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Fractal frequency spectrum in laser resonators and three-dimensional geometric topology
of optical coherent waves
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We theoretically verify that the symmetry breaking in spherical resonators can result in a fractal frequency
spectrum that is full of numerous new accidental degeneracies to cluster around the unperturbed degenerate cavity.
We further experimentally discover that the fractal frequency spectrum excellently reflects the intimate connection
between the emission power and the degenerate mode numbers. It is observed that the wave distributions of lasing
modes at the accidental degeneracies are strongly concentrated on three-dimensional (3D) geometric topology.
Considering the overlapping effect, the wave representation of the coherent states is analytically derived to
manifest the observed 3D geometric surfaces.
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I. INTRODUCTION

Starting from Mandelbrot’s seminal discovery [1], self-
similar and fractal structures have been observed in a variety
of phenomena in nature [2] and have also been found in many
branches of physics [3–5]. One of the prominent examples
in quantum systems is the fractal conductance fluctuations in
gold nanowires and in mesoscopic electron billiards [6–10].
Another prominent example of the self-similar phenomena is
the plateau formation in the transverse Hall-resistance curve of
a two-dimensional (2D) electron system at low temperatures in
the presence of a strong perpendicular magnetic field, known
as the quantum Hall effect [11,12]. More intriguingly, the
Hofstadter’s fractal energy spectrum [13,14] for Landau levels
in a 2D periodic lattice has been realized [15,16].

The remarkable analogy between optical and mechanical
phenomena was fully developed in Hamilton’s ingenious
opticomechanical theory that played a fundamental role
in the development of ideas in quantum physics [17–20].
Thanks to the development of modern laser cavities, not only
eigenvalues but also eigenfunctions have been analogously
explored by using solid-state lasers for a 2D quantum har-
monic oscillator [21–25] and semiconductor lasers for 2D
quantum billiards [26–30]. Optical resonators with the same
isomorphism clearly confirm that the level degeneracies in
2D mesoscopic quantum systems generally lead to the wave
functions with intensities concentrated on classical periodic
orbits [10]. Nevertheless, optical resonators have never been
used to explore the energy spectrum in higher-dimensional
quantum systems. In particular, the emergence of the ray
geometry from the coherent wave in optical resonators is
still an open and fascinating issue of active research in
recent years. The attractive interest comes partly from the
fundamental questions of light-matter interaction [31] and
ray-wave correspondence [32–34], and partly from numerous
applications, such as cavity spectroscopy [35–37], optical
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pattern formation [38–41], single-photon emitters [42], and
ultralow threshold lasers [43,44].

One of the earlier reports on laser fractals was to demon-
strate that the eigenmodes of unstable-cavity lasers have fractal
structure [45]. The spatial fractal formation for laser transverse
modes was later confirmed in so-called kaleidoscope lasers that
include nontrivial transverse boundary conditions [46,47]. In
contrast with the eigenmode fractal formation in the unstable
cavity, we here explore the eigenfrequency fractal formation in
the stable spherical cavity subject to the parasitic astigmatism.
In this work we theoretically verify that the symmetry breaking
induced by astigmatism leads to a fractal frequency spectrum
in laser resonators. The fractal frequency spectrum is found
to display numerous new accidental degeneracies at the cavity
lengths near the unperturbed degenerate cavity. We further
exploit the selective pumping to excite the astigmatic resonator
and experimentally discover that the emission power variation
on the cavity length exhibits the local maxima at the accidental
degeneracies to form a fractal fluctuation corresponding to the
fractal frequency spectrum. It is also observed that the wave
distributions of lasing modes at the accidental degeneracies
are remarkably concentrated on the three-dimensional (3D)
geometric surfaces. Finally, we theoretically derive the coher-
ent states to manifest the 3D geometric topology of the lasing
modes. Based on the opticomechanical analogy, the present
results can be directly applied to the 3D integrable quantum
systems with symmetry breaking to explore the wave functions
related to 3D geometric surfaces.

II. FRACTAL FREQUENCY SPECTRUM

In a laser resonator with the gain medium, the inevitable
symmetry breaking comes from the astigmatism induced by
the birefringence of the gain medium and the angle of the
beam divergence. As a consequence, the eigenfrequencies of
the spherical cavity with parasitic astigmatism can be generally
given by

ωm,n,� = �ωz + (m + 1/2)ωt,x + (n + 1/2)ωt,y, (1)

where � is the longitudinal mode index, m and n are the
transverse mode indices, ωz is the longitudinal mode spacing,
and ωt,x and ωt,y are the transverse mode spacings in the x and
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FIG. 1. Frequency spectrum ωm,n,� of the ideal spherical cavity in the neighborhood of the indices (mo,no,�o) as a function of the normalized
cavity length Lt/R for the range of |m − mo| � 12, |n − no| � 12, and |� − �o| � 12.

y directions. For the concave-plano resonator, the transverse
mode spacings are given by ωt,x = (ωz/π )sin−1

√
Lt,x/R

and ωt,y = (ωz/π )sin−1√Lt,y/R, where ωz = c/2Lopt, Lopt =
Lcav + (nr − 1)Lg , nr is the refractive index of the gain
medium, Lg is the physical length of the gain medium, and
R is the curvature radius of the concave mirror. Due to
the symmetry breaking, the effective cavity lengths can be
generally expressed as Lt,x = Lt − d/2 and Lt,y = Lt + d/2,
where Lt is the mean value of Lt,x and Lt,y and d I s the
difference between Lt,x and Lt,y .

Neglecting the astigmatic effect, Lt is given by Lt = Lcav +
[nr − (1/nr )]Lg and d = 0. Under this circumstance, ωt,x =
ωt,y = ωt = (ωz/π )sin−1

√
Lt/R and the frequency spectrum

ωm,n,� in the neighborhood of the indices (mo,no,�o) is given
by (

�ω

ωz

)
= [(m + n) − (mo + no)]

(
ωt

ωz

)
+ (� − �o), (2)

where �ω = ωm,n,� − ωmo,no,�o
is the frequency difference.

The frequency ratio ωt/ωz is a monotonically increasing
function of the effective cavity length Lt for a given R and
its value is between 0 and 1/2 for 0 � Lt � R. Note that the
relationship between �ω/ωz and ωt/ωz in Eq. (2) is a simple
Diophantine equation. The occurrence of degeneracy is given
by �ω = 0 in Eq. (2). Figure 1 shows the frequency spectrum
ωm,n,� in the neighborhood of the indices (mo,no,�o) as a
function of the effective cavity length Lt for R = 10 mm. It can
be seen that the degeneracies and gaps appear at the effective
cavity length Lt = LP/Q that leads to the frequency ratio of
ωt/ωz corresponding to the rational number P/Q, where P

and Q are coprime integers. The family of the degenerate
states can be in terms of the triple integers (p,q,s) to express
the mode indices (m,n,�) as m = mo + pu, n = no + qu, and
� = �o + su, where the integer u is a common index given by
u = · · · − 2, −1, 0, 1, 2 · · · . Using Eq. (2), the triple integers
(p,q,s) for the degenerate condition of ωt/ωz = P/Q can be
shown to satisfy a simple relation (p + q)(P/Q) + s = 0 that
indicates that p + q = MQ and s = −MP , where M is an
integer.

Figure 2(a) shows the influence of the symmetry breaking
on the frequency spectrum ωm,n,� for an example of R =
10 mm and d = 50 μm. It is clear that the parasitic astigmatism
gives rise to the level rearrangement and breaks the original

degeneracies at Lt = LP/Q in the unperturbed spherical cavity.
Nevertheless, there are numerous new degeneracies to appear
in the neighborhood of Lt = LP/Q, as shown in Fig. 2(b). To
reveal the new degeneracies near the region of Lt = LP/Q,
a dimensionless parameter ξ is introduced to express the
effective cavity length as Lt = LP/Q + ξ d, where |ξ | � 1.
Using the parameter ξ and the property d � R, the transverse
frequencies near Lt = LP/Q can be derived as

ωt,x

ωz

= P

Q
+ β

(
ξ − 1

2

)
,

ωt,y

ωz

= P

Q
+ β

(
ξ + 1

2

)
, (3)

where β = d/[πR sin(2πP/Q)]. Substituting Eq. (3) into
Eq. (1) and using the triple integers (p,q,s) with the identity
of (p + q)(P/Q) + s = 0, the frequency spectrum near Lt =
LP/Q with respect to ωmo,no,�o

can be simplified as(
�ω

ωz

)
= βu

[
(p + q)ξ − 1

2
(p − q)

]
. (4)

Note that the relationship between �ω/ωz and ξ in Eq. (4)
is also a Diophantine equation. The criterion �ω = 0 in Eq. (4)
gives the new accidental degeneracies to occur at the effective
cavity lengths Lt = LP/Q + ξ d with

ξ = 1

2

(p − q)

(p + q)
. (5)

Numerous integer pairs (p,q) for the new degeneracies are
shown in Fig. 2(b). Substituting Eq. (5) into Eq. (3), it can be
found that

ωt,x

ωz

= P

Q
− β

q

p + q
,

ωt,y

ωz

= P

Q
+ β

p

p + q
. (6)

As discussed later, Eq. (6) plays an important role in
manifesting the topological geometry of the coherent states.

Now we discuss the fractal dimension of the frequency
spectrum shown in Fig. 2. The frequency spectrum is related
to the degeneracy distribution of the cavity length. Without the
astigmatic effect, d = 0, there are no additional degenerate
points in the frequency spectrum; consequently, the fractal
dimension is zero. When d �= 0, the value of the fractal
dimension is between 0 and 1, similar to that of the Cantor set.
Using the definition that fractal dimension D equals the log of
the number of pieces N divided by the log of the magnification
factor r , the fractal dimension of the frequency spectrum can
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FIG. 2. (a) Influence of the symmetry breaking on the frequency spectrum ωm,n,� for an example of R = 10 mm and d = 50 μm for the
range of |m − mo| � 12, |n − no| � 12, and |� − �o| � 12. (b) Partial magnification of the frequency spectrum in the neighborhood of
Lt = LP/Q with P/Q = 1/4.

be expressed as D = log(N )/ log(r). As shown in Fig. 2, the
magnification factor is given by r = R/d. From Eq. (6), the
number of pieces N can be estimated to be N = P/(MQβ),
where the multiplication factor M is related to p + q = MQ.
The maximum multiplication factor is usually not greater
than 5. For a typical example of R = 10 mm and d = 50 μm,
the mean fractal dimension D is calculated to be 0.745 for
M = 1, 0.594 for M = 2, and 0.506 for M = 3. It can be
seen that the overall characteristics of the fractal dimension
are rather close to that of the Cantor set [48].

III. EXPERIMENTAL OBSERVATIONS

To explore the effect of the fractal frequency spectrum, we
exploited the off-center selective pumping to excite extremely
high-order modes in a solid-state laser, as shown in Fig. 3 for
the setup. The cavity was formed by a concave mirror and a
gain medium. For the concave mirror, the radius of curvature
is R = 10 mm and the reflectivity is 99.8% at the wavelength
of 1064 nm. The concave mirror was precisely controlled to
vary the cavity length in the range of 3.8–8.8 mm. The gain
medium was an a-cut 2.0−at.% Nd3+: YVO4 crystal with a
length of 2 mm. One side of the gain medium was coated
for antireflection at 808 nm and 1064 nm (reflection <0.1%)

and the other side was coated to be an output coupler with
a transmission of 0.5% at 1064 nm. The pump source was
an 808-nm fiber-coupled laser diode with a core diameter of
100 μm, a numerical aperture of 0.16, and a maximum output
power of 3 W. A focusing lens was used to reimage the pump
beam into the gain medium with the off-center displacement of
�x = 0.7 mm and �y = 0.56 mm. The emission power was
systematically recorded by changing the cavity length with a
precise step of 10 μm.

FIG. 3. Experimental laser setup with the off-center selective
pumping to excite extremely high-order transverse modes for ex-
ploring the effect of the fractal frequency spectrum.
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FIG. 4. (a) Experimental result for the emission power as a
function of the cavity length under a pump power of 1.0 W. (b) Partial
magnification of the power variation in the region of P/Q = 1/4. (c)
Experimentally tomographic images of the lasing modes at the main
peaks of the emission power.

Since the emission power is generally proportional to the
number of the excited cavity modes, the emission power has
an intimate connection with the degeneracy. Figure 4(a) shows
the experimental result for the emission power as a function of
the cavity length under a pump power of 1.0 W. It is clear that
the emission power variation on the cavity length exhibits the
local maxima at the accidental degeneracies to form a fractal
fluctuation corresponding to the fractal frequency spectrum.
Figure 4(b) shows the partial magnification of the power
variation in the region of P/Q = 1/4. The experimentally
tomographic images of the lasing modes at the main peaks of
the emission power are shown in Fig. 4(c). The tomographic
images of the lasing modes were obtained by controlling
the exposure time of the camera to selectively capture the
transverse patterns inside the cavity along the longitudinal
propagation. More specifically, a pair of relay lenses was used
to reimage the laser modes onto a paper screen that was moved
by tracking the camera to record the tomographic images.
The transverse patterns can be clearly seen to be localized
on the Lissajous curves with specific indices (p,q) related to
the degeneracies shown in Fig. 2(b). In the following, it is
theoretically shown that the formation of the lasing modes can
be nicely represented by using the quantum coherent states.

IV. MANIFESTING 3D GEOMETRIC TOPOLOGY
OF LASER MODES

Considering the paraxial approximation and the astigma-
tism between the x and y directions, the eigenmodes for the
laser cavity with a concave mirror at z = −Lopt and a plane
mirror at z = 0 can be divided into two waves traveling in
opposite directions: �m,n,� = [�(+)

m,n,� − �
(−)
m,n,�]/

√
2, where

�
(±)
m,n,�(x,y,z,t) = Xm(x,z)e−i(m+1/2)θ (±)

t,x (z̃,t)Yn(y,z)

× e−i(n+1/2)θ (±)
t,y (z̃,t)e−i�θ

(±)
L (z̃,t), (7)

with

Xm(x,z) =
√√

2/π/[wx(z)2mm!]e−x̃2/2Hm(x̃), (8)

Yn(y,z) =
√√

2/π/[wy(z)2nn!]e−ỹ2/2Hn(ỹ), (9)

θ
(±)
t,x (z̃,t) = (ωt,x/ωz)θ

(±)
z (z̃,t) ∓ θG,x(z), (10)

θ
(±)
t,y (z̃,t) = (ωt,y/ωz)θ

(±)
z (z̃,t) ∓ θG,y(z). (11)

θ (±)
z (z̃,t) = ωz(t ± z̃/c), Hm(·) are the Hermite polynomials

of order m, x̃ = √
2x/wx(z), ỹ = √

2y/wy(z), wx(z) =
wo,x

√
1 + (z/zR,x)2, wy(z) = wo,y

√
1 + (z/zR,y)2, wo,x =√

2zR,x/km,n,�, wo,y = √
2zR,y/km,n,�, zR,x =√

Lt,x(R − Lt,x), zR,y = √
Lt,y(R − Lt,y), z̃ = z{1 + [x2/

2(z2 + z2
R,x)] + [y2/2(z2 + z2

R,y)]}, θG,x(z) = tan−1(z/zR,x),
and θG,y(z) = tan−1(z/zR,y).

Based on the completeness of the basis states, the general
representation for the wave function can be expressed as

(±)(x,y,z,t) = ∑

�

∑
n

∑
m c�bnam�

(±)
m,n,�(x,y,z,t), where

am and bn are the amplitude coefficients for the transverse
orders m and n and c� is the amplitude coefficient for the
longitudinal order �. It has been shown that the longitudinal
modes in an end-pumped standing-wave cavity are primarily
related to the spatial hole burning (SHB) effect [49]. The
strength of the SHB effect is mainly determined by the
separation between the gain medium and the input mirror.
The stronger the SHB effect, the more the longitudinal lasing
modes. Here it is conveniently assumed that there are 2N + 1
longitudinal modes to be excited and c� = 1/(2N + 1) for |� −
�o| � N and c� = 0 for |� − �o| > N . It has been shown [34]
that the coefficients ambn are mainly controlled by the spatial
overlap between the transverse mode Xm(x,z)Yn(y,z) and the
distribution of the pump source F (x,y); i.e.,

ambn =
∫∫

Xm(x,zc)Yn(y,zc)F (x,y)dxdy, (12)

where zc is the location of the gain medium. Considering a
selective pumping with the transverse displacements �x and
�y in the x and y directions, the pump distribution F (x,y)
can be modeled as [34]

F (x,y) =
√

2

π

√
1

wx(zc)wy(zc)
e−(x−�x)2/w2

x (zc)e−(y−�y)2/w2
y (zc).

(13)
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Substituting Eqs. (8), (9), and (13) into Eq. (12) and using
the generating function of the Hermite polynomials [50],
the coefficients can be derived as am = (mo)m/2e−mo/2/

√
m!

and bn = (no)n/2e−no/2/
√

n!, where mo = [�x/wx(zc)]2 and
no = [�y/wy(zc)]2. Note that the values of the parameters mo

and no signify the magnitudes of the off-center displacements
in the x and y directions, respectively. The expression for am

and bn is exactly the form of the square root of the Poisson
distribution. For convenience, we take the parameters mo and
no to be the integers closest to the values of [�x/wx(zc)]2 and
[�y/wy(zc)]2, respectively.

Using the property of the Schrödinger coherent state and the
expressions for the coefficients am, bn, and c�, the intensity of
the wave-packet state I (±)=|
(±)(x,y,z,t)|2 can be derived as

I (±)(x,y,z,t) = 2

πwx(z)wy(z)
e−{x̃−√

2
√

mo cos[θ (±)
t,x (z̃,t)]} 2

e−{ỹ−√
2
√

no cos[θ (±)
t,y (z̃,t)]} 2

{
sin[(2N + 1)θ (±)

z (z̃,t)/2]

sin[θ (±)
z (z̃,t)/2]

}2

. (14)

The analytical form in Eq. (14) can straightforwardly be exploited to establish the ray-wave connection. First of all, since the
total number of longitudinal modes is fairly greater than 1, i.e., N � 1, the term involving the sine function in Eq. (14) leads the
intensity of the wave packet to concentrate at θ (±)

z (z̃,t) = 2πu for any integers u. Substituting θ (±)
z (z̃,t) = 2πu into Eqs. (10)

and (11), the time-averaged intensity of the wave-packet state I (±) = |
(±)(x,y,z,t)|2 in Eq. (14) can be deduced to be localized
on the distribution I (±)

c :

I (±)
c (x,y,z) = 2

πwx(z)wy(z)

{ ∑
u=0,1,2···

e
−{x̃−√

2
√

mo cos[( ωt,x
ωz

)2π u∓θG,x (z)]} 2

e
−{ỹ−√

2
√

no cos[(
ωt,y

ωz
)2π u∓θG,y (z)]} 2

}
. (15)

Equation (15) reveals that the spatial distribution Ic(x,y,z)
of the wave-packet state is formed by the assemblage of
numerous backward and forward Gaussian beams. Under the
degeneracy condition given by Eq. (6), the spatial distribution
Ic(x,y,z) can be generally found to correspond to the 3D
geometric surface with the transverse topology of Lissajous
curves. To be explicit, substituting x̃ = √

2x/wx(z) and ỹ =

(-2,6)

(-1,5)

(0,4)

(1,3)

(2,2)

(3,1)

(4,0)

(5,-1)

(6,-2)

(3,5)

(1,7)

FIG. 5. Numerical results for 3D geometric surfaces inside the
cavity for various (p,q) shown in Fig. 2(b) with no = 50, mo = 50,
R = 10 mm, d = 0.087 mm, and β = 2.757×10−3.

√
2y/wy(z) into Eq. (15) and using Eq. (6) for the degenerate

cavity, the mathematical parametric form for the central
maxima of the spatial distribution Ic(x,y,z) in Eq. (15) can
be expressed as

x(z; u) = √
mowx(z) cos

[(
P

Q
− β

q

p + q

)
(2πu) ∓ θG,x(z)

]

y(z; u) = √
nowy(z) cos

[(
P

Q
+ β

p

p + q

)
(2πu) ∓ θG,y(z)

]
,

(16)

with u = 0,1,2 · · · . Equation (16) can be directly used to
manifest the geometric surfaces inside the cavity. Figure 5
depicts the 3D geometric surfaces inside the cavity for various
(p,q) shown in Fig. 2(b) with no = 50, mo = 50, R = 10 mm,
d = 0.087 mm, and β = 2.757×10−3.

V. CONCLUSIONS

In summary, it has been theoretically verified that the
symmetry breaking in spherical resonators can result in a
fractal structure in the frequency spectrum as a function of
the cavity length. In the fractal frequency spectrum, numerous
new accidental degeneracies are found to cluster at the cavity
lengths around the unperturbed degenerate cavity. Further-
more, it has been experimentally discovered that the fractal
frequency spectrum can lead to the emission power varying
with the cavity length in astigmatic laser resonators under the
selective pumping to display a striking fractal fluctuation. We
have also derived the quantum coherent states by considering
the overlapping effect to manifest the noticeable finding that
the wave distributions of lasing modes at the accidental
degeneracies are strongly concentrated on the 3D geometric
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surfaces. The present exploration can be directly applied to
the 3D quantum integrable systems with symmetry breaking
to derive various topological geometries of 3D coherent
states.
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Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556
(1998).

[33] Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, Phys. Rev.
Lett. 96, 213902 (2006).

[34] Y. F. Chen, J. C. Tung, P. Y. Chiang, H. C. Liang, and K. F.
Huang, Phys. Rev. A 88, 013827 (2013).

[35] J. B. McManus, P. L. Kebabian, and M. S. Zahniser, Appl. Opt.
34, 3336 (1995).

[36] J. Courtois, A. Mohamed, and D. Romanini, Phys. Rev. A 88,
043844 (2013).

[37] D. Romanini, Appl. Phys. B 115, 517 (2014).
[38] K. Staliunas and V. J. Sanchez-Morcillo, Transverse Patterns

in Nonlinear Optical Resonators, Springer Tracts in Modern
Physics Vol. 183 (Springer-Verlag, Berlin, 2003).

[39] M. Brambilla, F. Battipede, L. A. Lugiato, V. Penna, F. Prati, C.
Tamm, and C. O. Weiss, Phys. Rev. A 43, 5090 (1991).

[40] E. Louvergneaux, D. Hennequin, D. Dangoisse, and P. Glorieux,
Phys. Rev. A 53, 4435 (1996).

[41] V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev. Lett.
81, 2236 (1998).
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