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This paper addresses the problem of scheduling 𝑛 independent jobs on a single machine with a fixed unavailability interval, where
the aim is to minimize the total earliness and tardiness (TET) about a common due date. Two exact methods are proposed for
solving the problem: mixed integer linear programming formulations and a dynamic programming based method.These methods
are coded and tested intensively on a large data set and the results are analytically compared. Computational experiments show that
the dynamic programming method is efficient in obtaining the optimal solutions and no problems due to memory requirement.

1. Introduction

This paper considers the minimization of total earliness
and tardiness (TET) for common due date single-machine
scheduling with an unavailability interval. The TET perfor-
mancemeasure is consistent with the just-in-time (JIT)man-
ufacturing philosophy in which an ideal schedule consists of
all jobs finish exactly on the due date.

These days, the emphasis on the JIT approach has led to
a growing interest in earliness-tardiness scheduling models.
In a JIT scheduling environment, job earliness may cause
bounded capital and inventory holding costs, whereas job
tardiness may disrupt a customer’s operations. Therefore,
both earliness and tardiness should be taken into account in
order to determine the optimal machine scheduling policy.

The common due date scenarios are relevant in many
realistic situations; for example, several items constitute a
customer order, or they are delivered to an assembly line
where the components are all required to be ready at the same
time.Numerous studies have been published on the earliness-
tardiness scheduling problems with common due date, such
as those discussed in the surveys of Baker and Scudder [1],
Biskup and Feldmann [2], Gordon et al. [3], and Lauff and

Werner [4]. In what follows, some references related to the
common due date TET minimization are recalled.

Kanet [5] proposed a polynomially bounded matching
algorithm for the single-machine problem that the due date
was assumed to be greater than the total processing time of
the jobs. Bagchi et al. [6] extendedKanet’s result and provided
an implicit enumeration procedure to find all the optimal
schedules. Sundararaghavan and Ahmed [7] developed a
polynomial-time algorithm to determine the optimal job-
machine assignment for identical parallelmachines. Emmons
[8] investigated the uniform parallel-machine scheduling
problem when the makespan and machine occupancy were
considered as the secondary objective. Baker and Scudder
[1] specified the minimum value of a common due date that
gives rise to the unrestricted version of the TET problem.
Dynamic programming algorithms and branch-and-bound
methods for single-machine scheduling with a restricted
due date were presented in [6, 9–13]. Sarper [14] modelled
the two-machine flow shop scheduling problem as a mixed
integer linear programming formulation and suggested three
constructive heuristics. Sakuraba et al. [15] introduced a job
timing algorithm for generating the optimal schedule when
the sequence of jobs processed in the two-machine flow shop
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was given. Sung and Min [16] addressed the problem of
scheduling two-machine flow shop with at least one batch
processor incorporated. Some optimality properties were
characterized for three different system configurations to
derive their corresponding solution methods. Yeung et al.
[17] proposed a branch-and-bound method and a heuristic
to solve the two-machine flow shop scheduling problem with
TET criterion in relation to a given common due window.
Lauff and Werner [18] investigated the computational com-
plexity of multistage scheduling problems with intermediate
storage costs.

It can be observed that the majority of previous studies
assumed that themachines are available at all times. However,
in a real production system, machines may not be always
available because of unforeseen breakdowns, tool changes,
or preventive maintenance requirements for improving the
production efficiency. It is also possible that machines have
been committed to deal with the promised orders and hence
become unavailable for processing in certain periods of the
current planning horizon. Under such circumstances, the
optimal production strategies can be quite different from
those attained by classical models.

Due to the practical experience in production systems,
there has been a great deal of efforts concentrated on
scheduling problems with limited machine availability (see
Lee et al. [19]; Schmidt [20];Ma et al. [21]).More recently, Low
et al. [22] presented heuristic approaches to minimize the
makespan on a single machine that was periodically unavail-
able. Mosheiov and Sidney [23] developed polynomial-time
algorithms for scheduling a deteriorating maintenance activ-
ity on a single machine with different objective functions.
Zhao and Tang [24] analyzed the single-machine scheduling
problem with simultaneous considerations of maintenance
activities and job-dependent aging effect while minimizing
the makespan.

Ángel-Bello et al. [25] proposed a mixed integer pro-
gramming formulation and an efficient heuristic approach
for the single-machine makespan problem with availability
constraints and sequence-dependent setup costs. Huo and
Zhao [26] presented polynomial-time algorithms to optimize
both makespan and total completion time under a two-
parallel-machine environment with availability constraints.
Yang et al. [27] provided a dynamic programming algorithm
and a branch-and-bound method for minimizing the total
completion time on a single machine in which job processing
andmaintenance activity had to be scheduled simultaneously.
Lee and Kim [28] studied the single-machine scheduling
problem with periodic maintenance and adopted a two-
phase heuristic to minimize the number of tardy jobs. Yin
et al. [29] examined the problem of scheduling jobs and
common due date assignment on a single machine with
a rate-modifying activity. They proposed some optimality
conditions and developed polynomial-time algorithms for
special cases.

Dong [30] presented a column generation based branch-
and-bound method to schedule identical parallel machines
in which the job sequence and the timing of shutdown
operation were jointly optimized. Hsu et al. [31] considered
the scheduling problem of minimizing the total completion

time and the total machine load on the unrelated paral-
lel machines with three basic types of aging effect mod-
els and deteriorating maintenance activities. They showed
that all the addressed models are polynomial-time solv-
able. Shen et al. [32] proposed polynomial-time algorithms
to schedule identical parallel machines with nonsimulta-
neous machine available time. Vahedi-Nouri et al. [33]
developed a new binary integer programming formula-
tion and a branch-and-bound method for minimizing the
total completion time in single-machine scheduling with
learning effect and multiple availability constraints. Xu and
Yang [34] considered the two-parallel-machine scheduling
problem with a periodic availability constraint. They pre-
sented a mathematical programming model to minimize the
makespan.

Hashemian et al. [35] addressed themakespanminimiza-
tion for parallel-machine scheduling with multiple planned
unavailability intervals. A mixed integer linear programming
model and an implicit enumeration algorithm were designed
to tackle the problem. Kaplanoğlu [36] adopted a multi-
agent based approach for scheduling single machine with
sequence-dependent setup times and machine maintenance,
where both of the regular and irregularmaintenance activities
were considered. Rustogi and Strusevich [37] studied the
single-machine scheduling problem incorporating positional
and time-dependent effects, in which the machine was sub-
ject to rate-modifying activities that split the jobs into groups.
The aims were to minimize the makespan and the total
completion time. Yin et al. [38] explored the single-machine
batch scheduling problem with an unavailability interval. A
dynamic programming algorithmwas proposed forminimiz-
ing the sum of total flow time and batch delivery cost. Yin
et al. [39] investigated the problem of scheduling jobs with
assignable due dates on a single machine, in which the job
processing times were subject to positional deterioration and
the execution of preventive maintenance. They analyzed the
structural properties of the problems under consideration
and presented polynomial-time algorithms for deriving the
optimal solution. Rustogi and Strusevich [40] considered
the single-machine scheduling problem with linear time-
dependent deterioration effects and maintenance activities.
A range of polynomial-time algorithms were designed to
minimize the makespan.

Most of the aforementioned scheduling models focused
on regular performance measures such as makespan, total
completion time, and number of tardy jobs. With current
emphasis on the JIT production strategy, these classical
measures may no longer be applicable. So far, only Low
et al. [41] addressed the problem of minimizing common
due date TET in the presence of availability constraints.
They developed an ant colony optimization algorithm for
the single-machine model in which one maintenance task
had to be performed and analyzed some special cases that
are polynomial-time solvable. Nevertheless, such heuristic
approaches offer no guarantees to the optimality of the
obtained solutions and do not define how close the obtained
solutions are to the optimal ones. Furthermore, it should be
noted that the matching algorithm suggested by Low et al.
[41] only can be used to deal with the cases when the due
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date falls within the unavailability interval and certain con-
ditions are satisfied. In practical scheduling environments,
the production schedulers always expect to come up with
an optimal schedule in reasonable time. It might be unde-
sirable to use heuristic approaches to tackle problems while
efficient exact algorithms are available. Thus, more powerful
optimization techniques must be brought to bear on the
problem.

This paper contributes two exact methods: mixed integer
linear programming formulations and a dynamic program-
ming method. The mixed integer linear programming for-
mulations are characterized by the type of binary variable
that captures the scheduling decision, and the dynamic
programming method is derived based on the optimality
properties. Experimental results show that the proposed
methods are able to give satisfactory solutions. Moreover, it
is computationally demonstrated that the dynamic program-
ming method is efficient in obtaining the optimal schedules
for large-scale problems.

In the next section, a formal statement of the problem
is established and some optimality properties are given.
Section 3 provides four mixed integer linear programming
formulations based on different definitions of decision vari-
ables, while Section 4 describes the dynamic programming
algorithms. In Section 5, computational results are reported
to evaluate the proposedmethods. Finally the conclusions are
drawn in Section 6.

2. Problem Presentation and
Optimality Properties

2.1. Description of the Problem. A set of 𝑛 independent
jobs has to be processed on a single machine which is
unavailable in a given time interval [𝑡

𝑠
, 𝑡
𝑒
]. Each job 𝑗 (𝑗 =

1, 2, . . . , 𝑛) becomes available for processing at time zero, has
a processing time 𝑝

𝑗
, and should ideally be completed at a

common due date 𝑑. The machine can handle at most one
job at a time and preemption of jobs is prohibited. Without
loss of generality, it is assumed that all data are integral. A
schedule defines for each job 𝑗 a completion time 𝐶

𝑗
. Let

𝐸
𝑗
= max{0, 𝑑 − 𝐶

𝑗
} and 𝑇

𝑗
= max{0, 𝐶

𝑗
− 𝑑} represent the

earliness and tardiness, respectively, of job 𝑗. The objective
is to determine a feasible schedule so that the TET about
the common due date ∑

𝑛

𝑗=1
|𝐶
𝑗
− 𝑑| = ∑

𝑛

𝑗=1
(𝐸
𝑗
+ 𝑇
𝑗
) are

minimized. Extending the standard three-field notation in
Graham et al. [42], this problem can be referred to as 1, ℎ

1
|

𝑑
𝑗
= 𝑑 | ∑

𝑛

𝑗=1
(𝐸
𝑗
+ 𝑇
𝑗
), where ℎ

1
indicates that there is only

one unavailability interval on the machine.

2.2. Problem Analysis. In absence of machine availability
constraints, the problem under consideration is reduced to
the problem 1 | 𝑑

𝑗
= 𝑑 | ∑

𝑛

𝑗=1
(𝐸
𝑗
+ 𝑇
𝑗
), which has been

proven to be NP-hard by Hall et al. [9] based on the even-
odd partition problem, and hence the addressed problem
is also NP-hard. To begin with, some important optimality
properties are established.They are essential for the design of
the dynamic programming.

Since the machine cannot process any jobs in an unavail-
ability interval [𝑡

𝑠
, 𝑡
𝑒
], there are two available time windows

𝛿
𝑖
= [𝐷
𝑖
, 𝑅
𝑖
], where

𝑖 = 1:𝐷
𝑖
= 0 and 𝑅

𝑖
= 𝑡
𝑠
,

𝑖 = 2:𝐷
𝑖
= 𝑡
𝑒
and 𝑅

𝑖
= 𝑢𝑏𝐶

∗,

where 𝑢𝑏𝐶
∗ is an upper bound on the makespan. Let 𝜎 be

the index of the job for which 𝐶
𝜎
− 𝑝
𝜎

< 𝑑 ≤ 𝐶
𝜎
. Define

𝐽
𝐸
= {1 ≤ 𝑗 ≤ 𝑛 | 𝐶

𝑗
≤ 𝑑} as the set of jobs that finish on or

before the due date, and define 𝐽
𝑇
= {1 ≤ 𝑗 ≤ 𝑛 | 𝐶

𝑗
−𝑝
𝑗
≥ 𝑑}

as the set of jobs that start on or after the due date. In addition,
we denote by 𝐽

𝑖
= {1 ≤ 𝑗 ≤ 𝑛 | 𝐶

𝑗
≤ 𝑅
𝑖
, 𝐶
𝑗
− 𝑝
𝑗
≥ 𝐷
𝑖
}

the set of jobs that are processed in available time windows
𝛿
𝑖
, such that ∑

𝑗∈𝐽𝑖

𝑝
𝑗

≤ 𝑅
𝑖
− 𝐷
𝑖
, 𝐽
1
∪ 𝐽
2

= {1, 2, . . . , 𝑛},
and 𝐽

1
∩ 𝐽
2

= 0. Properties 1 and 4 generalize the results
given by Cheng and Kahlbacher [43] and Bagchi et al. [6],
respectively. Properties 2 and 3 are straightforward to prove
by contradiction. Property 5 is an extension of the weakly V-
shaped schedule optimality shown inHall et al. [9]. It is easily
verified that such a result can be generalized to the case with
an unavailability interval.

Property 1. In an optimal schedule there are no idle times
within the processing of consecutive jobs in each available
time window.

Property 2. The earliest job in an optimal schedule must start
at or before time 𝑡 = max{𝑑, 𝑡

𝑒
}.

Property 3. In an optimal schedule, there is no idle interval
between the last job in 𝛿

1
and time 𝑡

𝑠
when 𝑡

𝑠
≤ 𝑑, and there

is no idle interval between the first job in 𝛿
2
and time 𝑡

𝑒
when

𝑡
𝑒
≥ 𝑑.

Property 4. In an optimal schedule, the jobs in set 𝐽
𝐸
∩ 𝐽
𝑖
are

sorted according to nonincreasing order of processing times
(LPT), and the jobs in set 𝐽

𝑇
∩ 𝐽
𝑖
are sorted according to

nondecreasing order of processing times (SPT), for all 𝑖 =

1, 2.

Property 5. An optimal schedule must satisfy 𝑝
𝜎

≤

max{min
𝑗∈𝐽𝐸∩𝐽2

{𝑝
𝑗
}, min

𝑗∈𝐽𝑇
{𝑝
𝑗
}} if 𝑡

𝑒
< 𝑑 or 𝑝

𝜎
≤

max{min
𝑗∈𝐽𝐸

{𝑝
𝑗
}, min

𝑗∈𝐽𝑇∩𝐽1
{𝑝
𝑗
}} if 𝑡
𝑠
> 𝑑.

3. Mixed Integer Linear
Programming Methods

This section presents four distinct ways of formulating the
problem 1, ℎ

1
| 𝑑
𝑗
= 𝑑 | ∑

𝑛

𝑗=1
(𝐸
𝑗
+ 𝑇
𝑗
) using mixed integer

linear programming. Following is the notation for various
indices and parameters used in the models.

Indices

𝑖: index of available time windows,
𝑗: index of jobs,
𝑘: index of sequence positions,
𝑡: index of time periods.
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Parameters

𝑛: total number of jobs,
𝑑: common due date,
𝑝
𝑗
: processing time of job 𝑗,

𝐷
𝑖
: start time of available time window 𝛿

𝑖
,

𝑅
𝑖
: finish time of available time window 𝛿

𝑖
,

𝑢𝑏𝐶
∗: an upper bound on the makespan, 𝑢𝑏𝐶∗ =

max{𝑑, 𝑡
𝑒
} + ∑
𝑛

𝑗=1
𝑝
𝑗
,

𝑀: an appropriately large positive number.

3.1. Time-Indexed Decisions on Processing Periods. First, the
time-indexed variables on processing periods are considered.
The rationale for this approach is to decompose the schedul-
ing horizon into individual periods, where period 𝑡 starts at
time 𝑡 and ends at time 𝑡 + 1 (𝑡 ∈ [0, 𝑢𝑏𝐶

∗

− 1]). Then,
the scheduling problem can be regarded as the assignment
of unit job segments to unit periods. Let the binary variables
𝑥
𝑗𝑡
equal 1 if job 𝑗 is processed during period 𝑡 ∈ Ψ and

0 otherwise, where Ψ = ⋃
𝑖
(𝛿
𝑖
\ {𝑅
𝑖
}) represents the set of

time units in which the machine is available. The following
formulation is originally proposed in Low et al. [41]. A major
drawback of this formulation is its size. The preliminary
tests show that only instances with about 20 jobs can be
solved by ILOG CPLEX 12.4. Therefore, a more sophisticated
formulation must be considered.

MILP1. Consider

Min
𝑛

∑

𝑗=1

(𝐸
𝑗
+ 𝑇
𝑗
) (1)

subject to ∑

𝑡∈Ψ

𝑥
𝑗𝑡
= 𝑝
𝑗
, 𝑗 = 1, . . . , 𝑛, (2)

𝑡 ⋅ 𝑥
𝑗𝑡
≤ 𝐶
𝑗
− 1, 𝑗 = 1, . . . , 𝑛; 𝑡 ∈ Ψ, (3)

𝐶
𝑗
− 𝑝
𝑗
≤ 𝑡 + 𝑢𝑏𝐶

∗

⋅ (1 − 𝑥
𝑗𝑡
) ,

𝑗 = 1, . . . , 𝑛; 𝑡 ∈ Ψ,

(4)

𝑛

∑

𝑗=1

𝑥
𝑗𝑡
≤ 1, 𝑡 ∈ Ψ, (5)

𝐶
𝑗
− 𝑑 = 𝑇

𝑗
− 𝐸
𝑗
, 𝑗 = 1, . . . , 𝑛, (6)

𝑥
𝑗𝑡
∈ {0, 1} , 𝑗 = 1, . . . , 𝑛; 𝑡 ∈ Ψ, (7)

𝐶
𝑗
, 𝐸
𝑗
, 𝑇
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛. (8)

Constraint (2) enforces that all processing occurs only
within set Ψ. Constraints (3) and (4) indicate that each job
𝑗 is processed during periods 𝐶

𝑗
− 𝑝
𝑗
and 𝐶

𝑗
− 1. Constraint

(5) guarantees that at any given period at most one job can
be handled. Constraint (6) determines the job earliness and
tardiness. This model includes 2𝑛 + (2𝑛 + 1)|Ψ| constraints,
𝑛|Ψ| binary variables, and 3𝑛 standard variables.

3.2. Time-Indexed Decisions on Start Times. An alternative
approach relies on time-indexed variables on start times.
This formulation assumes the same time-discretization as for
MILP1. Define 𝜃

𝑖𝑗
= {𝑡 | 𝐷

𝑖
≤ 𝑡 ≤ 𝑅

𝑖
− 𝑝
𝑗
} as the set of

time units in which job 𝑗 is allowed to start its processing
in available time window 𝛿

𝑖
, and define 𝑒𝑠𝑡

𝑗
(𝑡) = {𝑠 | 𝑠 ∈

Ψ, max{0, 𝑡−𝑝
𝑗
+1} ≤ 𝑠 ≤ 𝑡} as the set of start times for which

job 𝑗 would be in process in period 𝑡. Let the binary variables
𝑦
𝑗𝑡
equal 1 if job 𝑗 starts at period 𝑡 ∈ Ψ and 0 otherwise. The

formulation is described as follows.

MILP2. Consider

Min
𝑛

∑

𝑗=1

(𝐸
𝑗
+ 𝑇
𝑗
) (9)

subject to ∑

𝑡∈⋃
𝑖
𝜃𝑖𝑗

𝑦
𝑗𝑡
= 1 + |Ψ| ⋅ ∑

𝑡∉⋃
𝑖
𝜃𝑖𝑗

𝑦
𝑗𝑡
,

𝑗 = 1, . . . , 𝑛,

(10)

𝑛

∑

𝑗=1

∑

𝑠∈𝑒𝑠𝑡𝑗(𝑡)

𝑦
𝑗𝑠

≤ 1, 𝑡 ∈ Ψ, (11)

∑

𝑡∈⋃
𝑖
𝜃𝑖𝑗

𝑡 ⋅ 𝑦
𝑗𝑡
+ 𝑝
𝑗
− 𝑑 = 𝑇

𝑗
− 𝐸
𝑗
,

𝑗 = 1, . . . , 𝑛,

(12)

𝑦
𝑗𝑡
∈ {0, 1} , 𝑗 = 1, . . . , 𝑛, ∀𝑡 ∈ Ψ, (13)

𝐸
𝑗
, 𝑇
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛. (14)

Constraint (10) ensures that each job is processed once,
where ⋃

𝑖
𝜃
𝑖𝑗
represents the set of time units in which job 𝑗

is allowed to start its processing in the scheduling horizon.
Constraint (11) states that at most one job can be handled at
any time. Constraint (12) calculates the values of earliness and
tardiness of jobs. This model contains 2𝑛 + |Ψ| constraints,
𝑛|Ψ| binary variables, and 2𝑛 standard variables.

3.3. Sequence-Position Decisions. In this formulation, the key
binary variables are 𝑥

𝑖𝑗𝑘
= 1 if job 𝑗 is assigned to the 𝑘th

(𝑘 = 1, . . . , 𝑙
𝑖
) position in available time window 𝛿

𝑖
and 0

otherwise, where 𝑙
𝑖
is the maximum number of jobs that

can be scheduled in 𝛿
𝑖
. It is obtained easily by inserting the

shortest jobs.Define𝐶𝑇
𝑖𝑘
,𝐸
𝑖𝑘
, and𝑇

𝑖𝑘
as the completion time,

earliness, and tardiness of the job scheduled 𝑘th in available
time window 𝛿

𝑖
, respectively. From Property 1, it is sufficient

to consider only schedules in which jobs are contiguous
in each available time window. Nevertheless, an optimal
schedule may not start processing the jobs immediately at the
beginning of each available time window. Thus, the variables
𝑆𝑇
𝑖
are introduced to represent the start time of the first

job processed in available time window 𝛿
𝑖
. With the above

notation the problem can be modelled as follows.
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MILP3. Consider

Min
2

∑

𝑖=1

𝑙𝑖

∑

𝑘=1

(𝐸
𝑖𝑘
+ 𝑇
𝑖𝑘
) (15)

subject to
2

∑

𝑖=1

𝑙𝑖

∑

𝑘=1

𝑥
𝑖𝑗𝑘

= 1, 𝑗 = 1, . . . , 𝑛, (16)

𝑛

∑

𝑗=1

𝑥
𝑖𝑗𝑘

≤ 1, 𝑖 = 1, 2; 𝑘 = 1, . . . , 𝑙
𝑖
, (17)

𝐶𝑇
𝑖𝑘
= 𝑆𝑇
𝑖
+

𝑛

∑

𝑗=1

𝑘

∑

𝑠=1

𝑝
𝑗
⋅ 𝑥
𝑖𝑗𝑠

,

𝑖 = 1, 2; 𝑘 = 1, . . . , 𝑙
𝑖
,

(18)

𝐶𝑇
𝑖𝑘
− 𝑑

≤ 𝑇
𝑖𝑘
− 𝐸
𝑖𝑘
+ 𝑢𝑏𝐶

∗

⋅ (1 −

𝑛

∑

𝑗=1

𝑥
𝑖𝑗𝑘
) ,

𝑖 = 1, 2; 𝑘 = 1, . . . , 𝑙
𝑖
,

(19)

𝑑 − 𝐶𝑇
𝑖𝑘

≤ 𝐸
𝑖𝑘
− 𝑇
𝑖𝑘
+ 𝑢𝑏𝐶

∗

⋅ (1 −

𝑛

∑

𝑗=1

𝑥
𝑖𝑗𝑘
) ,

𝑖 = 1, 2; 𝑘 = 1, . . . , 𝑙
𝑖
,

(20)

𝐸
𝑖𝑘
+ 𝑇
𝑖𝑘
≤ 𝑢𝑏𝐶

∗

⋅

𝑛

∑

𝑗=1

𝑥
𝑖𝑗𝑘
,

𝑖 = 1, 2; 𝑘 = 1, . . . , 𝑙
𝑖
,

(21)

𝐶𝑇
𝑖𝑘
≤ 𝑅
𝑖
, 𝑖 = 1, 2; 𝑘 = 1, . . . , 𝑙

𝑖
, (22)

𝑆𝑇
𝑖
≥ 𝐷
𝑖
, 𝑖 = 1, 2, (23)

𝑥
𝑖𝑗𝑘

∈ {0, 1} ,

𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑛; 𝑘 = 1, . . . , 𝑙
𝑖
,

(24)

𝑆𝑇
𝑖
≥ 0, 𝑖 = 1, 2, (25)

𝐶𝑇
𝑖𝑘
, 𝐸
𝑖𝑘
, 𝑇
𝑖𝑘
≥ 0,

𝑖 = 1, 2; 𝑘 = 1, . . . , 𝑙
𝑖
.

(26)

Constraint (16) indicates that each job is assigned to
exactly one position in one available timewindow. Constraint
(17) guarantees the assignment of at most one job to each
position in each available time window. Constraint (18) gives
the completion time of the job that is assigned to the 𝑘th
position in 𝛿

𝑖
. Constraints (19)–(21) measure the deviation

of each job’s completion time from the common due date.
If there exists a job that is scheduled in the 𝑘th position in
𝛿
𝑖
(i.e., ∑𝑛

𝑗=1
𝑥
𝑖𝑗𝑘

= 1), then its earliness and tardiness can
be determined by equation 𝐶𝑇

𝑖𝑘
− 𝑑 = 𝑇

𝑖𝑘
− 𝐸
𝑖𝑘
, which

follows directly from Constraints (19) and (20). Otherwise,
Constraint (21) enforces𝐸

𝑖𝑘
and𝑇
𝑖𝑘
equal to zero. Constraints

(22) and (23) concern the machine unavailability.This model
includes 𝑛 + 6∑

2

𝑖=1
𝑙
𝑖
+ 2 constraints (i.e., 13𝑛 + 2 at most),

𝑛∑
2

𝑖=1
𝑙
𝑖
binary variables (i.e., 2𝑛2 at most), and 3∑

2

𝑖=1
𝑙
𝑖
+ 2

standard variables (i.e., 6𝑛 + 2 at most).

3.4. Precedence Decisions. This formulation is based on the
precedence variables. Let 𝑥

𝑖𝑗
󸀠
𝑗
be the binary variables equal

to 1 if job 𝑗
󸀠 precedes job 𝑗 in available time window 𝛿

𝑖
, and

let 𝑦
𝑖𝑗
be the binary variables equal to 1 if job 𝑗 is scheduled in

available time window 𝛿
𝑖
. Note that job 𝑗

󸀠 is not necessarily
positioned immediately before job 𝑗 in 𝛿

𝑖
when 𝑥

𝑖𝑗
󸀠
𝑗

= 1.
Hence, the problem can be modelled as follows.

MILP4. Consider

Min
𝑛

∑

𝑗=1

(𝐸
𝑗
+ 𝑇
𝑗
) (27)

subject to
2

∑

𝑖=1

𝑦
𝑖𝑗
= 1, 𝑗 = 1, . . . , 𝑛, (28)

2 ⋅ (𝑥
𝑖𝑗
󸀠
𝑗
+ 𝑥
𝑖𝑗𝑗
󸀠) ≤ 𝑦

𝑖𝑗
+ 𝑦
𝑖𝑗
󸀠 ,

𝑖 = 1, 2; 𝑗, 𝑗
󸀠

= 1, . . . , 𝑛; 𝑗
󸀠

< 𝑗,

(29)

1 + 𝑥
𝑖𝑗
󸀠
𝑗
+ 𝑥
𝑖𝑗𝑗
󸀠 ≥ 𝑦
𝑖𝑗
+ 𝑦
𝑖𝑗
󸀠 ,

𝑖 = 1, 2; 𝑗, 𝑗
󸀠

= 1, . . . , 𝑛; 𝑗
󸀠

< 𝑗,

(30)

𝐶
𝑗
≥ 𝐶
𝑗
󸀠 + 𝑝
𝑗
− 𝑀 ⋅ (1 −

2

∑

𝑖=1

𝑥
𝑖𝑗
󸀠
𝑗
) ,

𝑗, 𝑗
󸀠

= 1, . . . , 𝑛, 𝑗 ̸= 𝑗
󸀠

,

(31)

𝐶
𝑗
≤

2

∑

𝑖=1

𝑦
𝑖𝑗
⋅ 𝑅
𝑖
, 𝑗 = 1, . . . , 𝑛, (32)

𝐶
𝑗
− 𝑝
𝑗
≥

2

∑

𝑖=1

𝑦
𝑖𝑗
⋅ 𝐷
𝑖
, 𝑗 = 1, . . . , 𝑛, (33)

𝐶
𝑗
− 𝑑 = 𝑇

𝑗
− 𝐸
𝑗
, 𝑗 = 1, . . . , 𝑛, (34)

𝑥
𝑖𝑗
󸀠
𝑗
∈ {0, 1} ,

𝑖 = 1, 2; 𝑗, 𝑗
󸀠

= 1, . . . , 𝑛, 𝑗 ̸= 𝑗
󸀠

,

(35)

𝑦
𝑖𝑗
∈ {0, 1} , 𝑖 = 1, 2; 𝑗 = 1, . . . , 𝑛, (36)

𝐶
𝑗
, 𝐸
𝑗
, 𝑇
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛. (37)

Constraint (28) states that each job is assigned to
exactly one available time window. Constraints (29) and (30)
establish the relation between precedence and assignment
variables. If jobs 𝑗󸀠 and 𝑗 are both processed within 𝛿

𝑖
(i.e.,

𝑦
𝑖𝑗
= 𝑦
𝑖𝑗
󸀠 = 1), then job 𝑗

󸀠 is scheduled either before or after
job 𝑗 in 𝛿

𝑖
; that is, 𝑥

𝑖𝑗
󸀠
𝑗
+𝑥
𝑖𝑗𝑗
󸀠 = 1. Otherwise, there is no need



6 Mathematical Problems in Engineering

to consider the precedence relationship between jobs 𝑗󸀠 and 𝑗

in 𝛿
𝑖
(i.e., 𝑥

𝑖𝑗
󸀠
𝑗
= 𝑥
𝑖𝑗𝑗
󸀠 = 0). Constraint (31) computes for every

job 𝑗 ̸= 𝑗
󸀠 the completion time when job 𝑗

󸀠 precedes job 𝑗 in
the same available time window. Otherwise, the constraint is
redundant. Constraints (32) and (33) describe the limits of the
machine availabilities. Constraint (34) defines the earliness
and tardiness of jobs.Thismodel contains 3𝑛2+𝑛 constraints,
2𝑛
2 binary variables, and 3𝑛 standard variables.
Unlike the other formulations, it can be seen that the

sizes of the time-indexed formulations (MILP1 and MILP2)
depend on the length of the scheduling horizon. This can
lead to models with quite a large number of binary variables;
however, the time-indexed formulations may be efficient
in other respects. More specifically, tightening the linear
relaxation of the formulation plays a key role in convergence
of the solution procedure, and it strictly relies on the choice of
decision variables used and the relevant constraint structures.
To that end, the performance of these above formulations will
be evaluated in computational study.

4. Dynamic Programming Based Method

In this section, a dynamic programming model for the
problem 1, ℎ

1
| 𝑑
𝑗

= 𝑑 | ∑
𝑛

𝑗=1
(𝐸
𝑗
+ 𝑇
𝑗
) is presented.

This method is an extension of Ventura and Weng’s dynamic
programming [13]. Here, we show that it can be applied with
slight modification to the case with an unavailability interval.

Since themachine is unavailable for processing during the
time interval [𝑡

𝑠
, 𝑡
𝑒
], there are three cases to consider: (1) 𝑡

𝑒
<

𝑑, (2) 𝑡
𝑠
> 𝑑, and (3) 𝑡

𝑠
≤ 𝑑 ≤ 𝑡

𝑒
.The algorithms are developed

below separately for each case. Assume for convenience that
the jobs are renumbered in the order defined for SPT.

Algorithm for Case 1 (𝑡
𝑒

< 𝑑). Let 𝑓(𝑗, 𝑡, 𝑠) denote the
minimum cost for the 𝑗-jobs partial problem, given that
the total processing time of the jobs in 𝛿

1
is 𝑡, and the

earliest job in 𝛿
2
starts at time 𝑠. For 𝑗 = 1, . . . , 𝑛, 𝑡 =

0, . . . ,min{𝑡
𝑠
, ∑
𝑗

ℎ=1
𝑝
ℎ
} and 𝑠 = 𝑡

𝑒
, . . . , 𝑑+𝑝

𝑛
−1, the recursive

three-term equation is defined as (41), in which the first two
terms represent the value of𝑓(𝑗, 𝑡, 𝑠) if job 𝑗 is scheduled after
𝑡
𝑒
and the last term represents the value of 𝑓(𝑗, 𝑡, 𝑠) if job 𝑗 is

scheduled before 𝑡
𝑠
. From Properties 4 and 5, if 𝑠 < 𝑑 then

at the stage of scheduling job 𝑗 in 𝛿
2
two decisions should be

considered: job 𝑗 can be scheduled as the first job, starting at
time 𝑠, or as the last one, then starting at time 𝑠 +∑

𝑗−1

ℎ=1
𝑝
ℎ
− 𝑡.

The first decision leads to the partial schedule presented in
Figure 1. The cost of this partial schedule can be calculated
according to

𝑓 (𝑗 − 1, 𝑡, 𝑠 + 𝑝
𝑗
) +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠 + 𝑝
𝑗
− 𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
. (38)

The second decision results in the partial schedule shown in
Figure 2, and its cost is given by

𝑓 (𝑗 − 1, 𝑡, 𝑠) +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠 +

𝑗

∑

ℎ=1

𝑝
ℎ
− 𝑡 − 𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (39)

0 ts te s d

pjt

j−1

∑
h=1

ph − t

Figure 1: A partial schedule in 𝛿
2
with job 𝑗 starting at time 𝑠.

0 ts te s d

pjt

j−1

∑
h=1

ph − t

Figure 2: A partial schedule in 𝛿
2
with job 𝑗 starting at time 𝑠 +

∑
𝑗−1

ℎ=1
𝑝
ℎ
− 𝑡.

0 ts te d

pj

t − pj

· · ·

Figure 3: A partial schedule in 𝛿
1
with job 𝑗 starting at time 𝑡

𝑠
− 𝑡.

If 𝑠 ≥ 𝑑 then all jobs in 𝛿
2
are tardy, so job 𝑗 has to be

scheduled as the last one in 𝛿
2
. As a result, in this situation

the first term in recursion can be omitted.
𝑓(𝑗 − 1, 𝑡 − 𝑝

𝑗
, 𝑠) + 𝑑 − 𝑡

𝑠
+ 𝑡 − 𝑝

𝑗
is the value of 𝑓(𝑗, 𝑡, 𝑠)

if job 𝑗 is scheduled in 𝛿
1
. By Properties 3 and 4, the partial

schedule in 𝛿
1
is constructed in a backwardmanner such that

the last job in 𝛿
1
finishes exactly at time 𝑡

𝑠
(see Figure 3).

Initial Condition. The initial condition is

𝑓 (0, 𝑡, 𝑠) =

{

{

{

0 if 𝑡 = 0,

+∞ otherwise.
(40)

The Recursion. The recursion is
𝑓 (𝑗, 𝑡, 𝑠)

= min

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑓(𝑗 − 1, 𝑡, 𝑠 + 𝑝
𝑗
) +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠 + 𝑝
𝑗
− 𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑓 (𝑗 − 1, 𝑡, 𝑠) +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠 +

𝑗

∑

ℎ=1

𝑝
ℎ
− 𝑡 − 𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝑓 (𝑗 − 1, 𝑡 − 𝑝
𝑗
, 𝑠) + 𝑑 − 𝑡

𝑠
+ 𝑡 − 𝑝

𝑗
,

(41)

where 𝑓(𝑗 − 1, 𝑡, 𝑠 + 𝑝
𝑗
) + |𝑠 + 𝑝

𝑗
− 𝑑| = 𝑓(𝑗 − 1, 𝑡, 𝑠) +

|𝑠 + ∑
𝑗

ℎ=1
𝑝
ℎ
− 𝑡 − 𝑑| = +∞ if 𝑡 > min{𝑡

𝑠
, ∑
𝑗−1

ℎ=1
𝑝
ℎ
} and

𝑓(𝑗−1, 𝑡−𝑝
𝑗
, 𝑠)+𝑑−𝑡

𝑠
+𝑡−𝑝

𝑗
= +∞ if 𝑡−𝑝

𝑗
< 0.Theoptimal

objective value is equal to min
0≤𝑡≤min{𝑡𝑠 ,∑

𝑛

𝑗=1
𝑝𝑗}, 𝑡𝑒≤𝑠≤𝑑

𝑓(𝑛, 𝑡, 𝑠).
For each state (𝑗, 𝑡, 𝑠), there are at most three operations. It
follows fromProperty 5 that if job 1 starts after𝑑 in an optimal
schedule, it must start on or before 𝑑 + 𝑝

𝑛
− 1, which implies

that 𝑠 ≤ 𝑑 + 𝑝
𝑛
− 1. In addition, the value of the state variable

𝑡 is bounded by 𝑡
𝑠
. Therefore, the time complexity of the

algorithm is O(𝑛𝑡
𝑠
(𝑑 + 𝑝

𝑛
− 𝑡
𝑒
)).
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0 ts ted

pj

t − pj

· · ·

Figure 4: A partial schedule in 𝛿
2
with job 𝑗 starting at time 𝑡

𝑒
+𝑡−𝑝

𝑗
.

Algorithm for Case 2 (𝑡
𝑠
> 𝑑). Following the same reasoning

discussed in Case 1, let 𝑓(𝑗, 𝑠, 𝑡) denote the minimum cost for
the 𝑗-jobs partial problem, given that the earliest job in 𝛿

1

starts at time 𝑠, and the total processing time of the jobs in
𝛿
2
is 𝑡. For 𝑗 = 1, . . . , 𝑛, 𝑠 = 0, . . . ,min{𝑡

𝑠
, 𝑑 + 𝑝

𝑛
− 1} and

𝑡 = 0, . . . , ∑
𝑗

ℎ=1
𝑝
ℎ
, the recursive equation takes the following

form.

Initial Condition. The initial condition is

𝑓 (0, 𝑠, 𝑡) =

{

{

{

0 if 𝑡 = 0,

+∞ otherwise.
(42)

The Recursion.The recursion is

𝑓 (𝑗, 𝑠, 𝑡)

= min

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑓(𝑗 − 1, 𝑠 + 𝑝
𝑗
, 𝑡) +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠 + 𝑝
𝑗
− 𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑓 (𝑗 − 1, 𝑠, 𝑡) +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑠 +

𝑗

∑

ℎ=1

𝑝
ℎ
− 𝑡 − 𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝑓 (𝑗 − 1, 𝑠, 𝑡 − 𝑝
𝑗
) + 𝑡
𝑒
+ 𝑡 − 𝑑,

(43)

where 𝑓(𝑗 − 1, 𝑠 + 𝑝
𝑗
, 𝑡) + |𝑠 + 𝑝

𝑗
− 𝑑| = +∞ if 𝑠 >

min{𝑡
𝑠
+ 𝑡 − ∑

𝑗

ℎ=1
𝑝
ℎ
,min{𝑡

𝑠
, 𝑑 + 𝑝

𝑛
− 1} − 𝑝

𝑗
} or 𝑡 > ∑

𝑗−1

ℎ=1
𝑝
ℎ
,

𝑓(𝑗−1, 𝑠, 𝑡)+|𝑠+∑
𝑗

ℎ=1
𝑝
ℎ
−𝑡−𝑑| = +∞ if 𝑠 > 𝑡

𝑠
+𝑡−∑

𝑗

ℎ=1
𝑝
ℎ
or

𝑡 > ∑
𝑗−1

ℎ=1
𝑝
ℎ
, and𝑓(𝑗−1, 𝑠, 𝑡−𝑝

𝑗
)+𝑡
𝑒
+𝑡−𝑑 = +∞ if 𝑡−𝑝

𝑗
< 0.

Clearly if 𝑠 ≥ 𝑑, it is sufficient fromProperty 4 to consider that
job 𝑗 is scheduled either as the last one in 𝛿

1
, starting at time

𝑠+∑
𝑗−1

ℎ=1
𝑝
ℎ
−𝑡, or as the last one in 𝛿

2
, then starting at time 𝑡

𝑒
+

𝑡 − 𝑝
𝑗
(see Figure 4). Therefore, in this situation the first term

in recursion can be eliminated. The optimal objective value
is found formin

0≤𝑠≤min{𝑡𝑠 ,𝑑+𝑝𝑛−1}, 0≤𝑡≤∑
𝑛

𝑗=1
𝑝𝑗
𝑓(𝑛, 𝑠, 𝑡). Each state

(𝑗, 𝑠, 𝑡) requires at most three operations, and the state vari-
ables 𝑠 and 𝑡 take 𝑡

𝑠
and ∑

𝑛

𝑗=1
𝑝
𝑗
as their maximum possible

values, respectively. Hence, the overall time complexity of the
algorithm is bounded by O(𝑛𝑡

𝑠
(∑
𝑛

𝑗=1
𝑝
𝑗
)).

Algorithm for Case 3 (𝑡
𝑠
≤ 𝑑 ≤ 𝑡

𝑒
). In this case, the problem is

reduced to determining the optimal assignment of the jobs to
the available time windows. Once the membership in the two
available time windows is specified, the optimal schedules in
each available time window can be found by Properties 1, 3,
and 4. Let 𝑓(𝑗, 𝑡) be the minimum cost for the 𝑗-jobs partial
problem, where the total processing time of the jobs in 𝛿

1
is 𝑡.

For 𝑗 = 1, . . . , 𝑛 and 𝑡 = 0, . . . ,min{𝑡
𝑠
, ∑
𝑗

ℎ=1
𝑝
ℎ
}, the recursive

two-term equation is defined as (45), in which the first term
represents the value of𝑓(𝑗, 𝑡) if job 𝑗 is scheduled in𝛿

1
and the

second term represents the value of𝑓(𝑗, 𝑡) if job 𝑗 is scheduled
in 𝛿
2
.

Initial Condition. The initial condition is

𝑓 (0, 𝑡) =

{

{

{

0 if 𝑡 = 0,

+∞ otherwise.
(44)

The Recursion. The recursion is

𝑓 (𝑗, 𝑡) = min
{
{
{

{
{
{

{

𝑓(𝑗 − 1, 𝑡 − 𝑝
𝑗
) + 𝑑 − 𝑡

𝑠
+ 𝑡 − 𝑝

𝑗
,

𝑓 (𝑗 − 1, 𝑡) + 𝑡
𝑒
+

𝑗

∑

ℎ=1

𝑝
ℎ
− 𝑡 − 𝑑,

(45)

where 𝑓(𝑗 − 1, 𝑡 − 𝑝
𝑗
) + 𝑑 − 𝑡

𝑠
+ 𝑡 − 𝑝

𝑗
= +∞ if 𝑡 − 𝑝

𝑗
< 0 and

𝑓(𝑗−1, 𝑡)+𝑡
𝑒
+∑
𝑗

ℎ=1
𝑝
ℎ
−𝑡−𝑑 = +∞ if 𝑡 > min{𝑡

𝑠
, ∑
𝑗−1

ℎ=1
𝑝
ℎ
}.The

optimal objective value is equal to min
0≤𝑡≤min{𝑡𝑠 ,∑

𝑛

𝑗=1
𝑝𝑗}

𝑓(𝑛, 𝑡).
As described above, it can be established that the algorithm
finds an optimal schedule in O(𝑛𝑡

𝑠
) time.

5. Experimental Results

In this section, the numerical results are provided to assess
the performance of the different methods presented above.
The dynamic programming algorithms were written in C++
language and the mixed integer linear programs were solved
by ILOG CPLEX 12.4. The experiments were conducted on a
PC with a 3.4GHz processor and 4GB RAM.

5.1. Comparison between the Proposed Methods. Here, the
computation times (in CPU seconds) and the optimality
gaps of the proposed methods are compared. The problem
instances were generated as follows:

(1) The number of jobs was chosen from 5 to 200.
(2) The job processing times followed the discrete uni-

form distribution [1, 𝑝max = 10].
(3) The start time of the unavailability interval was set at

⌊𝑃∑
𝑛

𝑗=1
𝑝
𝑗
⌋ with the proportionality coefficient 𝑃 ∈

{0.25, 0.5, 0.75}. For simplicity, the duration of the
unavailability interval was set to be ⌊𝑝 = (∑

𝑛

𝑗=1
𝑝
𝑗
)/𝑛⌋.

The integer due date was generated uniformly as
follows.

Case 1 (𝑡
𝑒
< 𝑑). Consider

𝑑 ∈ [𝑡
𝑒
+

∑
𝑛

𝑗=1
𝑝
𝑗

3

(1 − 𝑅) , 𝑡
𝑒
+

∑
𝑛

𝑗=1
𝑝
𝑗

3

(1 + 𝑅)] . (46)

Case 2 (𝑡
𝑠
> 𝑑). Consider

𝑑 ∈ [

𝑡
𝑠

2

(1 − 𝑅) ,

𝑡
𝑠

2

(1 + 𝑅)] . (47)

Case 3 (𝑡
𝑠
≤ 𝑑 ≤ 𝑡

𝑒
). Consider

𝑑 ∈ [

𝑡
𝑠
+ 𝑡
𝑒
− 𝑅𝑝

2

,

𝑡
𝑠
+ 𝑡
𝑒
+ 𝑅𝑝

2

] , (48)
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Table 1: Comparison between the exact methods.

Case n MILP1 MILP2 MILP3 MILP4 DP
Time (s) GAP (%) Time (s) GAP (%) Time (s) GAP (%) Time (s) GAP (%) Time (s) GAP (%)

1

5 2.31 0.00 1.56 0.00 2.09 0.00 2.52 0.00 <0.01 0.00
10 147.25 0.00 3.13 0.00 6.03 0.00 23.78 0.00 <0.01 0.00
15 851.74 42.17∗ 2.81 0.00 30.39 0.00 3819.94 0.30 <0.01 0.00
20 o. o. m. — 3.23 0.00 44.95 0.00 5000.00 2.04∗ <0.01 0.00
25 o. o. m. — 4.67 0.00 3012.04 0.26∗ 5000.00 3.79∗ <0.01 0.00
30 o. o. m. — 7.35 0.00 4311.25 0.49∗ 5000.00 6.42∗ <0.01 0.00
35 o. o. m. — 17.46 0.00 o. o. m. — o. o. m. 15.93∗ <0.01 0.00
50 o. o. m. — 63.72 0.00 o. o. m. — o. o. m. 58.15∗ <0.01 0.00
75 o. o. m. — 86.54 0.00 o. o. m. — o. o. m. — 0.02 0.00
100 o. o. m. — 303.81 0.00 o. o. m. — o. o. m. — 0.02 0.00
150 o. o. m. — 2138.73 0.00 o. o. m. — o. o. m. — 0.05 0.00
200 o. o. m. — 5000.00 1.56∗ o. o. m. — o. o. m. — 0.06 0.00

2

5 5.49 0.00 1.78 0.00 2.83 0.00 2.45 0.00 <0.01 0.00
10 546.57 0.00 4.06 0.00 5.57 0.00 6.89 0.00 <0.01 0.00
15 2741.33 27.96∗ 3.76 0.00 7.04 0.00 184.47 0.00 <0.01 0.00
20 o. o. m. 41.58∗ 5.62 0.00 21.37 0.00 5000.00 0.43∗ <0.01 0.00
25 o. o. m. — 22.21 0.00 2721.91 0.11∗ 5000.00 2.54∗ <0.01 0.00
30 o. o. m. — 46.47 0.00 3520.68 0.09∗ 5000.00 11.46∗ <0.01 0.00
35 o. o. m. — 194.71 0.00 o. o. m. — o. o. m. 15.87∗ <0.01 0.00
50 o. o. m. — 225.36 0.00 o. o. m. — o. o. m. 47.63∗ 0.01 0.00
75 o. o. m. — 473.98 0.00 o. o. m. — o. o. m. — 0.03 0.00
100 o. o. m. — 637.14 0.00 o. o. m. — o. o. m. — 0.05 0.00
150 o. o. m. — 2361.50 0.00 o. o. m. — o. o. m. — 0.11 0.00
200 o. o. m. — 5000.00 1.18∗ o. o. m. — o. o. m. — 0.24 0.00

3

5 7.27 0.00 1.48 0.00 3.83 0.00 10.98 0.00 <0.01 0.00
10 403.95 0.00 2.80 0.00 9.17 0.00 835.60 0.00 <0.01 0.00
15 o. o. m. 22.81∗ 2.93 0.00 66.31 0.00 5000.00 0.03∗ <0.01 0.00
20 o. o. m. — 3.85 0.00 2206.94 0.25∗ 5000.00 0.12∗ <0.01 0.00
25 o. o. m. — 4.87 0.00 3136.89 0.30∗ 5000.00 1.96∗ <0.01 0.00
30 o. o. m. — 12.63 0.00 o. o. m. — 5000.00 1.50∗ <0.01 0.00
35 o. o. m. — 24.38 0.00 o. o. m. — o. o. m. 4.32∗ <0.01 0.00
50 o. o. m. — 67.50 0.00 o. o. m. — o. o. m. 26.35∗ <0.01 0.00
75 o. o. m. — 93.79 0.00 o. o. m. — o. o. m. — <0.01 0.00
100 o. o. m. — 235.18 0.00 o. o. m. — o. o. m. — <0.01 0.00
150 o. o. m. — 2977.05 0.00 o. o. m. — o. o. m. — <0.01 0.00
200 o. o. m. — 5000.00 0.42∗ o. o. m. — o. o. m. — <0.01 0.00

DP = dynamic programming; o. o. m. = out of memory.

of which the due date factor was chosen from 𝑅 ∈

{0.3, 0.5, 0.7}.

For each case, 10 instances were randomly generated
for each problem size. The results of this experiment are
summarized in Table 1. The symbol “—” denotes the cases
that no feasible solution found within a time limit 5000
seconds or the program is interrupted due to lack of memory.
The symbol “∗” denotes that the optimality gap is calculated
as [(𝐶(IB) − optimum)/optimum] × 100%, where 𝐶(IB)

is the incumbent solution obtained before the program is
terminated.

According to these results, it is clear that MILP2 and the
dynamic programmingmethod aremuchmore effective than
the other mixed integer linear programming formulations.
MILP2 was able to handle the problems with close to 150
jobs, while it was difficult to use the latter approaches to solve
instances with more than 20 jobs. However, the obtained
results corroborate the findings in Kacem et al. [44] that the
dynamic programming method could be superior to other
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Table 2: Dynamic programming method performance.

Case n 𝑝max = 50 𝑝max = 100 𝑝max = 200

Time (s) Time (s) Time (s)

1

5 <0.01 <0.01 <0.01
10 <0.01 0.01 0.03
15 0.01 0.02 0.09
20 0.01 0.04 0.18
25 0.02 0.09 0.29
30 0.03 0.10 0.63
35 0.05 0.23 0.83
50 0.14 0.66 1.86
75 0.50 3.09 7.32
100 1.44 3.82 24.16
150 2.85 5.11 70.54
200 6.82 7.35 177.91

2

5 <0.01 <0.01 <0.01
10 <0.01 <0.01 0.02
15 0.01 0.03 0.15
20 0.01 0.03 0.17
25 0.02 0.08 0.22
30 0.04 0.14 0.75
35 0.06 0.25 0.88
50 0.20 0.67 1.55
75 0.58 3.25 6.81
100 1.23 5.19 19.73
150 3.85 7.96 58.62
200 9.76 11.25 183.36

3

5 <0.01 0.01 <0.01
10 <0.01 <0.01 <0.01
15 <0.01 <0.01 <0.01
20 <0.01 <0.01 <0.01
25 <0.01 <0.01 <0.01
30 <0.01 <0.01 <0.01
35 <0.01 <0.01 <0.01
50 <0.01 <0.01 <0.01
75 <0.01 0.01 <0.01
100 <0.01 0.01 0.02
150 <0.01 0.01 0.02
200 <0.01 0.01 0.02

methods. As compared toMILP2, the dynamic programming
method was more efficient in attaining the optimal schedules
and no problems due to memory requirement. In addition,
the superiority of the dynamic programmingmethod became
more significant as the problem size increased.

The dynamic programming method is complex. So, we
add particularly further experiments with 𝑝max = 50, 100,
and 200 to evaluate the impact of the length of the scheduling
horizon on the method. Table 2 presents computation times
required to obtain the optimal solutions for each case. As
the results show, the dynamic programming method became
relatively expensive, in terms of CPU time, when the value
of ∑𝑛
𝑗=1

𝑝
𝑗
increased. Moreover, as compared to the results

of the mixed integer linear programming methods for the
problemswith𝑝max = 10, the dynamic programmingmethod
was still capable of quickly solving problems with hundreds
of jobs. Given the above observations, we can conclude that
the dynamic programming method may be more promising
for the addressed problem.

5.2. Dynamic Programming Method Experiments. In this
section, the influence of the proportionality coefficient 𝑃 and
the due date factor 𝑅 on the performance of the dynamic
programmingmethod is analyzed.The number of jobs varied
in 𝑛 ∈ {100, 300, 500, 700, 1000}, and the job processing
times followed a discrete uniform distribution defined by the
interval [1, 20]. The due date, start time, and the duration of
the unavailability interval were set as those described in the
previous experiment. For each treble (𝑛, 𝑃, 𝑅), 10 instances
were randomly generated. Hence, this experiment contains
a total of 450 instances for each case. For Cases 1 and 2, it
can be observed from Table 3 that for the same problem sizes
the average of CPU times became higher when the value of
𝑃 increased. The results also indicate that as compared to
Case 1 when 𝑃 was small (≤ 0.5) the problems of Case 2
were relatively easy to solve. Nevertheless, it is noticed that
the variation of 𝑅 did not have a significant influence on
the problem hardness. With respect to Case 3, the results
indicate that for the same problem sizes the larger the value
of 𝑃 was the harder the problems became. It seems that the
value of 𝑅 had no effect on the performance of this method.
Indeed, in this case the algorithm is implemented in O(𝑛𝑡

𝑠
)

time and therefore, its complexity is independent of the due
date setting.

6. Conclusions

This paper addresses the single-machine scheduling problem
to minimize the TET in relation to a common due date,
where themachine is subject to a given unavailability interval
during which the production is not allowed. To the best of
our knowledge, no exact algorithms have previously been
published for this problem. Therefore, this study proposes
solution methodologies and properties of an optimal sched-
ule for the purpose of exposing insights that may ultimately
be useful in research on more complicated models.

First, four mixed integer linear programming formu-
lations with different types of binary variables that seize
the scheduling decisions are introduced. Observing that
these formulations are time-consuming to derive an optimal
solution with the increase of the number of jobs, a dynamic
programming method based on the solution properties is
then proposed to deal with large-scale problems. Numerical
results for problems with up to 1000 jobs demonstrate
that the dynamic programming method is well suited to
finding optimal schedules in comparison with the mixed
integer linear programming methods and its advantage gets
bigger as the problems size increases. In summary, when the
complexity of the dynamic programming method remains
correct, it is very promising for practical problems.
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Table 3: Influence of the proportionality coefficient 𝑃 and the due
date factor 𝑅 on the dynamic programming method.

(P, R) n Case 1 Case 2 Case 3
Time (s) Time (s) Time (s)

(0.25, 0.3)

100 0.14 0.09 <0.01
300 3.16 2.35 <0.01
500 15.03 11.23 0.01
700 39.49 24.58 0.01
1000 130.87 82.76 0.03

(0.25, 0.5)

100 0.09 0.08 <0.01
300 3.08 2.36 <0.01
500 16.69 10.13 <0.01
700 36.46 25.28 0.01
1000 134.17 79.13 0.03

(0.25, 0.7)

100 0.11 0.09 <0.01
300 3.20 2.15 <0.01
500 16.75 11.47 <0.01
700 45.84 27.62 0.01
1000 122.90 88.58 0.03

(0.5, 0.3)

100 0.18 0.13 <0.01
300 5.37 4.99 <0.01
500 23.15 23.05 <0.01
700 66.22 61.52 0.01
1000 201.46 185.01 0.05

(0.5, 0.5)

100 0.18 0.24 <0.01
300 5.25 5.17 <0.01
500 28.75 22.25 <0.01
700 69.43 60.68 0.02
1000 224.80 166.46 0.04

(0.5, 0.7)

100 0.16 0.18 <0.01
300 5.74 4.83 <0.01
500 25.67 24.67 <0.01
700 71.19 64.09 0.02
1000 205.13 200.98 0.04

(0.75, 0.3)

100 0.28 0.30 <0.01
300 6.04 7.71 <0.01
500 30.92 34.93 0.01
700 82.50 93.58 0.02
1000 305.83 293.25 0.06

(0.75, 0.5)

100 0.27 0.29 <0.01
300 6.51 7.70 <0.01
500 33.76 35.08 0.01
700 79.24 100.42 0.03
1000 255.73 298.25 0.06

(0.75, 0.7)

100 0.32 0.49 <0.01
300 5.49 8.68 <0.01
500 36.81 43.54 0.01
700 90.10 116.32 0.02
1000 231.43 312.97 0.06

Although the computational complexity associated with
the mixed integer linear programming formulations makes
it usually difficult for optimization software that addresses

industrial-dimensioned problems in reasonable solution
time, the mixed integer linear programming methods are
useful to understand the structure of the problem and may
be the better algorithmic choice when convenience in imple-
mentation is considered. Further research will be devoted
to deriving of valid inequalities and investigation of the
development of tighter upper bounds for the total processing
time in each available time window in order to improve the
computational efficiency of the proposed methods. It might
be interesting to extend our schemes to the problem with
multiple unavailability intervals.
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