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Abstract

The rapid development phases and extremely short turnaround time of Web applications make it difficult to elim-

inate their vulnerabilities. Here we study how software testing techniques such as fault injection and runtime monitoring

can be applied to Web applications. We implemented our proposed mechanisms in the Web Application Vulnerability

and Error Scanner (WAVES)—a black-box testing framework for automated Web application security assessment.

Real-world situations are used to test WAVES and to compare it with other tools. Our results show that WAVES is

a feasible platform for assessing Web application security.
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1. Introduction

On Feb 2, 2000, CERT issued an advisory [16]

on ‘‘cross-site scripting’’ (XSS) attacks on Web

applications. This hard-to-eliminate threat soon

drew the attention and spawned active discussions

among security researchers [40]. Despite the efforts

of researchers in the private sector and academia

to promote developer awareness and to develop
tools to eliminate XSS attacks, hackers are still

using them to exploit Web applications. A study
ed.
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by Ohmaki [43] found that almost 80% of all e-

commerce sites in Japan were still vulnerable to

XSS. A search on Google News for XSS advisories

on newly discovered XSS vulnerabilities within the

month of March 2004 alone yielded 24 reports,
among these were confirmed vulnerabilities in

Microsoft Hotmail [70] and Yahoo! Mail [32],

both of which are popular web-based email

services.

Scott and Sharp [58,59] have asserted that Web

application vulnerabilities are (a) inherent in Web

application codes; and (b) independent of the tech-

nology in which the application in question is
implemented, the security of the Web server, and

the back-end database. Current technologies such

as anti-virus software programs and network fire-

walls offer comparatively secure protection at the

host and network levels, but not at the application

level [18]. However, when network and host-level

entry points are relatively secure, the public inter-

faces of Web applications become the focus of
attacks [18].

Recently, efforts on automated security verifica-

tion of C programs have yielded promising results.

In our project WebSSARI v.1 (Web application

Security Analysis and Runtime Inspection) [24],

we adopted a typestate-based algorithm for identi-

fying vulnerabilities in PHP code. In WebSSARI

v.2 [25], we showed how this strategy can be im-
proved using bounded model checking. Though

our results show that such white-box verification

can be successfully used for automated Web appli-

cation security assessment, they have several draw-

backs. One major drawback is their need for

source codewhich in many cases may not be easily

available. Another is that they verify against simu-

lated runtime behaviors based on program
abstraction, while whether or not the abstraction

correctly reflects the actual program is left in ques-

tion. Therefore, while these techniques fail to ade-

quately consider the runtime behavior of Web

applications, it is generally agreed that the massive

number of runtime interactions between various

components is what makes Web application secu-

rity such a challenging task [28,58].
In this paper, we describe our black-box testing

framework for Web application security assess-

ment. The main difficulty in designing a Web
application testing framework lies in providing

efficient interface mechanisms. Since Web applica-

tions interact with users behind browsers and act

according to user input, such interfaces must have

the ability to mimic both the browser and the user.
In other words, the interface must process content

that is meant to be rendered by browsers and later

interpreted by humans. Our interface takes the

form of a crawler, which allows for a black-box,

dynamic analysis of Web applications. Using a

complete crawling mechanism, a reverse engineer-

ing of a Web application is performed to identify

all data entry points. Then, with the help of a
self-learning injection knowledge base, fault injec-

tion techniques are applied to detect SQL injection

vulnerabilities. Using our proposed Topic Model,

the knowledge base selects the best injection pat-

terns according to experiences learned through

previous injection feedback, and then expands

the knowledge base as more pages are crawled.

Both previous experiences and knowledge expan-
sion contribute to the generation of better injec-

tion patterns. We also propose a novel reply

analysis algorithm in order to help the crawler

interpret injection replies. By improving the

observability [72] of the Web application being

tested, the algorithm helps facilitate a deep injec-

tion mechanism that eliminates false negatives.

To imitate real-world interactions with Web
applications, our crawler is equipped with the

same capabilities as a full-fledged browser, thus

making it vulnerable to malicious scripts that

may have been inserted into a Web application

via cross-site scripting. Since a malicious script

that is capable of attacking an interacting browser

is also capable of attacking the crawler, a secure

execution environment (SEE) that enforces an
anomaly detection model was built around the

crawler. During the reverse engineering phase, all

pages of a Web application are loaded into the

crawler and executed. Input stimuli (i.e., simulated

user events) are generated by the crawler to test the

behavior of the page�s dynamic components. Any
abnormal behavior will cause the SEE to immedi-

ately halt the crawler and audit the information.
Thus, while offering self-protection, this layer also

detects malicious scripts hidden inside Web

applications.
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2. Web application vulnerabilities

In their attempt to address Web application

security, Scott and Sharp [58,59] selected three

types of vulnerabilities they believed to be particu-
larly importantform modification, SQL injection,

and XSS. They also suggested that form modifica-

tion is often used in conjunction with other forms

of attacks, for example, SQL injection. The other

two types of vulnerabilities, SQL injection (which

resembles the C format string vulnerability [63])

and XSS, indeed account for the majority of

Web application vulnerabilities [18]. Here we
chose SQL injection and cross-site scripting vul-

nerabilities as our primary detection targets. Our

algorithm also detects SQL injection and XSS vul-

nerabilities that is exploited via form modification,

but we consider form modification as a particular

means to exploit the other two types of vulnerabil-

ities rather than a separate type of vulnerability.

We will briefly describe the two vulnerabilities, fol-
lowed by our proposed detection mechanisms.

2.1. SQL injection

Web applications often use data read from a cli-

ent to construct database queries. If the data is not

properly processed prior to SQL query construc-

tion, malicious patterns that result in the execution
of arbitrary SQL or even system commands can be

injected [5].

Consider the following scenario: a Web site in-

cludes a form with two edit boxes in its login.html

to ask for a username and password. The form de-

clares that the values of the two input fields should

be submitted with the variables strUserName and

strPassword to login.cgi, which includes the
following code:

SQLQuery = ‘‘SELECT*FROM Users WHERE
(UserName = ’’� + strUserName + ‘‘�) AND
(Password = �’’ + strPassword + ‘‘�);’’
If GetQueryResult(SQLQuery) = 0 Then bAu-
thenticated = false; Else bAuthenticated = true;

If a user submits the username ‘‘Wayne’’ and the

password ‘‘0308Wayne,’’ the SQLQuery variable

is interpreted as:
‘‘SELECT* FROM Users WHERE (strUser-
Name = �Wayne�) AND (Password =
�0308Wayne�);’’

GetQueryResult() is used to execute SQLQuery
and retrieve the number of matched records. Note

that user inputs (stored in the strUserName and

strPassword variables) are used directly in SQL

command construction without preprocessing,

thus making the code vulnerable to SQL injection

attacks. If a malicious user enters the following

string for both the UserName and Password fields:

X� OR �A� = �A

then the SQLQuery variable will be interpreted as:

‘‘SELECT* FROM Users WHERE (strUser-
Name = �X� OR �A� = �A�) AND (Password = �X�
OR �A� = �A�);’’

Since the expression �A� = �A� will always be

evaluated as TRUE, the WHERE clause will have

no actual effect, and the SQL command will al-

ways be the equivalent of ‘‘SELECT* FROM

Users’’. Therefore, GetQueryResult() will always

succeed, thus allowing the Web application�s
authentication mechanism to be bypassed.

2.2. SQL injection detection

Our approach to SQL injection detection entails

fault injection-a dynamic analysis process used for

software verification and software security assess-

ment. For the latter task, specially crafted mali-

cious input patterns are deliberately used as

input data, allowing developers to observe the
behavior of the software under attack. Our detec-

tion model works in a similar manner—that is, we

identify vulnerabilities in Web applications by

observing the output resulting from the specially

prepared SQL injection patterns.

Similar to other research onWeb site testing and

analysis [8,51,55], we adopted a black-box ap-

proach in order to analyze Web applications exter-
nally without the aid of source code. Compared

with a white-box approach (which requires source

code), a black-box approach to security assessment
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holds many benefits in real-world applications.

Consider a government entity that wishes to ensure

that all Web sites within a specific network are pro-

tected against SQL injection attacks. A black-box

security analysis tool can perform an assessment
very quickly and produce a useful report identify-

ing vulnerable sites. Such a remote, black-box secu-

rity testing tool for Web applications is also called

a Web application security scanner (WSS). Since

more available information on a program (e.g.,

function specifications or source code) results in

the possibility to develop more thorough software

testing processes for that program, it is necessary
to define what a WSS is. Here we will define a

WSS as a testing platform posed as an outsider

(i.e., as a public user) to the target application.

Therefore, WSSs operate according to three

constraints:

1. Neither documentation nor source code will be

available for the target Web application.
2. Interactions with the target Web applications

and observations of their behaviors will be done

through their public interfaces, since system-

level execution monitoring (e.g., software wrap-

ping, process monitoring, environment variable

modification, and local files access) is not

possible.

3. The testing process must be automated and test-
ing a new target system should not require exten-

sive human participation in test case generation.

In white-box testing, source code analysis pro-

vides critical information for effective test case gen-

eration [50]. In black-box testing (in other words,

when source code is unavailable), an information-

gathering approach is to reverse-engineer execut-
able code. To perform this task, we designed a craw-

ler to crawl the Web application—an approach

adopted in manyWeb site analysis [8,51,55] and re-

verse engineering [52–54] studies. We designed our

crawler to discover all pages in a Web site that con-

tainHTML forms, since forms are the primary data

entry points in most Web applications. From our

initial tests, we learned that ordinary crawling
mechanisms normally used for indexing purposes

[13,17,36,38,61,67] are unsatisfactory in terms of

thoroughness. Many pages within Web applica-
tions currently contain such dynamic content as

Javascripts and DHTML. Other applications

emphasize session management, and require the

use of cookies to assist navigationmechanisms. Still

others require user input prior to navigation. Our
tests show that all traditional crawlers (which use

static parsing and lack script interpretation abili-

ties) tend to skip pages in Web sites that have these

features (see Section 3). In both security assessment

and fault injection, completeness is an important is-

sue–that is, all data entry points must be correctly

identified. No attempt was made to exhaust input

space, but we did emphasize the importance of com-
prehensively identifying all data entry points, since

a single unidentified link would nullify the tests

conducted for all other links.

2.2.1. Complete crawling

In order to improve coverage, we looked at

ways that HTML pages reveal the existence of

other pages or entry points, and came up with
the following list:

1. Traditional HTML anchors.
Ex: ha href = ‘‘http://www.google.com’’iGoogle
h/ai

2. Framesets.
Ex: hframe src = ‘‘http://www.google.com/top
frame.htm’’i

3. Meta refresh redirections.
Ex: hmeta http-equiv = ‘‘refresh’’ content = ‘‘0;
URL = http://www.google.com’’i

4. Client-side image maps.
Ex: harea shape = ‘‘rect’’ href = ‘‘http://www.
google.com’’i

5. Javascript variable anchors.
Ex: document.write(‘‘n’’ + LangDir + ‘‘index.
htm’’);

6. Javascript new windows and redirections.
Ex: window.open(‘‘n’’ + LangDir + ‘‘ index.htm’’);
Ex: window.href = ‘‘n’’ + LangDir + ‘‘ index.
htm’’;

7. Javascript event-generated executions.
Ex: HierMenus [19].

8. Form submissions.

We established a sample site to test several com-

mercial and academic crawlers, including Teleport

http://www.google.com
http://www.google.com/top_frame.htm
http://www.google.com/top_frame.htm
http://www.google.com
http://www.google.com
http://www.google.com
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[67], WebSphinx [38], Harvest [13], Larbin [61],

Web-Glimpse [36], and Google. None were able

to crawl beyond the fourth level of revelation—

about one-half of the capability of the WAVES

crawler. In order to detect revelations 5 and 6,
WAVES� crawler incorporates a full-fledged brow-

ser (detailed in Section 3), allowing it to interpret

Javascripts. Revelation 7 also refers to link-reveal-

ing Javascripts, but only following an onClick,

onMouseOver, or similar user-generated event. As

described in Section 2.4, WAVES performs an

event-generation process to stimulate the behavior

of active content. This not only allows WAVES to
detect malicious components but, together with

WAVES� Javascript interpretation ability, allows

WAVES to detect revelation 7. During stimulation,

Javascripts located within the assigned event han-

dlers of dynamic components are executed, possibly

revealing new links. Many current Web sites incor-

porate DHTML menu systems to aid user naviga-

tion. These and similar Web applications contain
many links that can only be identified by crawlers

capable of handling level-7 revelations. Also note

that even though WAVES� test set generation algo-
rithm�s (detailed in Section 2.2.3) main purpose is to
produce quality test sets, the same knowledge can

also be used during the crawl process.When a craw-

ler encounters a form, it uses the algorithm for

automated form submissions (revelation 8).
During the reverse engineering process, HTML

pages are parsed with a Document Object Model

(DOM) [4] parser (provided by the incorporated

browser component), and HTML forms are

parsed and stored in XML format. These forms

contain such data as submission URLs, available

input fields and corresponding variables, input

limits, default values, and available options.
Upon completion of the reverse engineering

process, an attempt was made to inject malicious

SQL patterns into the server-side program that

processes the form�s input. We referenced the exist-
<Form action="submit.cgi" method="GET"> 
strUserName:  <Input type="text" name="strUserN
strPassword:  <Input type="password" name="strP

(skipped) 

Fig. 1. A typical example of H
ing literature on SQL injection techniques to create

a set of SQL injection patterns [5]. The first step is

to determine the variable on which to place these

patterns. A typical example of HTML form source

code is presented in Fig. 1:
An example of a URL generated by submitting

the form in Fig. 1 is:

http://waves.net/~lancelot/submit.cgi?strUser-

Name = Wayne&strPassword = 0308Wayne

Note that two variables were submitted. If the

SQL injection pattern is placed on strUserName,
then the submitted URL will appear as:

http://waves.net/~lancelot/submit.cgi?strUser-

Name = X�OR�A� = �A&strPassword=

Depending on the SQL injection technique

being used, patterns are placed on either the first

or last variable. If the server-side program does
not incorporate a pre-processing function to filter

malicious input, and if it does not validate the cor-

rectness of input variables before constructing and

executing the SQL command, the injection will be

successful.

However, if the server-side program detects and

filters malicious patterns, or if the filtering mecha-

nism is provided on a global scale (e.g., [58]), then
injection will fail, and a false negative report will

be generated. Many server-side programs execute

validation procedures prior to performing data-

base access. An example of a typical validation

procedure added to the code presented in Fig. 1

is shown below:

If Length(strUserName < 3) OR Length(strUser-
Name > 20) Then
OutputError(‘‘Invalid User Name’’) Else
If Length(strPassword < 6) OR Length(strPas-
sword) > 11) Then
ame" size="20" maxlength="20"><br> 
assword" size="20" maxlength="20"><br> 

TML form source code.

http://waves.net/~lancelot/submit.cgi
http://waves.net/~lancelot/submit.cgi


Company River

Amazon 
Microsoft

Intel 
Lucent
Cisco

... 

Company 
CompName

Affiliate 
Corp
Comp 

...

Amazon
Nile

Danube 
Yangtze 
Potomac 

... 

River 
Canal
Stream
Branch 

Waterway
... 

TTooppiicc TTooppiicc

TermSet TermSetValueSet ValueSet

Fig. 2. The Topic model.

744 Y.-W. Huang et al. / Computer Networks 48 (2005) 739–761
OutputError(‘‘Invalid Password’’) Else Begin
SQLQuery = ‘‘SELECT* FROM Users WHERE
UserName = ’’�+ strUserName + ‘‘AND Password
= ’’� + strPassword + ‘‘�;’’
If GetQueryResult(SQLQuery) = 0 Then
bAuthenticated = false;
Else bAuthenticated = true;
End;

For the above code, our injection URL will fail

because it lacks a password. The code requires that

the variable strPassword carry text containing be-

tween 6 and 11 characters; if a random 6-11 char-
acter text is assigned to strPassword, injection will

still succeed. We propose the use of a ‘‘deep injec-

tion’’ mechanism to eliminate these types of false

negatives.

2.2.2. The topic model

To bypass the validation procedure, the Injec-

tion Knowledge Manager (IKM) must decide not
only on which variable to place the injection pat-

tern, but also how to fill other variables with

potentially valid data. Here we looked at related

research in the area of automated form comple-

tion—that is, the automatic filling-out of HTML

forms. A body of information approximately 500

times larger than the current indexed Internet is

believed to be hidden behind query interfaces [9]
for example, patent information contained in the

United States Patent and Trademark Office�s
Web site [69]. Since only query (and not browsing)

interfaces are provided, these types of document

repositories cannot be indexed by current crawling

technologies. To accomplish this task, a crawler

must be able to perform automatic form comple-

tion and to send queries to Web applications.
These crawlers are referred to as ‘‘deep crawlers’’

[9] or ‘‘hidden crawlers’’ [27,33,48]. Here we

adopted an approach similar to [48], but with a to-

pic model that enhances submission correctness

and provides a self-learning knowledge expansion

model.

Automated form completion requires the selec-

tion of syntactically or even semantically correct
data for each required variable. For example, the

variable names ‘‘strUserName’’ and ‘‘strPas-

sword’’ shown in Fig. 1 reveal both syntactic and
semantic information. The ‘‘str’’ prefix indicates

text as the required data type, and the ‘‘User-
Name’’ suggests the text semantics (i.e., a person�s
name). Supplying the IKM with knowledge to pro-

vide a valid input for each variable requires the de-

sign and implementation of a self-learning

knowledge base.

We designed our knowledge base using our pro-

posed Topic Model (see Fig. 2). At the model�s
center is the ‘‘topic’’e.g., ‘‘Human Names,’’ ‘‘Com-
pany Names,’’ ‘‘River Names,’’ ‘‘Star Names,’’ and

‘‘Addresses.’’ In order to describe the model, we

define the following notations.

1. t̂ ! p
_
if term t̂ indicates topic p

_
; for example,

terms ‘‘sex’’ and ‘‘gender’’ both indicates topic

‘‘sex,’’ and terms ‘‘company’’ and ‘‘affiliation’’

both indicates topic ‘‘company.’’
2. ~v 7! p

_
if value ~v is valid for topic p

_
; for example,

values ‘‘Arnold’’ and ‘‘Wayne’’ are both valid

for topic ‘‘first name.’’

3. conf ð~v; p_Þ denotes the confidence value (CV) of
~v in respect to p

_
; that is, the likelihood of ~v

being a valid value for p
_
. Each value is assigned

an initial CV of 1, and CVs of values involved in

an injection iteration are adjusted according to
the injection�s output (using the Feedback algo-

rithm described below).

We define a topic p
_ ¼ fT ðp_Þ; V ðp_Þg, where

Termsetðp_Þ ¼ f̂tĵt ! p
_g, and Valuesetðp_Þ ¼ fð~v;

confð~v; p_ÞÞj~v 7! p
_g. Our knowledge base KB ¼

fp_1; p
_

2; . . . ; p
_

ng is therefore a collection of topics.

We note that for any pair of topics p
_

1 and
p
_

b; jValuesetðp
_

aÞ \ Valuesetðp_bÞj P 0 (in other

words, values can be associated with more than

one topic). Thus, the value ‘‘Amazon’’ may appear
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in both Valueset(comp̂any) and Valueset(riv̂er),

and ‘‘Sum’’ may appear in both Valueset(comp̂any)

and Valueset(st̂ar).

2.2.3. Test set generation and output analysis

algorithms

In our KB implementation (see Fig. 3), we use

two inverted files to improve search speed. We

construct TermInvertedFile ¼ fð̂t; p_Þj p_ 2 KB and

t̂ ! p
_g. We index all terms within the inverted file,

so that TermInvertedFile.Topicð̂tÞ promptly returns

the topic associated with term t̂. We also construct

ValueInvertedFile ¼ fð~v; PÞj8 p
_ 2 KB and v̂ 7! p

_
;

 Injection Knowledge
Manager

ValueInv
Value To

Amazon TN

Sun TN

IBM TN

… …

TermInvertedFile
Term TopicName

Company Company

Affiliation Company

Sex Sex

Gender Sex

Mirror M

TopicTable
TopicName TermTableName ValueTableNa

Company Term_Company Value_Compan

Title Term_Title Value_Title

Sex Term_Sex Value_Sex

Term_Company

Term

Company

Affiliation

Valu

Value

Male

Female

Term_Sex

Term

Sex

Gender

Fig. 3. The self-learning kn
p
_ 2 Pg. Similarly, we index all values within the

inverted file so that TermInvertedFile.Topicð~vÞ
promptly returns the topic associated with ~v.

Using our KB, The IKM implements four algo-

rithms Get_Topic(), Get_Value(), Expand_Val-
ues() and Feedback(). When confronted with a

text box that carries no default value, the crawler

calls IKM�s Get_Valueð̂tÞ to retrieve the best possible
guess, where t̂ is the term (variable name or descrip-

tive keyword) associated with the text box. Inter-

nally, Get_Value() utilizes Get_Topic(), which

checks whether a topic can be associatedwith t̂. Get_
Topic() and Get_Value() are described as follows:
TNS_Amazon

Company

Rivers

TNS _Sun

Company

Stars

TNS _IBM

CompanyDB

Crawler
 

Search/Update

Response

ertedFile
picNameSet

S_Amazon

S_Sun

S_IBM

irror
Memory

me

y

Value _Company

Value Conf

Sun 10

Amazon 8

e _Sex

Conf

10

10

owledge base model.
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Get_Topic()

Input: t̂—The newly encountered variable name or

descriptive keyword.

Output: p
_
—Name of the topic containing Input-

Term, if any.

1. Find ŝ that is a term most similiar (having the

nearest edit distance) to t̂:
Inp

des

Ou

con
a. 8̂ti 2 TermInvertFile; Similarityð̂tiÞ ¼ 1=
NearestEditDistð̂ti; t̂Þ.

b. max ¼ MaxðSimilarityð̂t1Þ; . . . ; Similarityð̂tnÞÞ;

2. If no similar ones found, return ‘‘not found,’’

else return the topic containing the similar
term:

if max < q then
_

els

ut

cr

tp

fi

p ¼‘‘notfound’’; return;
e

p
_ ¼ TermInvertFile:Topicð̂tmaxÞj
Similarityð̂tmaxÞ equals max; return p

_

Get_Value()

: t̂—The newly encountered variable name or

iptive keyword.

ut: ~v—The candidate value having the highest

dence.
1. Check whether t̂ can be associated with a topic:
_

a. Get_Topicð̂t; pmatchÞ
b. if p

_

match equals ‘‘not found’’ then ~v=‘‘not
found’’; return;
2. Retrieve the candidate having the highest

confidence:
a. 8V i 2 ValueSetðp_matchÞ;
max ¼ MaxðConf ðV 1Þ; . . . ;Conf ðV nÞÞ;

b. ~v ¼ ~vij~vi 2 ValueSetðp_matchÞ;
Conf ð~viÞ equals max
Get_Topic() uses a simple string similarity-

matching algorithm to compute t̂�s nearest edit dis-
tances to every term from every topic contained in

the knowledge base. This approach ensures that

similar phrases (e.g., ‘‘User_Name’’ and ‘‘User-

Name’’) are marked as having a short distance.

To reduce computation complexity, matching is

performed using the TermInvertedFile stored in
memory (Fig. 3). A minimum threshold q is set

so that Get_Topic() may fail (indicating that no

relevant topic is found).
After an associated topic p
_

match the candidate

with the highest confidence (denoted ~v). If two or

more candidates with the same confidence are

identified, one is randomly selected. ~v is then re-

turned to the crawler, which calls Get_Value() iter-
atively until it has enough values to construct a

deep SQL injection URL. Following an injection,

the crawler calls Feedback() to supply the IKM

with feedback on the successfulness of the injec-

tion. Confidence is adjusted for each value in-

volved in the injection session.

The key terms used in the process just described

consist of variable names gathered from the
HTML form�s source code. Though programmers

with good practices are likely to follow proper

naming conventions, doing so is not considered

as mandatory, and poor-looking codes will not af-

fect a form�s appearance or functionality. For this
reason, it is not possible to rely solely on these var-

iable names to provide descriptive (syntactic or

semantic) information regarding input fields.
Raghavan [48] has proposed an algorithm called

LITE (Layout-based Information Extraction

Technique) to help identify input field semantics.

In LITE, the HTML is sent to an approximate

DOM parser, which calculates the location of

each DOM element rendered on the screen; text

contained in the element nearest the input field

is considered descriptive. We took a similar ap-
proach: our crawler is equipped with a fully

functional DOM parser, and thus contains

knowledge on the precise layout of every DOM

component. While variable names are extracted,

the crawler also calculates the square-distance be-

tween input fields and all other DOM compo-

nents. The text from the nearest component is

extracted as a second descriptive text. Keywords
are further extracted from the text by filtering

stop words. The keywords are used to call Get_

Value() if the first call using the variable name

fails.

After the query and ranking mechanisms are in

place and the IKM begins to feed high-confidence

terms to the crawlers, the next issue involves pop-

ulating and automatically expanding the knowl-
edge base. The IKM primarily relies on option

lists found in HTML forms for the expansion of

SValue. Such option lists are rendered as ‘‘Combo
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Boxes’’ on the screen; when clicked, they present

drop-down menus containing available options

(e.g., a list of countries to be included in a registra-

tion form). When requesting data that has a fixed

set of possible values such as the country name
in an address field, an option list is a commonly

chosen input method.

When the crawler confronts an input variable

with an attached option list, it calls Expand_Val-

ues(InputTerm, PredefinedValues), where Input-

Term is the variable name and PredefinedValues

the associated options list. According to Input-

Term and PredefinedValues, Expand_Values()
expands the knowledge base. We define

Expand_Values() as follows:

Expand_Values ()
Input

name

Vprede
s: t̂—The newly encountered term (variable

or descriptive keyword).

fined—A value set resembling the options list

iated with t̂.
assoc

1. Check whether ~t can be associated with a topic:
_

a. Get_Topic ð̂t; pmatchÞ;
b. if p

_

match not equal to ‘‘not found’’ then goto

step (3)
2. t̂ not found in knowledge base, try to add t̂

a. try to find some value set Vsimiliar that resem-

bles Vpredefined:
8 p_i 2 KB; V i ¼ fv̂jjv̂j 2V predefined and 9v̂k 2
ValueIntertedFile such that Similarityðv̂j; v̂kÞ
> q and ValueInvertedFile:Topicðv̂kÞ equals

p̂jg
Scoreðp̂iÞ ¼ jV ij=jValueSetðp̂iÞj

b.max ¼ MaxðScoreðp̂0Þ; Scoreðp̂1Þ; . . . ;
Scoreðp̂nÞÞ

c. If max equals to 0 then return

d. 9 p̂match such that Scoreðp̂matchÞ equal max

TermSetðp̂matchÞ ¼ TermSetðp̂matchÞ [ f̂tg
TermSet ðp̂matchÞ is thus expanded.
3. t̂ associated with (if step (2) skipped) or added
(if step (2) taken) to a topic. For the topic p̂match
containing t̂, expand ValueSetðp̂matchÞ:

a. ValueSetðp̂matchÞ ¼ ValueSetðp̂matchÞ [ V predefined

ValueSetðp̂matchÞ is thus expanded.
If Expand_Values() is able to associate a topic

with InputTerm, it appends to the topic�s value
set all possible values extracted from the newly

encountered option list. This enabled the expan-

sion of the value sets as pages are crawled. To ex-

pand the term sets, Expand_Values() searches the

ValueInvertedFile and identifies an existing value
set that is most similar to the input set Predefined-

Values. If one is identified, InputTerm is added to

the term set of the topic of the matched SValue. In

the following example, assume that for the topic

Company, TermSet(Company) = {‘‘Company’’,

‘‘Firm’’} (note that ‘‘Affiliation’’ is not included)

and ValueSet(Company) = {‘‘IBM,’’ ‘‘HP,’’ ‘‘Sun,’’

‘‘Lucent,’’ ‘‘Cisco’’}. Then assume that a crawler
encounters an input variable ‘‘Affiliation’’ that is

associated with an option list Vpredefined = {‘‘HP,’’

‘‘Lucent,’’ ‘‘Cisco,’’ ‘‘Dell’’}. The crawler calls

Expand_Values() with ‘‘Affiliation’’ and Vpredefined.

After failing to find a nearest term for ‘‘Affilia-

tion,’’ the IKM notes that ValueSet(Company) is

very close to Vpredefined, and inserts the term ‘‘Affil-

iation’’ into TermSet(Company) and the value
ValueSet(Company) � Vpredefined = {‘‘Dell’’} into

ValueSet(Company). In this scenario, both Term-

Set(Company) and ValueSet(Company) are

expanded (all three steps in Expand_Values()

are taken).

Here we will describe the mechanism for

observing injection results. Injections take the

form of HTTP requests that trigger responses from
a Web application. Fault injection observability is

defined as the probability that a failure will be

noticeable in the output space [72]. The observabil-

ity of a Web application�s response is extremely

low for autonomous programs, which presents a

significant challenge when building hidden crawl-

ers [48]. After submitting a form, a crawler receives

a reply to be interpreted by humans; it is difficult
for a crawler to interpret whether a particular sub-

mission has succeeded or failed. Raghavan [48,49]

addresses the problem with a variation of the

LITE algorithm: the crawler examines the top-cen-

ter part of a screen for predefined keywords that

indicate errors (e.g., ‘‘invalid,’’ ‘‘incorrect,’’ ‘‘miss-

ing,’’ and ‘‘wrong’’). If one is found, the previous

request is considered as having failed.
For successful injections, observability is con-

sidered high because the injection pattern causes

a database to output certain error messages (see



748 Y.-W. Huang et al. / Computer Networks 48 (2005) 739–761
Section 2.2.4 for a list of injection patterns and er-

ror messages). By scanning for key phrases in the

replied HTML (e.g. ‘‘ODBC Error’’), a crawler

can easily determine whether an injection has suc-

ceeded. However, if no such phrases are detected,
the crawler is incapable of determining whether

the failure is caused by an invalid input variable,

or if the Web application filtered the injection

and therefore should be considered invulnerable.

To resolve this problem, we propose a simple yet

effective algorithm called negative response extrac-

tion (NRE). If an initial injection fails, the re-

turned page is saved as R1. The crawler then
sends an intentionally invalid request to the tar-

geted Web application for instance, a random

50-character string for the UserName variable.

The returned page is retrieved and saved as R2. Fi-

nally, the crawler sends to the Web application a

request generated by the IKM with a high likeli-

hood of validity, but without injection strings.

The returned page is saved as R3. R2 and R3 are
then compared using WinMerge [73], an open-

source text similarity tool.

The return of similar R2 and R3 pages raises

one of two possibilities: (a) no validation algo-

rithm was enforced by the Web application, there-

fore both requests succeeded; or (b) validation was

enforced and both requests failed. In the first situ-

ation, the failure of R1 allows for the assumption
that the Web application is not vulnerable to the

injection pattern, even though it did not validate
Combi-
nation 

Results Interpretation

1 
R1

NRE not used; initial injection was successful. En
vulnerable, and R2 and R3 are not necessary.

2 R1= R2= R3

1. All requests are filtered by validation procedur
assessment is impossible.

2. Requests are not filtered, but Web application i

3 R1= R2 R3 R1 and R2 did not bypass validation, but R3 did. 

4 R2= R3 R1
Malicious pattern recognized by filtering mechan
vulnerable.

5 R1 R2 R3 R1 is recognized as injection pattern, R2 failed val

Fig. 4. The NRE for
the input data. In the second situation, the crawler

enters an R3 regeneration and submission loop. If

a request produces an R3 that is not similar to R2,

it is assumed to have bypassed the validation pro-

cess; in such cases, a new SQL injection request is
generated based on the parameter values used in

the new, successful R3. If the crawler still receives

the same reply after ten loops, it is assumed that

either (a) no validation is enforced but the applica-

tion is invulnerable, or (b) a tight validation proce-

dure is being enforced and automated completion

has failed. Further assuming under this condition

that the Web application is invulnerable induces
a false negative (discussed in Section 5 as

P(FLjV,D)). If an injection succeeds, it serves as

an example of the IKM learning from experience

and eventually producing a valid set of values. To-

gether with the self-learning knowledge base, NRE

makes a deep injection possible. A list of all possi-

ble reply combinations and their interpretations

are presented in Fig. 4.
Combination 2 indicates an NRE failure, since

WAVES is unable to interpret the injection out-

put. Combinations 1, 3, 4 and 5 all suggest a deter-

ministic test result. Since only combinations 3 and

5 involve an R3 whose values are considered valid

by the target entry point, Feedback() is called only

for these two combinations.

The crawler�s SQL_Injection() algorithm and
the IKM�s Feedback() algorithm are described as

follows.
Implication

try point considered 1. Deterministic result (vulnerable)

2. NRE not used

e. Automated 

s not vulnerable. 

1. NRE failed 
2. Undeterministic result 

1. Deterministic result (secure)

2. Feedback() called

ism. Entry point not 
1. Deterministic result (secure) 

idation, R3 succeeded.
1. Deterministic result (secure) 
2. Feedback() called

deep injection.
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L_Injection()

ut: A—A set of arguments for the entry point.

ch argument �a 2 A ¼ ðT ; V Þ, where T is a set of

scriptive terms (e.g., text near an input field or

field�s variable name) and V is an optional
of predefined values.

—A set of malicious test patterns.

r each argument �ai 2 A,

If ðj�a
Expa

For e

edb

ut

Fo
i:V j > 0Þ then for each term t̂ 2 �ai:T ,
nd_Valuesð̂t; �ai:V Þ
ach test pattern ~m 2 M ,

quest1½�ai� ¼ ~m
r each �aj 2 A; �aj 6¼ �ai,
Re
Fo

For each t̂ 2 �aj:T ,

Request1[�aj� ¼Get_Valueð̂tÞ; if Request1
[�aj� 6¼‘‘not found’’ then break;

R1 = Do_Injection(Request1);

If DetectErrorPatterns(R1) then

ReportVulnerabilityð�ai; ~mÞ; continue
else

Request2=Request1;
Request2[�ai� ¼InvalidString;

Request3 = Request1;

For each t̂ 2 �ai:T ,
1: ‘‘Database error:There was a error

in executing the following SQL:’’

2: ‘‘Microsoft OLE DB Provider for

ODBC Drivers error’’;
3: ‘‘supplied argument is not a valid

MySQL result’’;

4: ‘‘You have an error in your

SQL syntax’’;

5: ‘‘Column count doesn�t match value

count at row’’;

6: ‘‘Can�t find record in’’;

7: ‘‘Incorrect column specifier for

column’’;

8: ‘‘Incorrect column name’’;

9: ‘‘Invalid parameter type’’;

10: ‘‘Unknown table’’;
Request3[�ai� ¼Get_Valueð̂tÞ; if Request3
[�ai� 6¼‘‘not found’’ then break;

R2 = Do_Injection(Request2);

R3 = Do_Injection(Request3)

If R1 equals R2 then
If R2 equals R3 then

Comb = 2 else Comb = 3;

else If R2 equals R3 then

Comb = 4 else Comb = 5;

Switch(Comb)

Case 2: ReportNREFailure();

Case3:Feedback(A);ReportSecure ð�ai; ~mÞ;
Case 4: ReportSecureð�ai; ~mÞ;
Case5:Feedback(A);ReportSecure ð�ai; ~mÞ;

ack()

: A—A set of arguments for an entry point.

r each argument �ai 2 A,
For each t̂ 2 �aj:T ,
11: ‘‘ODBC SQL Server Driver’’;

12: ‘‘Microsoft VBScript runtime’’;

13: ‘‘ODBC Microsoft Access Driver’’;
~v = Get_Valueð̂tÞ; if ~v5‘‘not found’’ then

break;

Conf(~v) = Conf(~v) + 1
2.2.4. Injection patterns and error messages

WAVES� injection patterns are crafted not to

intrude a vulnerable entry point (e.g., executing a

SQL command), but to make it output database

error messages. If an entry point outputs database
error messages in response to a particular injection

pattern, it is vulnerable to that pattern. Below are

some representative injection patterns:
1:
 �waves_
scanner
6:
 �OR
�0� = �0�
11:
 9%2c

+ 9%2c + 9
2:
 waves_

scanner�

7:
 �) OR

(�0� = �0�

12:
 �’’
3:
 �OR 1=1–
 8:
 �UNION�
 13:
 �

4:
 �OR�
 9:
 �WHERE�
 14:
 %3B
5:
 �OR
 10:
 �%22
 15:
 9,9,9
Though Web applications have a wide selection
of backend databases (e.g., SQL Server, MySQL,

Oracle, Sybase, and DB2), error messages output-

ted by each database in response to the above injec-

tion patterns usually include a particular string. We

search for such strings in an HTML output to de-

tect database error messages. The possibility of

these exact strings appearing in a normal output

is low. Examples of such strings are given below:



Fig. 5. A SEE-generated BMSL description.
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2.3. Cross-site scripting

As with SQL injection, cross-site scripting [16]

is also associated with undesired data flow. To illu-

minate the basic concept, we offer the following
scenario.

A Web site for selling computer-related mer-

chandise holds a public on-line forum for discuss-

ing the newest computer products. Messages

posted by users are submitted to a CGI program

that inserts them into the Web application�s data-
base. When a user sends a request to view posted

messages, the CGI program retrieves them from
the database, generates a response page, and sends

the page to the browser. In this scenario, a hacker

can post messages containing malicious scripts

into the forum database. When other users view

the posts, the malicious scripts are delivered on be-

half of the Web application [16]. Browsers enforce

a Same Origin Policy [37,41] that limits scripts to

accessing only those cookies that belong to the ser-
ver from which the scripts were delivered. In this

scenario, even though the executed script was writ-

ten by a malicious hacker, it was delivered to the

browser on behalf of the Web application. Such

scripts can therefore be used to read the Web

application�s cookies and to break through its

security mechanisms.

2.4. Cross-site scripting detection

Indications of cross-site scripting are detected

during the reverse engineering phase, when a craw-

ler performs a complete scan of every page within

a Web application. Equipping a crawler with the

functions of a full browser results in the execution

of dynamic content on every crawled page (e.g.,
Javascripts, ActiveX controls, Java Applets, and

Flash scripts). Any malicious script that has been

injected into a Web application via cross-site

scripting will attack the crawler in the same man-

ner that it attacks a browser, thus putting our

WAVES-hosting system at risk. We used the De-

tours [26] package to create a SEE that intercepts

system calls made by a crawler. Calls with mali-
cious parameters are rejected.

The SEE operates according to an anomaly

detection model. During the initial run, it triggers
a learning mode in WAVES as it crawls through

predefined links that are the least likely to contain

malicious code that induces abnormal behavior.

Well-known and trusted pages that contain Acti-

veX controls, Java Applets, Flash scripts, and
Javascripts are carefully chosen as crawl targets.

As they are crawled, normal behavior is studied

and recorded. Our results reveal that during start-

up, Microsoft Internet Explorer (IE)

1. locates temporary directories,

2. writes temporary data into registry,

3. loads favorite links and history list,
4. loads the required DLL and font files,

5. creates named pipes for internal commu-

nication.

During page retrieval and rendering, IE

1. checks registry settings,

2. writes files to the user�s local cache,
3. loads a cookie index if a page contains cookies,

4. loads corresponding plug-in executables if a

page contains plug-in scripts.

The SEE uses the behavioral monitoring speci-

fication language (BMSL) [47,60] to record these

learned normal behaviors. This design allows users

to easily modify the automatically generated spec-
ifications if necessary. Fig. 5 presents an example

of a SEE-generated BMSL description.

The SEE pre-compiles BMSL descriptions into

a hashed policy database. During page execution

and behavior stimulation, parameters of inter-

cepted system calls are compared with this policy

database. If the parameters do not match the nor-

mal behavior policy (e.g., using ‘‘C:nautoexec.bat’’
as a parameter to call CreateFileEx), the call is

considered malicious, since IE was not monitored

to make any file access under the C:ndirectory dur-



Fig. 6. The secure execution environment (SEE).

Fig. 7. System architecture of WAVES.
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ing the learning phase. Fig. 6 illustrates the SEE

mechanism.

The SEE provides (a) a self-protection mecha-

nism to guard against malicious code, and (b) a

method to detect malicious code inserted into

Web applications. One deficiency is that the mech-
anism only detects code that has already been

inserted, and not the weaknesses of Web applica-

tions that make them vulnerable to attack. Detect-

ing such vulnerabilities requires an off-line static

analysis of Javascripts retrieved during the reverse

engineering phase. We are still in the initial phase

of designing and experimenting with this analytical

procedure.
3. System implementation

Fig. 7 depicts the entire WAVES system archi-

tecture, which we will briefly describe in this sec-

tion. The crawlers act as interfaces between Web

applications and software testing mechanisms.
Without them we would not be able to apply our

testing techniques to Web applications. To make

them exhibit the same behaviors as browsers, they

were equipped with IE�s DOM parser and script-

ing engine. We chose IE�s engines over others

(e.g. Gecko [39] from Mozilla) because IE is the

target of most attacks. User interactions with

Javascript-created dialog boxes, script error pop-
ups, security zone transfer warnings, cookie pri-

vacy violation warnings, dialog boxes (e.g. ‘‘Save
As’’ and ‘‘Open With’’), and authentication warn-

ings were all logged but suppressed to ensure con-

tinuous crawler execution. Please note that a

subset of the above events is triggered by Web

application errors. An obvious example is a Java-

script error event produced by a scripting engine
during a runtime interpretation of Javascript code.

The crawler suppresses the dialog box that is trig-

gered by the event, but more importantly, it logs

the event and prepares corresponding entries gen-

erating an assessment report.
4. Related work

Offutt [42] surveyed Web managers and devel-

opers on quality process drivers and found that

while time-to-market is still considered the most

important quality criteria for traditional software,

security is now very high on the list of concerns for

Web application development. Though not specif-

ically aimed at improving security attributes, there
has been a recent burst of activity in developing

methods and tools for Web application testing

[8,23,51], analysis [51,55], and reverse engineering

[20,21,52–54,68].

We used this paper to present a Web applica-

tion security scanner—an automated software test-

ing platform for the remote, black-box testing of
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Web applications. In Bertolino�s [10] words, soft-
ware testing involves the ‘‘dynamic verification of

the behavior of a program on a finite set of test

cases, suitably selected from the usually infinite

executions domain, against the specified behav-
ior.’’ Unit, regression, conformance, and other

types of tests make use of carefully chosen or cre-

ated test cases to identify faults. In white-box test-

ing, a typical solution is to make test case selection

based on source code—the strategy adopted by

Rapps and Weyuker [50] in their data flow testing

model based on program paths (which they refer

to as du-paths) that connect variable definitions
and uses. Many errors in variable definition re-

main hidden until the variable is referenced at a

program point far away from its definition. Data

flow criteria are used to determine the extent to

which du-paths are tested. Liu et al. [34,35] were

among the first to propose a model for applying

data flow testing to Web applications. Treating

individual Web application components as objects,
they created a Web Application Test Model

(WATM) to capture structural test artifacts.

According to du-paths of interest, test cases are

derived from flow graphs generated via an analysis

of a Web application�s source code.
Andrews, Offutt and Alexander proposed a sys-

tem-level testing technique based on finite state

machines (FSMs) that model subsystems of Web
applications. Test requirements are generated as

FSM state subsequences, which are then combined

to form complete executable tests. In general, all

the above mentioned Web application testing ap-

proaches are ‘‘white-box’’ approaches that first

build system models from source code and then

use the models to identify test requirements. Gen-

erating test cases for the requirements require
extensive user participation. In contrast, WAVES

is a WSS that performs remote, black-box testing

with automated test case generation (see WSS

definition in Section 2.2).

In reverse engineering a Web application,

WAVES uses what we call a ‘‘complete crawling’’

mechanism to attempt more complete crawls. This

is accomplished by three strategies—browser emu-
lation, user event generation, and automated form

completion. Similar efforts were made for the Veri-

Web [8] project, which addresses the automated
testing of dynamic Web applications. VeriWeb em-

beds Gecko [39] for browser emulation, while

WAVES embeds IE. IE was our first choice be-

cause most browser attacks are aimed at IE instead

of Netscape Navigator. Both VeriWeb and
WAVES perform automated form submissions, a

reflection of studies on searching the hidden Web

[9,27,33,48]. To automatically generate valid input

data, VeriWeb uses Smart Profiles, which repre-

sents sets of user-specified attribute-value pairs.

In contrast, WAVES incorporates a self-learning

knowledge base.

Scott and Sharp [58] take a different approach to
protecting against SQL injection and cross-site

scripting attacks: a global input validation mecha-

nism. They argue that Web application vulnerabil-

ities are essentially unavoidable, meaning that

security assurance needs to be ‘‘abstracted’’ to a

higher level. However, to adapt this mechanism

to a legacy Web application requires that rules be

defined for every single data entry point—perhaps
a difficult task for Web applications that have been

developed over a long time period, since they often

contain complicated structures with little docu-

mentation. It would be unusual for a Web manager

to be familiar with all of the data entry points for a

site with thousands of pages. AppShield [56] and In-

terDo [30] are two commercial products similar to

Scott and Sharp�s application-level firewall. How-
ever, experience reports suggest that making these

firewalls work requires careful configuration by

experienced security professionals [12].

Another protection approach, the hbigwigi pro-
ject [15], also provides Web application input val-

idation mechanisms. The mechanism is designed to

automatically generate server- and client-side vali-

dation routines. However, it only works with Web
applications developed with the hbigwigi language.
In contrast, WAVES provides security assurance

without requiring modifications to existing Web

application architectures. The Open Web Applica-

tion Security Project (OWASP) [44] has launched a

WebScarab [44] project aimed at developing a

security assessment tool very similar to WAVES.

Sanctum has recently incorporated routines to de-
tect SQL injection vulnerabilities in Web applica-

tions into its AppScan [57]. Two other available

commercial scanners include SPI Dynamics� Web-
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Inspect [66] and Kavado�s ScanDo [30]. Reviews of

these tools can be found in [3].

Similar to WAVES, our other project WebS-

SARI [24,25] also attempts to provide automated

Web application security assessment. WAVES is
a black-box testing framework, while WebSSARI

is a white-box verification tool. WAVES can assess

up and running applications, giving it two advan-

tages: (a) assessment is provided without source

code, and (b) the actual behaviors of the running

application is tested and observed. A side effect is

that such testing may cause permanent state

changes to the target application. WebSSARI re-
quires the application�s source code, which is used

to simulate (or predict) the application�s runtime
behaviors. Unlike testing, which cannot guarantee

coverage, verification guarantees coverage, and

therefore, soundness. In other words, WAVES

tries its best to discover bugs in up and running

applications, while WebSSARI tries to guarantee

the absence of bugs from their source code. A
drawback of WebSSARI is that it verifies against

simulated runtime behaviors based on program

abstraction, so the results are only as correct as

the abstraction and simulation. On the other hand,

a testing framework always observes the actual

behaviors of a running application.

To expedite the reverse engineering and fault

injection processes, the multi-threaded WAVES
crawler performs parallel crawls. We adopted

many of the ideas and strategies reviewed in

[17,64] to construct fast, parallel crawlers. For

the automated form completion task, we followed

suggestions offered by Bergman [9] and Raghavan

[48], but incorporated a more complex self-learn-

ing knowledge base.

Behavior monitoring has attracted research
attention due to its potential to protect against un-

known or polymorphic viruses [6,7,11,14]. In addi-

tion to self-protection, we used behavior

monitoring to detect malicious content before it

reaches users. Furthermore, WAVES performs

behavior stimulation to induce malicious behavior

in the monitored components. In other words, it

uses behavior monitoring for both reactive and
proactive purposes.

We employed sandboxing technology to con-

struct a self-contained SEE. Our SEE implementa-
tion is based on descriptions in [26,29,31]. In [29],

a generic model is proposed for sandboxing

downloaded components. Regarding the actual

implementation, we had a choice between two

open-source toolkits—Detours [26] and GSWTK
[31]. We selected Detours because of its lighter

weight. For a standard description of normal

behaviors, we used BMSL [47,60]. We compared

our SEE with other commercial sandboxes, includ-

ing Finjan�s SurfinShield [22], Aladin�s ESafe [1],

and Pelican�s SafTnet [45,46]. Surveys of commer-
cially available sandboxes can be found in [2,71].
5. Experimental results

We tested for thoroughness by comparing the

number of pages retrieved by various crawlers.

Teleport [67] proved to be the most thorough of

a group of crawlers that included WebSphinx

[38], Larbin [61], and Web-Glimpse [36]. This
may be explained by Teleport�s incorporation of

both HTML tag parsing and regular expression-

matching mechanisms, as well as its ability to stat-

ically parse Javascripts and to generate simple

form submission patterns for URL discovery.

To test WAVES� application in real-world situ-

ations, we selected 14 well-known sites that reflect

a variety in size, nature, and design. On average,
WAVES retrieved 28% more pages than Teleport

when tested with the 14 sites (Fig. 8). We attribute

the discovery of the extra pages to WAVES� script
interpretation and automated form completion

capabilities.



Site P(S) P(C|S) P(CL|S) P(N) P(F0|V,D) P(FL|V,D) P(FLN|V,D)

NAI 18.69 80.32 81.93 70.58 19.68 18.07 05.31
Lucent 83.90 79.87 83.76 77.70 20.13 16.24 03.62
Trend Micro 90.72 78.52 84.04 98.60 21.48 15.96 00.22
Palm 43.56 88.63 92.20 100 11.37 07.80 0
Olympic 88.23 100 100 100 0 0 0
Apache 75.00 77.77 77.77 100 22.23 22.23 22.23
Verisign 89.93 86.06 95.27 93.02 13.94 04.73 00.33
Ulead 100 83.72 91.86 100 16.28 08.14 0
Cert 55.55 100 100 100 0 0 0
Maxtor 96.77 36.66 51.66 100 63.34 48.34 0
Mazda 100 100 100  100 0 0 0
Linux 
Journal 100 84.61 84.61 100 15.39 15.39 0
Cadillac 100 73.30 86.60 25.00 26.70 13.40 10.05
Web500 91.30 67.80 79.50 100 32.20 20.50 0
Average 80.93 81.13 86.06 90.99 18.76 13.62 02.46

Fig. 9. Automated submission results.
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To test the injection algorithm, WAVES was

configured to identify all forms of interest (i.e.,

those containing textboxes; see column 2 of Fig.

8), to perform an NRE for each form, to fill in

and submit the form, and to make a judgment on

submission success based on the reply page and

the previously retrieved NRE. WAVES creates de-

tailed logs of the data used for each automated
form completion, the resulting HTML page, and

submission success judgments. In Fig. 9 (produced

from a manual inspection of the logs), P(S) denotes

the probability that the semantics of an input text-

box have been successfully extracted; P(CjS) de-
notes the conditional probability that a form

completion is successful given that semantic extrac-

tion was successful; P(CLjS) denotes the same
probability, but after a learning process in which

the IKM expands its knowledge base; P(N) denotes

the probability of a successful NRE process; and

P(FjV,D) denotes the probability of false negatives
given that a form is both validated and defected

(i.e., vulnerable). False negatives are induced when

all of the following conditions are true: (a) the form

is defected (vulnerable); (b) the form is validated;
(c) WAVES cannot correctly complete the form;

and (d) the NRE process fails, but WAVES is un-

able to recognize the failure. One common example

of (d) is when combination 5 (see Fig. 4) occurs, but

the differences in R1, R2 and R3 do not result be-

cause R1 is recognized as malicious, R2 recognized

as invalid, and R3 considered valid. Instead, all re-
quests are recognized as invalid (because WAVES

in incapable of supplying valid values), and the dif-

ferences in the replies result simply from random

advertising content inserted into each response

HTML page. Therefore, although NRE considers

this entry point secure, it may be actually vulnera-

ble to a human hacker capable of supplying a

combination of malicious and valid values.
Based on the four conditions, a general defini-

tion of the probability of false negatives given that

the form being tested enforces validation can be

defined as P(FjV,D) = (1 � P(CjS) � P(CjX))*(1
� P(Uj N)), where P(CjX) denotes the probability
that form completion has succeeded given that

semantic extraction failed, and P(UjN) denotes

the probability that WAVES is unable to deter-
mine an NRE failure. P(UjN) depends large on a

website�s output and layout style. It can be im-

proved by replacing the current simple page simi-

larity algorithm (used to differentiate HTML

response pages) with one that (a) considers block

importance within an HTML page and (b) makes

comparisons based on the most important blocks.

Song et al. [65] claims an 85.9% accuracy for their
Micro-Accuracy algorithm for identifying impor-

tant HTML blocks. We consider it our future

work to incorporate their algorithm into WAVES.

In our analysis, we used the pessimistic defini-

tion of P(CjX) = 0, meaning that we assumed zero

probability of correctly filling a validated form

whose semantics could not be extracted.



Class of Impact Exploits Detection Ratio 
1) Restricted resource access 9 9/9 
2) Arbitrary command execution 9 9/9 
3) Private information disclosure 6 0/6 
4) Denial of service (DOS) 2 0/2 

Fig. 10. Detection ratios for each class of impact.
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As a part of our approach, both self-learning

(to assist automated submissions) and NRE are

used in order to decrease false negative rates when

injecting a validated form. To evaluate these mech-

anisms, we define three probabilities derived from
P(FjV,D): P(F0jV,D), P(FLjV,D), and P(FLNj
V,D).P(F0jV,D) denotes the probability of

P(FjV,D) when neither the self-learning nor the

NRE algorithms are applied. P(FLjV,D) denotes
the probability of P(FjV,D) when the learning

mode is enabled. P(FLNjV,D) denotes the proba-

bility when applying both learning and NRE. As

Fig. 9 shows, the P(FjV,D) average decreased
more than 5% (from the 18.76% of P(F0jV,D) to
the 13.62% of P(FLjV,D)) in other words, during

this experiment, the WAVES� learning mechanism
decreased the rate of false negatives by 5%. An

additional drop of 11% occurred between

P(FLjV,D) and P(FLNj V,D) due to a contribution

from the NRE algorithm. In total, WAVES� self-
learning knowledge base and the NRE algorithm
combined contributed to a 16% decrease in false

negatives, to a final rate of 2.46%.

Among the 14 sites, Olympic, Cert and Mazda

had the highest P(Cj S) and P(CLjS) rate—100%.

After examining their HTML pages, we concluded

that this resulted from the website developers

stuck solidly by good coding practices, giving each

variable a meaningful name. Maxtor had both the
lowest P(CjS) and the largest increase from P(CjS)
to P(CLjS), meaning that IKM�s learning proved

most helpful for the site. After manual examina-

tion, we found that in some of its pages, Maxtor

asks users to enter a hard disk model number,

while in some it offers an option list allowing users

to make a direct selection. Learning allows

WAVES to supply valid values (model numbers)
that it would otherwise not know. The same rea-

son explains the large differences exhibited also

by Verisign, Ulead, and Cadillac.

In order to use behavior monitoring for mali-

cious script detection, the WAVES crawler was

modified to accommodate IE version 5.5 instead

of 6.0 because of the greater vulnerability of the

older version. To incorporate the most recent ver-
sion would mean that we could only detect new

and unknown forms of attacks. Furthermore, the

behavior monitoring process is also dependent
upon the crawler�s ability to simulate user-gener-

ated events as test cases, and IE versions older than

5.5 do not support event simulation functions.

SecurityGlobal.net classified the impacts of vul-

nerabilities discovered between April, 2001 and
March, 2002 into 16 categories [62]. We believe

the items on this list can be grouped into four gen-

eral categories: (1) restricted resource access, (2)

arbitrary command execution, (3) private informa-

tion disclosure, and (4) denial of service (DoS). We

gathered 26 working exploits that demonstrated

impacts associated with the first three categories,

and used them to create a site to test our behavior
monitoring mechanism. For this test, WAVES was

installed into an unpatched version of Windows

2000. Fig. 10 lists the impact categories and

observed detection ratios.

WAVES successfully detected category 1 and 2

impacts. One reason for this high accuracy rate is

that IE exhibited very regular behavior during the

normal-behavior learning phase. The system calls
that IE makes are fixed, as are the directories and

files that it accesses; such clearly defined behavior

makes it easier to detect malicious behavior. Our

exploits that demonstrate category 3 impacts oper-

ate by taking advantage of certain design flaws of

IE. By tricking IE into misinterpreting the origins

of Javascripts, these exploits break the Same Origin

Policy [37,41] enforced by IE and steals user cook-
ies. Since these design flaws leak application-spe-

cific data, they are more transparent to a SEE

and are therefore more difficult to detect. This is re-

flected in our test using three commercial sand-

boxes—SurfinShield [22], ESafe [1], and SafTnet

[45,46]. Similar to WAVES, none of the sandboxes

was able to detect any of the six exploits of Cate-

gory 3. As well as for impacts of Category 4, a more
sophisticated mechanism must be implemented for

detection, and is an area of our future research.

The SEE does not intercept all system

calls. Doing so may allow the SEE to gather more



OpenProcess

CreateProcessWithLogonW

RegSetValueEx

File Management Process Management 
CreateFile CreateProcess
WriteFile CreateProcessAsUser 
CreateFileMapping CreateProcessWithLogonW
Directory Management 
CreateDirectory TerminateProcess
RemoveDirectory Communication 
SetCurrentDirectory CreatePipe 
Hook
SetWindowsHookEx Registry Access 
System Information 
GetComputerName RegOpenKeyEx
GetSystemDirectory RegQueryValueEx
GetSystemInfo User Profiles
GetSystemMetrics GetAllUsersProfileDirectory
GetSystemWindowsDirectory LoadUserProfile 
GetUserName GetProfilesDirectory
GetVersion Windows Networking 
GetWindowsDirectory WNetGetConnection 
SetComputerName Socket 
SystemParametersInfo Bind 

Listen 

Fig. 11. System calls intercepted by the SEE.

For i:=1 to TotalElements do Begin 
  If Assigned(Elements[i].onmouseover) then do Begin 

Event = Doc.CreateEvent();
Doc.FireEvent(Elements[i], “onmouseover”, Event);End; 

End;

Fig. 12. Our event-generation routine.
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information, but will also induce unacceptable

overhead. Therefore, the set of intercepted system

calls was carefully chosen to contain calls that IE

does not normally make, but that malicious com-

ponents needs to make. A list of intercepted sys-

tem calls is given in Fig. 11. The Detours

interception module has a maximum penalty of
77 clock cycles per intercepted system call. Even

for a slow CPU such as the Pentium Pro, this only

amounts to approximately 15 ls. Since IE does not

call most intercepted calls after initialization, the

interception mechanism costs little in terms of

overhead. Greater overhead potential lies in the

policy matching process that determines whether

a call is legal by looking at its parameters. The reg-
ular behavior exhibited by IE resulted in only 33

rules being generated by the learning process.

Since the rules (expressed in BMSL) are pre-com-

piled and stored in memory using a simple hash,

matching call parameters against these rules cost

little in terms of overhead.

In addition, the event generation process was

inexpensive in terms of CPU cost. Our experimen-
tal scans show that the index page of http://

www.lucent.com/ contained 635 DOM elements,

126 of which carried the onMouseOver event han-

dler. In other words, the 126 elements execute a

block of pre-assigned code whenever the user
moves a mouse over the elements. The routine used

to generate the onMouseOver event for all 126 ele-

ments is shown in Fig. 12. For a 2 GHz Pentium

IV, this routine took approximately 300 ms.
Thus, we conclude that while successfully inter-

cepting malicious code of category 1 and 2, the

behavior monitoring mechanism was cost-effective

and feasible. However, as more sophisticated strat-

egies are used to detect category 3 and 4 impacts,

larger overheads may be induced. Note that the

event-generation routine contributes not only to

behavior monitoring, but also to a more complete
URL discovery.
6. Conclusion

Our proposed mechanisms for assessing Web

application security were constructed from a soft-

ware engineering approach. We designed a crawler
interface that incorporates and mimics Web brow-

ser functions in order to test Web applications

using real-world scenarios. During the first assess-

ment phase, the crawler attempts to perform a

complete reverse engineering process to identify

all data entry points—possible points of attack–of

a Web application. These entry points then serve

as targets for a fault injection process in which
malicious patterns are used to determine the most

vulnerable points. We also proposed the NRE

algorithm to eliminate false negatives and to allow

for ‘‘deep injection.’’ In ‘‘deep injection’’, the IKM

formulates an invalid input pattern to retrieve a

negative response page, then uses an automated

form completion algorithm to formulate the most

likely injection patterns. After sending the injec-
tion, WAVES analyzes the resulting pages using

the NRE algorithm, which is simpler, yet more

accurate than the LITE approach [48]. A summary

of our contributions is presented in Fig. 13.

One contribution is an automated form submis-

sion algorithm that is used by both the crawler and

http://www.lucent.com/
http://www.lucent.com/


Mechanisms Based on Facilitates

Self-learning knowledge base Topic Model 1. Complete crawling
2. Deep injection

Negative response extraction (NRE) Page similarity Deep injection

Intelligent form
parser DOM object locality Deep injection

Complete crawling
1.Javascript engine
2.DOM parser
3.Javascript event generation

Web application Testing interface

Behavior monitoring

1.Self-training, anomaly detection 
model

2.Event simulation (test case 
generation)

3. Detours (sandboxing)

1. Self-protection
2. Cross-site scripting detection
3. Unknown malicious script detection

Behavior
stimulation 

Event simulation
(Test case generation)

1. Behavior monitoring
2. Complete crawling

Fig. 13. A summary of our contributions.
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IKM. Here we propose two strategies to assist this

algorithm. To extract the semantics of a form�s in-
put fields, we designed an ‘‘intelligent form parser’’

(similar to the one used in LITE [48]) that

uses DOM object locality information to assist in
automated form completion. However, our

implementation is enhanced by incorporating a

fully-functional DOM parser, as opposed to an

approximate DOM parser used in [48]. To auto-

matically provide semantically correct values for

a form field, we propose a self-learning knowledge

base based on the Topics model.

Finally, we added a secure execution environ-
ment (SEE) to the crawler in order to detect mali-

cious scripts by means of behavior monitoring.

The crawler simulates user-generated events as test

cases to produce more comprehensive behavior

observations—a process that also aids in terms

of crawl thoroughness. While functioning as a

self-protection mechanism, the SEE also allows

for the detection of both known and unknown
malicious scripts.

As a testing platform, WAVES provides the

following functions, most of which are commonly

required for Web application security tests:

1. Identifying data entry points.

2. Extracting the syntax and semantics of an input

field.
3. Generating potentially valid data for an input

field.
4. Injecting malicious patterns on a selected input

field.

5. Formatting and sending HTTP requests.

6. Analyzing HTTP replies.

7. Monitoring a browser�s behavior as it executes
active content delivered by a Web application.

As an interface between testing techniques and

Web applications, WAVES can be used to conduct

a wide variety of vulnerability tests, including coo-

kie poisoning, parameter tampering, hidden field

manipulation, input buffer overflow, session

hijacking, and server misconfiguration—all of
which would otherwise be difficult and time-

consuming tasks.
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