ultimate one. An arbitrary time-dependent
recharge rate is commonly approximated as the combination
of several linear segments of time to develop analytical solu-
tions for water table rise subject to the recharge.
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Analytical models accounting for water table rise due to
the recharge region of an infinite-length strip are reviewed.
One-dimensional (1-D) flow perpendicular to the strip is
considered while the flow along the strip is assumed ignor-
able. These models deal with aquifers of infinite or finite ex-
tent with various types of outer boundary conditions. Han-
tush (1963) considered an aquifer of infinite extent with-
out a lateral boundary. Rao and Sarma (1980) considered an
aquifer of finite extent with two constant-head (also called
Dirichlet) boundaries. Later, they developed a solution (Rao
and Sarma, 1984) for a finite-extent aquifer between no-flow
and constant-head boundaries. Latinopoulos (1986) deliber-
ated on a finite-extent aquifer between two boundaries, one
of which is under the Robin condition and the other is un-
der either the Dirichlet or no-flow condition. The recharge
rate is treated as a periodical pulse consisting of constant
rates for rainy seasons and zero for dry seasons. Bansal and
Das (2010) studied an aquifer extending semi-infinitely from
a Dirichlet boundary and overlying a sloping impervious
base, and indicated that the change in groundwater mound
induced by a strip-shaped recharge region increases with the
base slope.

A variety of analytical models were presented to describe
water table rise for 2-D flow induced by rectangle-shaped
recharge into unconfined aquifers. The differences between
these solutions are addressed below. Hantush (1967) consid-
ered an infinite-extent aquifer with localized recharge hav-
ing a constant rate. Manglik et al. (1997) handled an arbi-
trary time-varying rate of recharge into a rectangular aquifer
bounded by no-flow stratum. Manglik and Rai (1998) inves-
tigated flow behavior based on an irregularly time-varying
rate of recharge into a rectangular aquifer with the lateral
boundary under the Dirichlet condition. Bruggeman (1999)
introduced an analytical solution for steady-state flow in-
duced by localized recharge into a vertical strip aquifer be-
tween two Robin boundaries. Chang and Yeh (2007) consid-
ered one localized recharge and multiple extraction wells in
an anisotropic aquifer overlying an impervious sloping bed.
They indicated that the aquifer anisotropy and bottom slope
notably influence water table distributions. Bansal and Tel-
oglou (2013) explored the problem of a groundwater mound
subject to multiple localized recharges and withdrawal wells
in an unconfined aquifer overlying a semi-permeable base.
They indicated that groundwater mound rises as the aquifer
hydraulic conductivity decreases.

Some articles discussed water table rise near circle-shaped
recharge regions and thus considered radial groundwater
flow, which is symmetric to the center of the region. Rai
et al. (1998) presented an analytical model describing wa-
ter table growth subject to an exponentially decaying rate
of recharge in a circle-shaped unconfined aquifer with an
outer Dirichlet boundary. Illas et al. (2008) considered the
same model but a leaky aquifer. They indicated that leak-
age across the aquifer bottom significantly influences spa-
tiotemporal water table distributions despite a small amount
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of the leakage. On the other hand, some researchers con-
sidered radial flow having the vertical component near a
circle-shaped recharge region of an infinite-extent uncon-
fined aquifer. A first-order free-surface equation as the top
boundary condition of the aquifer is applied to describe wa-
ter table rise. Zlotnik and Ledder (1992) developed analyti-
cal models for describing the distributions of hydraulic head
and flow velocity due to constant-rate recharge. They found
that models neglecting aquifer compressibility overestimate
the magnitudes of the head and flow velocity. Ostendorf et
al. (2007) derived an analytical model for head variation due
to an exponentially decaying rate of recharge. Predictions
of their solution agreed well with the field data obtained in
the Plymouth—Carver aquifer in southeastern Massachusetts
given by Hansen and Lapham (1992).

Some studies developed a 3-D flow model based on the
Laplace equation, which neglects the aquifer compressibility
effect. Dagan (1967) derived an analytical solution for the
velocity potential caused by regional recharge into an uncon-
fined aquifer of infinite thickness. Zlotnik and Ledder (1993)
also developed an analytical solution for the same model but
considered finite thickness for the unconfined aquifer. Pre-
dictions of their solutions indicate that groundwater flow is
horizontal in the area beyond 150 % of the length or width of
a rectangular recharge region.

It would be informative to summarize the abovementioned
models in Table 1. The solutions to the models are classified
according to flow dimensions into 1-D, 2-D, 3-D, and radial
flows and further categorized according to aquifer domain,
aquifer boundary conditions, recharge region, and recharge
rate. The table shows that those solutions assume neither
vertical flow nor aquifer incompressibility. In addition, the
Dirichlet and no-flow conditions considered by some of those
solutions are not applicable to a boundary having a semi-
permeable stratum, but the Robin condition is. The former
two conditions are indeed special cases of the third one.

The objective of this paper is to develop a new mathe-
matical model for depicting spatiotemporal hydraulic head
distributions subject to localized recharge with an arbitrary
time-varying recharge rate in a rectangular-shaped uncon-
fined aquifer. The four boundaries are considered under the
Robin condition, which can reduce to the Dirichlet or no-flow
condition. A governing equation describing 3-D transient
flow subject to the effect of aquifer compressibility is used.
A first-order free-surface equation with a source term repre-
senting recharge rate is chosen to describe the top boundary
condition. The transient head solution of the model is derived
by the methods of Laplace transform, double-integral trans-
form, and Duhamel’s theorem. The sensitivity analysis based
on the present solution is performed to study the head re-
sponse to the change in each of the hydraulic parameters. On
the basis of the solution’s predictions, the effect of the Robin
boundaries on time-dependent head distributions at obser-
vation points is investigated. A quantitative criterion under
which the Robin condition reduces to the Dirichlet or no-flow
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Figure 1. Schematic diagram of a rectangular-shaped unconfined aquifer with localized recharge (a) top view (b) cross section view.

condition is provided. In addition, quantitative criteria for the
validity of two assumptions of aquifer incompressibility and
no vertical flow are provided, and errors arising from the as-
sumptions in the hydraulic head are also discussed. Temporal
head distributions accounting for transient recharge rates are
demonstrated as well.

2 Methodology
2.1 Mathematical model

A mathematical model is developed for describing spa-
tiotemporal hydraulic head distributions induced by local-
ized recharge in a rectangular unconfined aquifer as illus-
trated in Fig. la. The four boundaries of the aquifer are
considered under the Robin condition. The aquifer has the
widths of / and w in x and y directions, respectively. The
recharge uniformly distributes over a rectangular region hav-
ing widths a and b in x and y directions, respectively. The
lower left corner of the region is designated at (x1, y1). The
shortest distances measured from the edge of the region to
boundaries 1, 2, 3, and 4 are denoted as dp, d», d3, and
dy, respectively. The shortest distance between the edge of
the region and an observation point at (x, y) is defined as
d=min(y/(x — xe)? + (y — ve)2), where (xe, ye) is a co-
ordinate on the edge. The initial aquifer’s thickness is B as
shown in Fig. 1b.

The governing equation describing 3-D transient head dis-
tributions in a homogeneous and anisotropic aquifer is ex-
pressed as

© 3%h © 3%h 3%h dh L

xﬁ‘l' ya—y2+ i92 TSy ()
where ¢ is time, h(x, y, z, t) represents the hydraulic head,
K., Ky, and K are the hydraulic conductivities in x, y, and
z directions, respectively, and Ss is the specific storage. The
initial static water table is chosen as the reference datum
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where the elevation head is set to zero. The initial condition
is therefore written as

h=0atr=0. 2

The Robin conditions specified at the four sides of the aquifer
are defined as

ah K
B h—oatx =0, A3)
ax Kb

oh K>

— h=0atx =1, 4
ox | Kib * @
ah K

23 h—0aty=0, (5)
dy Kybs3

ah K

—+ 4h:Oaty:w, (6)
dy  Kyby

where subscripts 1, 2, 3, and 4 represent the boundaries at
x=0,x=1, y=0, and y = w, respectively, and K and b are
the hydraulic conductivity and width of the medium at the
aquifer boundary, respectively. Note that Egs. (3)—(6) reduce
to the Dirichlet condition when b (i.e., b1, b2, b3, Or by) is
set to zero and the no-flow condition when K (i.e., K1, K>,
K3, or Ky) is set to zero. The aquifer lies on an impermeable
base denoted as

dh/oz=0atz=—B. @)

The first-order free-surface equation describing the response
of water table to recharge over the rectangular region can be
written as (Zlotnik and Ledder, 1993)

oh oh
Kza—z—i-SyE :qubty atZZO, (8a)
Uy =u(x—x1)—u(x—x1—a), (8b)
uy=u(y—y1)—u(y—yr—b), (8c)

where Sy is the specific yield, I is a recharge rate, and u() is
the unit step function. Equation (8a) involves the assump-
tion of I « K, and the simplification from non-uniform sat-
urated aquifer thickness below z =/ to a uniform thickness
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below z =0 (Dagan, 1967). Marino (1967) indicated that
the simplification and assumption are valid when the wa-
ter table rise is smaller than 50% of the initial water ta-
ble height (i.e., |z|/B < 0.5) and the recharge rate is smaller
than 20 % of the hydraulic conductivity (i.e., I/K; <0.2).
On the other hand, the effect of unsaturated flow above the
water table on the model’s predictions can be ignored when
o B >10% where o is a parameter to define the relative
hydraulic conductivity as ko =exp(—oz) in the Richards’
equation (Tartakovsky and Neuman, 2007). Tartakovsky and
Neuman (2007) achieved agreement on aquifer drawdown,
which was evaluated by their analytical solution based on
Eqg. (1) for saturated flow and Richards’ equation for unsat-
urated flow, and by the Neuman (1974) solution based on
Egs. (1) and (8a) with 7 =0 when o B = 10° (i.e., the case of
«p =108 in Fig. 2 in Tartakovsky and Neuman, 2007).

Dimensionless variables and parameters are defined as fol-
lows

- h _ x _ y _ z - 1l _ w
h:—,x:—,y:—’zz—,l:—,wz—,

B d d B d d
R b K.d?
X1=—,y1==,a=-,b=—, Kk, = ,
1= N Ty d 4T KB
- Kt K, Kid Kod
= sz—, K1 = s Ko = y

Sd2 VT K YT Kb T Kby

Ksd Kad 1 S —

K3 = 3 , K4 = 4 E=—, 6=, d;

K b3 Kby K, SsB

d, - dr — d3 — ds
=—,dy=—,dz3=—,ds=—, 9

Tode=— ds=— da=— 9)

where the overbar denotes a dimensionless symbol. Notice
that the variables in the horizontal and vertical directions are
divided by d and B, respectively. According to Eq. (9), the
mathematical model, Egs. (1)—(8c), can then be expressed as

8%h 92h 0%h  oh

—=—, 10
Pro ya—2+Kzazz 9 (10)
h=0at7 =0, (1)
oh
8—_—K1h Oatx=0, (12)
oh  — _
oz troh=0at¥ =1, (13)
on
— —k3h=0aty=0, (14)
ay
o —
— txgh=0aty=1w, (15)
ay
dh/dz7=0atz=—1, (16)
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Figure 2. Temporal distributions of the dimensionless head pre-
dicted by the Manglik et al. (1997) solution for a no-flow boundary,
the Manglik and Rai (1998) solution for a Dirichlet boundary, and
the present solution with «, =1 for a Robin boundary.

oh e oh

— 4+ ——— =¢mu,atz=0, 17
R L L (172)
Uuy=u(x—x1)—u(x—x1—a, (17b)
y=u(y—yi1)—u(¥y—y1—b). (17¢c)

2.2 Analytical solution

The mathematical model, Egs. (10)—(17c), can be solved by
the methods of Laplace transform and double-integral trans-
form. The former transform converts h(x, 7y, zZ, 1) into h(x,
¥,Z, p), dh/d7 into ph — hl;_g, and & iy iy N0 £, i,/ p,
where p is the Laplace parameter and %|;_, equals zero in
Eq. (11). After taking the transform, the model becomes a
boundary value problem expressed as

?h  9%h  9%h  ~
ﬁ Kya—yz +KZ3—22:ph, (18)
with boundary conditions ah/ax—;qh 0 at x=0,
8h/8x—|—K2h 0 at x=I, 0h/dy —k3h=0 at y=0,
0h/dy +Kk4h=0 at y=w, 0h/dz=0 at z=-1, and
0h/0z+eph/k;=Euxu,/p at z=0. We then apply the
properties of the double-integral transform to the problem.
One can refer to the definition in Latinopoulos (1985, Table I,
aquifer type 1). The transform turns a(x, y, z, p) into h(am,
Bu, 7o p), 82h/0%% 41y (9%h/872) into — (a2 + iy B2) I,
where (m, n)€l, 2, 3, ... oo, and eigenvalues «,, and 8,
are the positive roots of the following equations:
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m +
tan (o) = O;{Z(K_l—lqz) (19)
and

n +
tan (wh,) = H (20)

In addition, u, u, defined in Egs. (17b) and (17c) is trans-
formed into U,, U, given by

Un = ﬁ_vm ’ (21)
et @+ [+ w2/ (o, +42)]
U, = V2v, , (22)

Jeat (82 +2) [T+ ka/ (B2 +2)]
with

Vin = {k1[COS (et X1) — COS (0t x)]
= [SIN (0t X1) — SIN (e YOI} /0t (23)

Vi = {KE [COS (ﬂnyl) —€0S (B 1aﬁ)]

_ﬂn [Sin (,Bnyl) —sin (,Bn 1ﬁ)]} /ﬂi‘ls (24)
where x =x1 +a and ¢ =y, +b.

Equation (18) then reduces to an ordinary differential
equation as

8%h 2 2\ 7
K28—22—<p+am+/(y,3n)h:0. (25)

Two boundary conditions are expressed, respectively, as

dh/9z=0atz=—1 (26)
and

dh .

__+8_ph= éUmUn atz=0. (27)
07 Ky P

Solving Eq. (25) with Egs. (26) and (27) results in

A B EU,U,cosh[(1+72)A]

h ms Pns<s = " , 28
@ Pn.2. P) p (pek;Coshi + k,AsinhA) (28)

where

= (p+ad +1c,B2) Jie. (29)

Inverting Eq. (28) to the space and time domains gives rise
to the following analytical solution:
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00 00 00
E(f, y, z, ;) =$ z Z(¢m,n + ¢0,m,n + z¢j,m,n)
m=1n=1 j=1
F,F,U,U, (30a)
with
cosh|(1+4+7)A
o = L -2) ma] (30b)
’ KzAm nSINNA,, ,
¢O,m,n = _ZAO,rn,nCOSh [(1 +Z>)‘0,m,n] exp (_VO,m.n;) /UO,m,n s (30C)
Sjmn= *2)‘_/‘,m,n Cos [(1 +z))‘j,m,n] exp (*Vj,m,n;) /Mjmns (3Od)

00.m.n = Y0.m.n [(L+28k2) kom0 €OSNAQ 1 + (1= €¥0 m.n) SINNLQ . | (306)
Njmon = Vi [(L4266) %m0 COSAj i + (L= €¥jm.n) SINAj m.n]s (30f)
S = Fnn /K2 Yo = fn =M s Vimn = fun +x233 . (309)
Jmon Zayzn +Ky,33, (30h)

g = Y2l c0s @) +kasin@n®] (30i)
Jir+ (@2 +) [+ 10/ (02 +1)]

v V2[ B cos (By) +k3sin(B,7)] ’ (30j)
\/K3 + (B2 +«5) [w+ka/ (B2 +x2)]

where je€l, 2, 3,... oo and eigenvalues Ao, and A . »
are determined, respectively, by the following equations:

@40 = = (fon + 532 ) /jmn (31)
and

2
_EKZ)‘O)m,n + )\O,m,n + sfm,n

rf‘/‘Kz)\(z)’m,n + AO,m,n - 8fm,n

=exXp (2h0,m,n) - (32)

Notice that Egs. (19), (20), and (31) have infinite posi-
tive roots owing to the trigonometric function tan() while
Eq. (32) has only one positive root. The method to find oy,
Brs X j.mn, @nd Ao ., i introduced in Sect. 2.3. One can refer
to Appendix A for the derivation of Eq. (30a). The first term
on the right-hand side (RHS) of Eq. (30a) is a double series
expanded by «,, and B,. The series converges within a few
terms because the power of «,, (or 8,) in the denominator of
¢m.n IN EQ. (30b) is two more than that in the nominator. The
second term on the RHS of Eq. (30a) is a double series ex-
panded by o, and B,, and the third term is a triple series
expanded by o, B, and A; . ,. They converge very fast
due to exponential functions in Egs. (30c) and (30d). Con-
sider (m,n)e(1,2,..., N=30)and j (1, 2,..., N; =15)
for the default values of dimensionless parameters and vari-
ables in Table Al for calculation. The number of terms in
one or the other double series is 30 x 30 =900 and in the
triple series is 30 x 30 x 15=13500. The total number is
therefore 900 x 2 4 13500 = 15 300. We apply Mathematica
FindRoot routine to obtain the values of «,,, B,, and A; . »
and Sum routine to compute the double and triple series. It
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takes about 8s to finish calculation for 7 =10° with a per-
sonal computer with Intel Core i5-4590 3.30 GHz processor
and 8 GB RAM. In addition, the series is considered to con-
verge when the absolute value of the last term in the double
series of ¢y, , is smaller than 10720 (i.e., 1070 <1020 in
this case). That value in the other double or triple series may
be even smaller than 1050 due to exponential decay.

The use of finite aquifer domain has two merits. One is

0
that the solution to depth-average head, defined as [ A(x,
-1

y, z, £)dz, can be analytically integrated. The integra-
tion variable z appears only in the functions of cosh[(1+
Z)Am.nl in Eg. (30b), cosh[(1+7Z)Ao.m.n] in Eg. (30c) and
cos[(1 +2)A;mn]l in Eq. (30d). The solution to depth-
average head therefore equals Eq. (30a), where these three
functions are replaced by sinh A, » /Am ., SINNAQ .1 /200
and sin A ; ;, /A m.n, respectively. The other merit is that
the present solution is applicable to head predictions in
aquifers of infinite extent before the dimensionless time
to have lateral aquifer boundary effect on the predictions.
Wang and Yeh (2008) reported a time criterion defined as

Tor =O.03(1+s)§2, where R = R/d denotes a shortest di-
mensionless distance from the lateral boundary to the edge of
the recharge region. This criterion is, in effect, a boundary-
effect time when the hydraulic head is affected by the aquifer
boundary. Existing solutions based on aquifers of infinite
extent can therefore be considered as special cases of the
present solution before the boundary-effect time.

2.3 Calculation of eigenvalues

The eigenvalues o, By, A j,m.n, @aNd Lo m,, Can be determined
by Newton’s method with initial guess values (IGVs) set to
be the vertical asymptotes of the functions on the left-hand
side (LHS) of Egs. (19), (20), (31), and (32), respectively.
Hence, IGVs for «,, are o’ + 3§ if o’ < (k1k2)2 and o’ — &
ifa’ > (k1 k2)Y/2, where o’ = (2m — 1)7/(2]) and § is a small
value of 108 to avoid being right at the vertical asymptotes.
Similarly, IGVs for B, are g’ + 8 if 8 < (k3k4)/2and B/ — &
if B> (k3k4)Y/2, where g/ =(2n — 1)7/(2w). In addition,
IGVs for A, are (2j — 1) /2 + 6, and the IGV for Ag ;. »
is 8+ [(1+ 4k, fru.ne)Y? —1]/(2¢ ;) obtained by setting
the denominator of the LHS function of Eq. (32) to zero and
solving the resultant equation.

2.4 Solution for time-varying recharge rate

The present solution, Eq. (30a), is applicable to arbitrary
time-dependent recharge rates on the basis of Duhamel’s the-
orem expressed as (e.g., Bear, 1979, p. 158)
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7
_ _ d -

his=ho +/%h(1 —1)/&dr, (33)

0

where &, signifies a dimensionless head solution for a time-
dependent recharge rate & (t) with 7 replaced bX 7, hyo is
Eg. (30a) in which & is replaced by &;(0), and h(f — ) is
also Eq. (30a) with 7 replaced by 7 —z. If Eq. (33) is not
integrable, it can be discretized as (Singh, 2005)

— N .
hN=ZEn(N—z+1), (34a)
i=1
with
Ag =& —§&_1, (34b)
r
n(M) = /E(MA? —1)dr, (34c)

0

where Ay represents a numerical result of dimensionless
head /1 at 7=A7x N, A7 is a dimensionless time step,
& and & _1 are dimensionless recharge rates at 1 = A7 x i
and 7= A7 x (i — 1), respectively, and n(M), called ramp
kernel, depends on Eq. (30a) in which 7 is replaced by
M At — 7. The integration result of Eq. (34c) can be denoted
as Eq. (30a) where ¢, , is replaced by ¢y, , # and two expo-
nential terms in Egs. (30c) and (30d) are replaced, respec-
tivelyv by exp(—M Y0,m,n A;)[_l + eXp(VO,m,n A;)]/Vo,m,n
and exp(_M Yjm,n A;)[_l + exp(yj,m,n A;)]/J/j,m,n-

2.5 Sensitivity analysis

The sensitivity analysis is administered to assess the change
in the hydraulic head in response to the change in each of the
hydraulic parameters. The normalized sensitivity coefficient
of the hydraulic head to a specific parameter can be expressed
as

_ 0h/B _ 0h
CP/Pe 3PP

ot (35)
where P is the cth parameter in the present solution, S, is
the coefficient at a time to the cth parameter, and 4 is the
present solution, Eq. (30a). The derivative in Eq. (35) can be
approximated as

o R(P.4 AP) =T (P.)
o AP/ P, ’

(36)

where AP, is an increment chosen as 10~2 P, (Yeh et al.,
2008).
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Present solution with K,
0.08 716 -0 <10

0.06 —

= 0.04

Figure 3. Temporal distributions of the dimensionless head pre-
dicted by the Manglik and Rai (1998) solution based on 2-D flow
and the present solution for 3-D flow with various «;.

3 Results and discussion

Previous articles have discussed groundwater mounds in re-
sponse to localized recharge into aquifers with various hy-
draulic parameters (e.g., Dagan, 1967; Rao and Sarma, 1980;
Latinopoulos, 1986; Manglik et al., 1997; Manglik and Rai,
1998; Rai et al., 1998; Chang and Yeh, 2007; Illas et al.,
2008; Bansal and Das, 2010; Bansal and Teloglou, 2013).
Flow velocity fields below groundwater mounds have also
been analyzed (Zlotnik and Ledder, 1992, 1993). This sec-
tion therefore focuses on the transient behavior of hydraulic
head at an observation point with the aid of the present so-
lution. The default values of the parameters and variables
for calculation are noted in Table Al. In Sect. 3.1, transient
head distributions subject to Dirichlet, no-flow and Robin
boundary conditions are compared. In Sect. 3.2, the effect
of vertical flow on the head distribution is investigated. In
Sect. 3.3, errors arising from assuming aquifer incompress-
ibility (i.e., Ss=0) to develop analytical solutions are dis-
cussed. In Sect. 3.4, the response of the hydraulic head to
transient recharge rates based on Eq. (33) is demonstrated.
In Sect. 3.5, the sensitivity analysis defined by Eq. (36) is
performed.

3.1 Effect of lateral boundary

The Robin condition can become the Dirichlet or no-flow
condition, depending on the magnitudes of 1 d for Eq. (12),
K2 d, for Eq. (13), k3d3 for Eq. (14), and k4d4 for Eq. (15).
We consider a symmetrical aquifer system with [ =w =22,
31 232 233 234 =10, and k1 =kp =Kk3 =k4. The magni-
tudes of k1 d1, kodo, k3ds, and kada are the same and de-
fined as «. The curves of & versus 7 plotted by the present

Hydrol. Earth Syst. Sci., 20, 1225-1239, 2016

solution, Eq. (30a), for x =103, 102, 1071, 1, 10, 100,
and 200 are shown in Fig. 2. The curves i versus 7 are
plotted from the Manglik et al. (1997) solution with the no-
flow condition (i.e., x =0), the Manglik and Rai (1998) so-
lution with the Dirichlet condition (i.e., k — o0), and the
present solution with the Robin condition. Before 7 = 104,
these curves give the same magnitude of 7 at a fixed dimen-
sionless time 7, since the lateral aquifer boundary has been
beyond the place where groundwater is affected by localized
recharge. After 7 = 10%, the curves for the cases of k = 1072,
10~1, 1, 10, and 100 deviate from each other gradually as
time increases. A larger magnitude of « between x =102
and « =100 causes a smaller % at a fixed 7. On the other
hand, the present solution for the cases of ¥ =102 and 102
agrees well with the Manglik et al. (1997) solution based on
« =0 and that for the cases of x = 100 and 200 predicts the
same result as the Manglik and Rai (1998) solution based on
x — co. We may reasonably conclude that the Robin condi-
tion reduces to the no-flow condition when x < 102 and the
Dirichlet condition when « > 100.

3.2 Effect of vertical flow

Dimensionless parameter «, (i.e., K.d?/(K.B?))
dominates the effect of wvertical flow on transient
head distributions at an observation point. Consider
k1di=kpdy=k3d3=ksds =100 for lateral aquifer
boundaries under the Dirichlet condition as discussed in
Sect. 3.1. The temporal distributions of % predicted by the
present solution, Eqg. (30a), with «, =0.01, 0.1, 1, and 10
are demonstrated in Fig. 3. The temporal distribution of 7
predicted by the Manglik and Rai (1998) solution based on
2-D flow without the vertical component is taken in order to
address the effect of vertical flow. The figure reveals that 7
increases with «, when «, < 1. The difference in & predicted
by both solutions indicates the vertical flow effect. The
Manglik and Rai (1998) solution obviously overestimates
the head. The vertical flow prevails, and its effect should be
taken into account when «, <1, indicating a thick aquifer,
a small ratio of K,/K,, and/or an observation point near
a recharge region. On the other hand, the present solution
for the cases of «, =1 and 10 agrees well with Manglik
and Rai (1998) solution, indicating that the vertical flow
effect is ignorable when «, > 1. We can recognize from the
agreement that existing solutions neglecting the vertical flow
effect give good predictions when «, > 1.

3.3 Effect of specific storage

Some of the existing models use the Laplace equation as a
governing equation by assuming Ss=0 (e.g., Singh, 1976;
Schmitz and Edenhofer, 1988; Zlotnik and Ledder, 1993).
The assumption is valid when ¢ (i.e., Sy /(Ss B)) is larger than
a certain value. This section quantifies the value. The Zlotnik
and Ledder (1993) model based on the 3-D Laplace equa-
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(a) £=8,/(58) Present solution Zlotnik and Ledder (1993)
1 2

0.1 7

0_:
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1233

(b) £=8,/68) Present solution Zlotnik and I.edder (1993)

1 g2
10! o—o——o _ - -
102 o—8—=a _— —

0.06 —

0.04 —

0.02 —H

Figure 4. Temporal distributions of the dimensionless head for (a) «, =10 and (b) «, = 102 predicted by the Zlotnik and Ledder (1993)
solution based on the assumption of Ss =0 and the present solution relaxing the assumption.

tion, Eq. (1) with Ss=0, is taken for comparison with the
present model using Eq. (1) with S5 # 0. The dimensionless
variables of s, x, y, z, ¢, X, and Y in their model are replaced
by h/§, (k)" /2%, (k)2 5,2, k. 1/, ()2 @, and (k)2 b,
respectively, for ease of comparisons. Consider the cases of
k. =102 for an observation point located at a 3-D flow area
and «, =10 for the point located at a 2-D flow area as dis-
cussed in Sect. 3.2. The assumption can be assessed through
the comparison in the dimensionless heads predicted by both
solutions for ¢ =1, 10, 10%, and 10° as shown in Fig. 4a
for k. =10 and Fig. 4b for x, =10~2. The present solution
predicts a steady-state 7 of 0.074 in Fig. 4a and 0.054 in
Fig. 4b after certain times due to lateral Dirichlet bound-
aries (i.e., k1d1 =k2dy = k3d3 =k4d4 = 100) as discussed
in Sect. 3.1. In contrast, their solution predicts 7, which in-
creases with 7 due to the absence of lateral boundaries. When
e=1 and 10, both solutions give different values of & for
both cases of «, = 1072 and «, = 10 before 7 = 100, indicat-
ing that the assumption of Ss = 0 causes inaccurate /. When
e =102 and 102, both solutions predict very close results of
h for both cases before the time of approaching steady-state
. These results lead to the conclusion that the assumption of
Ss =0 is valid when ¢ > 100 for 3-D and 2-D flow cases.

3.4 Transient recharge rate

Most articles (e.g., Rai et al., 1998; Chang and Yeh,
2007; Illas et al., 2008; Bansal and Teloglou, 2013) de-
fine a transient recharge rate as I;(t) = I1 + Ip exp(—rt)
(ie., &@)=¢& +& exp(—yr) for a dimensionless rate)
where & =1;/K;, §1=11/K, éo=1Io/K;, y =r Ssd?/Kx,
and r is a decay constant. The rate exponentially declines
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Figure 5. Temporal distributions of the dimensionless head subject
to a transient recharge rate predicted by the Ramana et al. (1995)
solution, the Zlotnik and Ledder (1993) solution, and the present
solution with «; =1, x =100, and & = 100.

from an initial value of I; + Ip to an ultimate value of
I1. In the present solution, Eq. (30a), can be applied for
the response of the head to the transient rate based on
Eq. (33). Substituting 0&,(r)/0t =—y & exp(—y 1) into
Eg. (33) and integrating the result for r fromt =0to t =7
yields %70 plus Eqg. (30a), where & in Eq. (308), ¢, in
Eq (3Ob)v exp(_VO,m,n ;) in Eq (300)! and EXP(—Vj,m,nf)
in Eq. (30d) are replaced by &, ¢m.nlexp(—y 1) —1],
yexp(—=y 1) — exp(Yo.m.n D1/ (Vo.mn +v), and y[exp(—y
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Figure 6. Temporal distributions of the normalized sensitivity coefficients of the hydraulic head at the observation points of (a) (x, y,
z) = (555, 500, —10) and (b) (x, y, z) = (800, 500, —10) to the changes in parameters a, b, K, Ss, K1, Sy, and K.

1) —exXp(¥j,mn D1/ (Vjmn + ), respectively. Similarly, the
Zlotnik and Ledder (1993) solution can also be used to ob-
tain the head subject to the transient rate by substituting it
into Eqg. (33) and then integrating the result using numeri-
cal approaches. Now, we consider the Ramana et al. (1995)
solution depicting 2-D flow induced by the transient rate in
rectangular aquifers with the lateral boundaries under the
Dirichlet condition. Figure 5 shows the temporal distribu-
tions of 7 for the transient rate predicted by these three so-
lutions when «, =1, ¥ =100, and ¢ =100. The present so-
lution agrees well with the Ramana et al. (1995) solution.
We can recognize from the agreement that, even for transient
rates, the Robin condition reduces to the Dirichlet condition
when « > 100 (i.e., Klgl = Kzgz = K333 = K434 = 100) as
discussed in Sect. 3.1 and the vertical flow effect is ignor-
able when «, > 1 as discussed in Sect. 3.2. Moreover, agree-
ment on # estimated by the present solution and the Zlotnik
and Ledder (1993) solution before 7 =3 x 10% will make it
clear that, even for transient rates, assuming aquifer incom-
pressibility (i.e., Ss=0) is valid when ¢ > 100 as discussed
in Sect. 3.3.

3.5 Sensitivity analysis

Consider point A of (555, 500, —10m) at a 3-D flow re-
gion (i.e.,, x; <1) and point B of (800, 500, —10m) at
a 2-D flow region (i.e., x; > 1) as discussed in Sect. 3.2.
Localized recharge distributes over the square area of
450m < x <550m and 450 m < y <550 m. The distance d
herein is set to 5m for point A and 250 m for point B. The
aquifer system is of isotropy with K, = K, and symmetry
with K3 = K2 = K3 = K4 for conciseness. To investigate the
responses of the hydraulic heads at these two points to the
change in each of a, b, S5, Sy, K. (or K,), K;, and K
(or Ko, K3, and Kjy), the sensitivity analysis is performed
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by Eq. (36). The curves of the normalized sensitivity coef-
ficient S., versus ¢ for these seven parameters are shown
in Fig. 6a for point A and Fig. 6b for point B. The figure
shows that the hydraulic heads at both points are more sen-
sitive to the changes in a, b, K,, and Sy than those in the
others. This may indicate that a flow model should include
at least these four parameters. The figure also shows that the
heads at points A and B are insensitive to the change in K1
because of k1 d1 = 4500 > 100 as discussed in Sect. 3.1. In
addition, S., to K, for point A is nonzero after t =0.4 day
due to k, =6.25 x 1073 < 1 as discussed in Sect. 3.2. In con-
trast, S, ; to K for point B is very close to zero over the en-
tire period because of «, = 15.625 > 1. Moreover, the heads
at points A and B are insensitive to the change in Ss due to
¢ =500 > 100 as discussed in Sect. 3.3.

4 Conclusions

A mathematical model is developed to depict spatiotemporal
head distributions induced by localized recharge with an ar-
bitrary time-varying rate in a rectangular unconfined aquifer
bounded by Robin boundaries with different hydraulic pa-
rameters. A governing equation for 3-D flow is considered.
A first-order free-surface equation with a source term rep-
resenting the recharge is employed for describing the water
table movement. The analytical head solution of the model
is obtained by applying the Laplace transform, the double-
integral transform, and Duhamel’s theorem. The use of rect-
angular aquifer domain leads to two merits. One is that the
integration for the solution to the depth-average head can be
analytically done. The other is that existing solutions based
on aquifers of infinite extent are special cases of the present
solution when the recharge time is less than the boundary-
effect time. The present solution is applicable under the con-
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ditions of aquifer homogeneity, |#|/B < 0.5, I/K, <0.2,and
o B > 108 due to Eq. (8a) neglecting the effect of unsaturated
flow above water table (Marino, 1967; Tartakovsky and Neu-
man, 2007). The sensitivity analysis is performed to explore
the response of the head to the change in each of hydraulic
parameters. With the aid of the present solution, the follow-
ing conclusions can be drawn:

1. With respect to affecting # at observation points,
the Robin condition specified at x=0 reduces
to the Dirichlet condition when «1d;>100
(i.e., Kidi/(Kyb1)>100) and no-flow condition
when «1d1 <1072, The quantitative criteria for
x1dy are applicable to kpdo, k3ds, and k4dy for the
Robin conditions specified at x =1, y=0, and y =,
respectively.
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2. The vertical flow causes a significant decrease in the

hydraulic head at an observation point when «, <1
(i.e., K.d?/(K,B%) <1). When «, > 1, the effect of
vertical flow on the head is ignorable, and conventional
models considering 2-D flow without the vertical com-
ponent can therefore predict accurate results.

. The 3-D Laplace equation based on the assumption

of Ss=0 can be regarded as a flow governing equa-
tion when ¢ > 100 (i.e., Sy/(Ss B) > 100) for the whole
aquifer domain. Otherwise, head predictions based on
the Laplace equation are overestimated.

. The abovementioned conclusions are also applicable to

problems of groundwater flow subject to recharge with
arbitrary time-varying rates.
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Appendix A: Derivation of Eqg. (30a)
We begin with function G(p) from Eq. (28):

Gp) = cosh[(1+72)A]
pr= p (pek,COshA + K, AsinhA)’

(A1)

with

)‘:\/ (p+fm,n) [z, (A2)

where f,, , = a2 +«y 2. Equation (A1) is a single-value
function to p in the complex plane because it satisfies
G(pT)=G(p~),where p*and p~ are the polar coordinates
defined, respectively, as

P+ =rq exp(if) — fm,n (A?’)
and
p =rqexpli(d —2m)] _fm,n’ (A4)

where r, represents a radial distance from the origin at
P =—fmn, i =+/—1 is the imaginary unit, and 6 is an ar-
gument between 0 and 27. Substitute p = p™ in Eq. (A3)
into Eq. (A2), and we have

A= /rq /K, €Xp(i0/2) = /1y /K. [c0S(6/2) +isin(@/2)]. (A5)

Similarly, we can have

A= /ra/K;eXpli(0 —2m) /2] = —/ra/k; [cos(9/2)
+isin(9/2)] (AB)

after p in Eq. (A2) is replaced by p~ in Eqg. (A4). Substi-
tution of Egs. (A3) and (A5) into Eq. (Al) yields the same
result as that obtained by substituting Egs. (A4) and (A6) into
Eg. (Al), indicating that Eqg. (A1) is a single-value function
without branch cut and its inverse Laplace transform equals
the sum of residues for poles in the complex plane.

The residue for a simple pole can be formulated as

Res = yﬂ; G(p)exp(pt)(p — @), (A7)

where ¢ is the location of the pole of G(p) in Eq. (Al). The
function G(p) has infinite simple poles at the negative part
of the real axis in the complex plane. The locations of these
poles are the roots of the following equation:

p (pek,Coshi + k,AsinhA) =0, (A8)

which is obtained by setting the denominator in Eq. (Al) to
zero. Obviously, one pole is at p =0, and its residue based on
Egs. (Al) and (A7) with Ay, , =/ fin.n/Kk. Can be expressed
as

Gmn = COSN [ (L 42D Amn ] / (kzhm,nSINNA 1) - (A9)
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The locations of other poles of G(p) are the roots of the fol-
lowing equation:

pek;CoshA + k AsinhA =0, (A10)

which is the expression in the parentheses in Eq. (A8).
One pole is between p=0and p=—f,,. . Let A=Xg m.n,
and Eq. (A2) becomes p=—fun+k.A5, ,. Substi-
tuting  A=Aoma  P=—fon +K A5 0 COSNA0mn
= [exp AO,mn + eXp(_)\O,m,n)]/Z, and sinh AO,m,n = [exp
A0.m.n — €XP(—Xo.m.n)1/2 into Eq. (A10) and rearranging the
result leads to Eq. (32). The poleisat p = — fiu.n +; Ag’m’n
with a numerical value of iq .. With Eq. (Al), Eq. (A7)
equals

cosh[(1+2)A]

Res = -
p (pek,Coshi + kAsinhA)

exp(pt)(p—¢). (All)

Apply L’Hospital’s rule to Eq. (A11), and then we have

os — —2xcosh[(1+2)A]
~ p[(@+2ex;) Acosha + (1 — ep)sinha

] exp(pr). (Al2)

The residue for the pole at p = — f,,,., + «; A% . €an be de-
fined as

—220,m,nCOSN[(L + 2)A0, 1,1 1€XP (= Y0.m.n7)
Yo [(L+ 26k2) 10,m,nCOSNA0m.n + (1= £0,m.n) SO0 in.1 |

which is obtained by Eq. (Al2) with A=Aig,. . and
p:—fm,n+/cz)n(2),m,n:—yo,m,n. On the other hand, in-
finite poles behind p=—f,, are at p=y;un, Where
jel, 2,3, ... co. Let A=+/=1Ajmn, and Eq. (A2)
yields p=— fo.n —k; xjm’n. Substituting  =/—1 .,

P=—Ffun—Ks Ai’m’n, COSN(v/=L A j ) = COS Aj m.n, and

sinh(v/ =14 m.n) =+~/—1sinA; , , into Eq. (A10) and re-
arranging the result gives rise to Eg. (31). These poles

2 - .
are at p=—fun—kA5, , with numerical values of

Xjmn. On the basis of Eq. (A12) with A=+ =14,
and p=—fun —k: A2, =~y mn, the residues for these

< jman T
poles at p = — f,,., —k; A2, can be expressed as

j.m,n

; (A13)

Domn =

_Z)Lj,mﬂ COS[(l"'a)‘j.m,n]eXp (_Vj.m,n?)
Yj,m.n [(1 +2ekz) )\j,m.n C()S)‘j',m.n + (l - gyj,m.n) Sinkj.lrr,n]

¢j,m,n = . (A14)
As a result, the inverse Laplace transform for Eq. (Al)
is the sum of Egs. (A9) and (Al13) and a simple
series expended in the RHS function in Eq. (Al4)

[e¢)
(i.e., dmn+P0.mn+ 2 ¢jmn) Finally, Eq. (30a) can be
j=1
derived after taking the inverse double-integral transform for
the result using the following formula (Latinopoulos, 1985,

Eq. 14):

}_1()79 y’ z, ;) =§ Z Z((bm,n + ¢O,m,n + z‘i’j,m,n)
j=1

m=1n=1

FuFy U Uy, (AL5)

where & and U,, U,, result from & U,, U, in Eq. (28).
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