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Abstract. We present a baseline MPEG-4 Advanced Video Coding (AVC) decoder based on the methodology of
joint optimization of software and hardware. The software is first optimized with algorithm improvements for frame
buffer management, boundary padding, content-aware inverse transform and context-based entropy decoding. The
overall decoding throughput is further enhanced by pipelining the software and the dedicated hardware at macroblock
level. The decoder is partitioned into the software and hardware modules according to the target frame rate and
complexity profiles. The hardware acceleration modules include motion compensation, inverse transform and loop
filtering. By comparing the optimized decoder with the committee reference decoder of Joint Video Team (JVT),
the experimental results show improvement on the decoding throughput by 7 to 8 times. On an ARM966 board, the
optimized software without hardware acceleration can achieve a decoding rate up to 5.9 frames per second (fps)
for QCIF video source. The overall throughput is improved by another 27% to 7.4 fps on the average and up to
11.5 fps for slow motion video sequences. Finally, we provide a theoretical analysis of the ideal performance of the
proposed decoder.

Keywords: MPEG-4, advanced video coding (AVC), H.264, joint video team (JVT), software-hardware
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1. Introduction

Multimedia services over mobile networks are becom-
ing important with the pervasive presence of the In-
ternet and wireless devices. For example, new service
such as MMS (Multimedia Messaging Service) over
cell phones is booming. The services are usually con-
strained by limited channel bandwidth. To address the
issue, MPEG-4 Advanced Video Coding (AVC) [1] is
widely considered for content delivery due to signifi-
cant improvement in coding efficiency. With high com-

plexity tools in AVC specification, it is challenging to
implement AVC encoder and decoder for real-time con-
tent delivery. Several AVC codecs [2–4] are optimized
for general-purpose processors that have powerful pro-
cessors, large memory, special media instruction sets
and wide buses to facilitate the cost reduction. How-
ever, for the portable or mobile devices the design of the
optimized AVC modules is constrained by low compu-
tational power and small memory spaces. In this paper,
we present software/hardware co-implementation to
address the performance issue under both constraints.
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The design methodology for realizing a multime-
dia system on a chip can be roughly partitioned into
3 categories covering pure software implementation,
pure hardware design and SW/HW joint optimization.
The pure software implementation can be found in [5–
7], where the existing processors such as RISC CPU or
DSP are used as the only platform. The design method-
ology of pure software implementation has the shortest
design cycle and is flexible for a wide range of appli-
cations. However, the functionality is limited by the
built-in instructions and architecture of the processors.
With the pure hardware design, all the modules of a
multimedia system are constructed with hardware cir-
cuits [8]. The hardware is used for a special-purpose
multimedia system to exploit the maximal parallelism
and to achieve the best performance simultaneously.
The optimization of the dedicated hardware design usu-
ally fits the target applications. As to the SW-HW co-
implementation, we can achieve both fast development
and high performance [9–12]. The SW/HW joint opti-
mization is based on the characteristics of a multimedia
system. With the SW/HW co-implementation, the de-
velopment time of a multimedia system can be signif-
icantly reduced by porting the software modules to an
existing chip. To enhance the overall system through-
put, some modules whose software level optimization
still causes the performance bottleneck when running
on low power platforms are sped up by dedicated hard-
ware. In addition, the software and hardware tasks are
synchronized through parallel processing. To maxi-
mize the overall throughput, the issues of task parti-
tioning, software optimization, hardware implementa-
tion and task synchronization need to be resolved.

According to the complexity analysis of MPEG-4
AVC decoder, the required computational power is too
high for regular RISC processors or DSP to meet the
target low bit-rate of multimedia service applications,
which usually provide 7.5 QCIF (176×144) frames per
second (fps) as the minimum need over mobile network
or 3G W-CDMA (Wideband Code Division Multiple
Access) [13]. To meet the minimal processing rate of
7.5 fps, we propose an optimized SW/HW architecture
for a baseline MPEG-4 AVC decoder. In the design
flow, the general-purpose processors control the decod-
ing processes and the dedicated coprocessors conquer
the computationally intensive modules. The coproces-
sors are realized with programmable logic modules to
retain the flexibility of circuit design. In addition, a
standardized system bus is used to remove the bottle-
neck of data communications between modules and to

allow interoperability. Subsequently, the proposed ar-
chitecture is evaluated on an ARM966 platform. The
results show that the optimized software without hard-
ware acceleration can achieve a decoding rate up to
5.9 frames per second (fps) for the video sequences in
QCIF resolution and YCbCr 4:2:0 color format. With
the proposed SW/HW design, the throughput is in-
creased by about 27% to reach 7.4 fps on the average
and is up to 11.5 fps for slow motion video sequences.
To estimate the practical upper bound of our design
method, a theoretical analysis is given.

This paper is organized as follows. In Section 2,
we present a novel MPEG-4 AVC decoder architec-
ture and analyze the complexity. In Section 3, the Soft-
ware/Hardware design methodology and architecture
are provided. In Section 4, the synchronization and the
optimization issues of software and hardware are re-
solved. In Section 5, the Software/Hardware design re-
sults are given and overhead is analyzed to explain the
experimental results. Section 6 draws the conclusion.

2. MPEG-4 AVC Decoder

2.1. System Architecture

As shown in Fig. 1, the MPEG-4 AVC decoder can be
partitioned into four main modules.

1. Context-adaptive variable length decoding
(CAVLD).

2. Inverse quantization and inverse 4 × 4 Discrete
Cosine Transform (Q−1DCT−1).

3. Motion compensation (MC).
4. Reconstruction and loop filtering.

The decoding is performed by first parsing the com-
pressed bitstream by CAVLD. After the parsing, the
quantized prediction residuals and macroblock (MB)
side information including MB type (MB Type), pre-
diction mode and motion vector difference (MVD)
are extracted. The MB Type information controls the
switches S0 and S1 in Fig. 1 to determine the prediction
type. For an intra MB, the intra prediction is derived
from the neighboring pixels without loop filtering. For
an inter MB, the inter prediction is derived from mo-
tion compensated pixels. The addition of the prediction
pixels and the decoded residuals produces the recon-
structed frame. After the reconstruction, a loop-filter is
applied to remove blocking artifacts and the filtered
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Figure 1. ARM-based architecture of MPEG-4 AVC decoder.

pixels are stored in the frame buffers for advanced
reference.

The new MPEG-4 AVC standard contains many
powerful tools for enhancing the coding efficiency.
For example, new tools for a baseline AVC decoder
covering the multiple reference frames (1–5 frames),
the variable block sizes for motion search (7 modes
for 4 × 4 to 16 × 16), the intra prediction, the con-
text adaptive entropy coding, the 4 × 4 integer in-
verse DCT transform, the Hadamard transform, and
the rate-distortion optimization. With the tools MPEG-
4 AVC achieves high coding efficiency but drastically
increases the complexity.

2.2. Complexity Analysis

To analyze the complexity quantitatively, we have eval-
uated the AVC and two most popular video standards
including MPEG-4 Simple Profile (MPEG-4@SP) and
H.263. To evaluate the AVC decoder complexity ob-
jectively, we limit the multimedia applications to be
compliant with the Baseline Profile at Level 1 as sum-
marized in Table 1. The encoding parameters for com-
plexity comparison are listed in Table 2. Table 3 shows
the bit rates and the objective qualities in PSNR for 5

Table 1. MPEG-4 AVC baseline profile and
level 1.

Max MB processing rate 1485

Max picture size 176 × 144

Max bit rate 64 Kbits/sec

Max # of reference frames 5

different MPEG test sequences. With an identical bit
rate of 64 kbps, MPEG-4@SP has similar quality as that
of H.263, and AVC has more than 3 dB gain in PSNR
over the 2 previous standards. In addition, to achieve the
processing rate up to 7.5 fps of QCIF video, the opera-
tion count for each decoder is observed in Table 4. The
operation counts with MPEG-4@SP, AVC and H.263
decoder are 39, 218, and 9 million cycles per second,
respectively. Based on the operation counts, we can
roughly estimate that the execution time of AVC [1] is
6 times compared to that of MPEG-4@SP [14] and 24
times compared to that of H.263 [15].

3. System Architecture

To enhance the overall throughput of the AVC de-
coding system, the system architecture is developed
based on the characteristics of the decoding modules
and data dependency between the modules. Consider-
ing the complexity characteristics, we adopt the Soft-
ware/Hardware (SW/HW) co-implementation design
methodology. To resolve the data dependency issue, a
time scheduling for MB level pipelining is presented.

3.1. SW-HW Co-Implementation
Design Methodology

Joint optimization of software and hardware (SW/HW)
co-implementation offers a flexible way to balance the
performance, cost and complexity. Design methodol-
ogy of SW/HW co-implementation has been widely
adopted for realizing complicated multimedia sys-
tems [9–12]. The advantages of such design method-
ology can be shown from 3 different aspects including



96 Wang et al.

Table 2. The encoding parameters for construcing the test bitstreams of MPEG-4@SP, MPEG-4 AVC and H.263 at 64 kbps.

Search Search Variable Multiple
range algorithm Format Resolution search mode reference frame

MPEG-4@SP ±16 Full search 7.5fps QCIF Half pel 16 × 16 and 8 × 8 1

MPEG-4 AVC baseline ±16 Full search 7.5fps QCIF Quarter pel 7 modes 5

H.263 ±15 (max) Fast motion (default) 7.5fps QCIF Half pel 16 × 16 1

Table 3. Rate and distortion performance for MPEG-4@SP, MPEG-4 AVC and H.263.

Sequence Codec Bitrate (bps) PSNR Y (dB) PSNR U (dB) PSNR V (dB)

Foreman MPEG-4@SP [14] 63.49 32.42 37.97 38.17

H.263 [15] 64.14 32.76 38.17 38.59

MPEG-4 AVC [1] 60.24 36.02 40.31 41.02

Akiyo MPEG-4@SP [14] 63.48 41.77 44.64 45.34

H.263 [15] 64.14 42.86 45.24 46.00

MPEG-4 AVC [1] 62.69 47.42 48.72 49.17

Mother daughter MPEG-4@SP [14] 63.47 39.26 43.81 44.16

H.263 [15] 63.99 39.87 43.79 44.32

MPEG-4 AVC [1] 65.25 43.40 45.84 46.36

Coastguard MPEG-4@SP [14] 63.48 30.97 41.43 42.66

H.263 [15] 64.02 30.88 40.42 41.99

MPEG-4 AVC [1] 58.69 32.10 41.37 43.40

Container MPEG-4@SP [14] 63.49 37.23 41.98 41.66

H.263 [15] 64.02 37.11 41.85 41.42

MPEG-4 AVC [1] 60.36 40.61 45.22 45.15

Test machine: Pentium 4-2G.

computational characteristics, design verification and
system performance.

Most video coding schemes are composed of both
irregular branching operations and regular complex op-

Table 4. The operation counts for the decoders of MPEG-4@SP,
MPEG-4 AVC and H.263.

MPEG-4 MPEG-4
Sequence\ @SP [14] AVC [1] H.263 [15]
Codec (Mcycles/sec) (Mcycles/sec) (Mcycles/sec)

Foreman 42.00 237.92 8.89

Akiyo 32.94 192.54 9.73

Mother 38.67 218.30 8.82
daughter

Coastguard 41.04 238.32 10.55

Container 37.33 200.88 6.98

Average 38.39 217.60 8.89

Ratio 4.27 24.19 1.00

Test machine: Pentium 4-2G.
Mcycles/sec: Million cycles per second.

erations. The irregular branching operations with fewer
computations are more suitable for software imple-
mentation and the regular complex operations can be
effectively implemented with dedicated hardware co-
processors. For the design verification, software level
implementation on the existing platforms such as per-
sonal computers (PC) is much easier for debugging
and verification. In contrast, hardware level implemen-
tation usually takes long design cycle for testing and
verification. From the system performance perspective,
specialized hardware design with specific functionali-
ties can obtain higher performance than pure software
design. Thus, we use the SW/HW joint optimization to
retain an optimized operation performance with mod-
erate design efforts.

Several video codec systems [9–12] have been devel-
oped using the SW/HW joint optimization approaches.
The authors in [9] have developed a H.263 based video-
phone system with multiple micro-controllers, pro-
cessors and dedicated hardware. The system is con-
trolled with 2 micro-controllers, which are used for the
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Figure 2. Architecture and emulation environment of ARM platform based MPEG-4 AVC decoder.

MB-level pipelining and the memory management re-
spectively. The computational intensive parts such as
motion estimation (ME) or discrete cosine transform
(DCT) are processed by the dedicated hardware. Data
for different modules are moved via on-chip data and
command buses controlled by the micro-controllers.
Another similar approach in [11] has proposed a multi-
cores architecture for a single chip solution for MPEG-
4 streaming application. A RISC processor is embed-
ded for data flow control and a VLIW processor is
designed for computationally intensive tasks. In par-
ticular, they follow the ARM Master Bus Architecture
(AMBA) to implement the system bus for data com-
munication.

Instead of the single chip approaches in [9] and [11],
the authors in [10] have developed a scalable MPEG-2
Main Profile and Main Level (MP@ML) encoding
scheme. The encoding throughput can be increased by
deploying multiple chips for parallel processing. Each
chip has 3 layers consisting of the process control, the
video processing and the data buffering layers. The
process control layer has a RISC processor for video
sequence control at the MB level. In the second layer
of video processing, multiple dedicated hardware mod-
ules and a SIMD processor are used for handling the
computationally intensive parts, which mean ME, MC

or DCT. To communicate with the other chips, a hard-
ware module is designed for function extension and
data sharing.

In addition, the authors in [12] have developed a
H.263 codec on an emulation board with one Strong
ARM 110 core and 2 FPGA boards. By analyzing the
computation power taken in the codec system, the high
power-consuming modules including ME and motion
compensation (MC) are partitioned and realized with
dedicated hardware. The remaining modules such as
entropy decoding are done only with software level
optimization. The data communication between the
processor and the dedicated hardware are processed
via Direct Memory Access (DMA). In conclusion, the
SW/HW joint optimization has been proven to enhance
the performance of the video coding systems [9–12].
Thus, we maximize the throughput of the high com-
plex AVC decoding system based on the SW/HW joint
optimization.

3.2. Proposed Architecture on ARM
Development Platform

Figure 2 depicts the ARM platform based MPEG-
4 AVC decoder architecture and the emulation
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environment. The system includes an ARM966 CPU,
an embedded SRAM, multiple dedicated coprocessors,
an external memory interface and a 32-bit wide ARM
High-speed Bus (AHB). All functional modules are
connected via the AHB bus. The ARM966 CPU acts
as a master on the AHB bus and conducts the synchro-
nization among all functional blocks. All the remain-
ing functional blocks that comply with the commands
from CPU are slaves. Specifically, the dedicated copro-
cessors can accelerate computation or reduce memory
access for rapid processing. The firmware of the copro-
cessors and the software for the remainders are stored
in the embedded SRAM. In addition to the embedded
memory, the decoder also requires external memory for
frame buffering with size about 470 kilo-bytes. The ac-
cess to the external memory is via an external memory
interface.

4. Design Methodology

4.1. Software and Hardware Partitioning

Software and hardware task partitioning is critical to the
performance enhancement and cost reduction of the en-
tire system. To meet the requirement of decoding QCIF
video sequences at 7.5 fps, our system needs a proces-
sor running at 218 million cycles per second according
to the observation in Section 2. Since our processor
runs in 140 MHz, the pure software-level optimization
of AVC decoder implementation can only achieve the
decoding rate of 4.83 fps. To further increase the de-
coding throughput to 7.5 fps, we must assign at least
35.7%1 of workload to dedicated hardware. Thus, the
remaining issue of the system architecture is the dis-
tribution of the processing tasks to the proper coding
modules.

To partition the task, computation characteristics are
good criteria to guide the process [9–11]. Table 5 il-
lustrates the kernel operations of each AVC decoding
module. Most modules except the Q−1DCT−1require
a great amount of memory access (MemA). In addi-

Table 5. Key operations for AVC decoding modules.

Modules MC Q−1DCT−1 CAVLD Loop filtering

Operations Mul., Add, Add, Branch, Add,

MemA, Shift Shift MemA. MemA.

Mul.: multiply, MemA: memory access

Figure 3. Decoding profiling for AVC on ARM 966 CPU.

tion, the MC and loop filtering require intensive arith-
metic operations for interpolation and filtering, re-
spectively. The CAVLD needs branch instructions for
context-adaptive table switching. Thus, the MC, loop
filtering and Q−1DCT−1 are suitable for hardware im-
plementation and the CAVLD is suitable for software
implementation. Figure 3 shows the decoding profiling
in relative execution time for each module. From the
Amdahl’s law and the observations of Fig. 3, we re-
duce the computational loads by developing three ded-
icated coprocessors for the MC, Q−1DCT−1 and loop
filtering, respectively. The remaining modules are im-
plemented and optimized in software. The ideal upper
bound of the decoding frame rate in fps can be approx-
imated when the software and hardware tasks work in
parallel with an efficient scheduling. For example, the
combined percentage of MC, Q−1DCT−1 and loop fil-
tering occupies about 49% for Foreman sequence and
50% for Akiyo sequence. Consequently, we can esti-
mate the ideal upper bound of the decoding rate to be
9.47 fps2 for Foreman sequence and 9.66 fps3 for Akiyo
sequence.

4.2. Software and Hardware Synchronization

To save the memory for intermediate data buffers and to
maximize the throughput simultaneously, module syn-
chronization is required for SW/HW joint optimization.
Module synchronization is realized as a scheduling ap-
proach for MB level pipelining as shown in Fig. 4. The
scheduling is based on data dependency and workload
distribution. The subscript n denotes the MB index.
Basically, a MB is decoded through the three stages
including (1) CAVLD; (2) Q−1DCT−1 and MC; (3) re-
construction and loop filtering.
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Figure 4. Illustration of proposed MB level pipeline.

Figure 5 shows the flow chart for synchronization
between CPU and the three coprocessors in MB level.
For synchronization, each stage of decoding processing
is initialized as follows.

1. Send the data to the MC coprocessor for motion
compensation of the n-th MB.

2. Send the data to the Q−1DCT−1 coprocessor for
Q−1DCT−1 of the n-th MB.

3. Send the data to the LF coprocessor for loop filtering
of the (n − 1)-th MB.

4. Proceed to decode the (n + 1)-th MB header and
coefficients on CPU.

5. Check the ready signals from the three coprocessors.
6. If the data in the three coprocessors are both ready,

store the data for loop filtering to reconstruct the
n-th MB in the next stage, and receive the filtered
data to the (n −1)-th MB. Otherwise, go to Stage 5.

4.3. Software Optimization

To retain the flexibility and portability across differ-
ent platforms, we adopt algorithm level optimization
for the software. The main optimization methods are
introduced in the following.

4.3.1. Frame Buffer Management. Three frame
buffer management methods are adopted to save ex-
ecution time of memory copy.

1. The frame copy is done by swapping the pointers of
frame buffers.

2. The motion compensated frame or intra prediction
pixels are stored directly in the decoded frame buffer
to avoid memory copy.

3. The decoded residuals are stored in the frame buffers
with 4-byte alignment to facilitate access on 32-bit
ARM CPU architecture.

4.3.2. Boundary Padding for Motion Compensation.
Since unconstrained motion vector and the 6-tap filter
[1, −5, 20, 20, −5, 1] are used for MC with half-pel
interpolation, the locations of the reference pixels may
exceed the frame boundaries. For boundary checking
and pixel padding, on-the-fly pixel padding is costly
and can be avoided by padding the reference frame be-
fore MC. For AVC specification of baseline profile at
level 1.0, legal search range of ±64 is supported, but
the memory usage is over 3 times of the original mem-
ory size for QCIF resolution.4 To save memory spaces
our solution is to pad (16 + 2) points to the left and
upper edges and (16 + 3) points to the right and bot-
tom edges. This is because that the data in the padded
area is the same. When the motion predictors exceed
the padding range, we will map the destination points
inside the range that has the identical content. In ad-
dition to padding, we also speed up the interpolation
by replacing the filter tap multiplication with a table
lookup technique.

4.3.3. Content-Aware Q−1DCT−1. We observe that
most DCT coefficients of motion compensated resid-
uals are quantized to zeros at low bit rate coding.
Table 6 shows the percentage of the blocks with all zero
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Figure 5. Software flow for MB level pipeline.

coefficients in fast motion and slow motion sequences.
For fast motion sequences, about 25% of DCT blocks
are all zero cases. For slow motion sequences, the per-
centage is increased to 47%. In addition, a large per-

Table 6. Percentage of all zero blocks at 64 kilo-
bits/sec.

Fast motion Show motion
Sequence Foreman Mother-Daughter

All zero blocks 24.8% 47%

centage of DCT blocks have only one DC coefficient.
Thus, we can classify DCT blocks into three categories
and conduct Q−1DCT−1 differently.

1. For the blocks with nonzero AC coefficients, we
perform normal Q−1DCT−1.

2. For the blocks with only nonzero DC coefficient,
we only perform inverse DC transform.

3. For blocks of all zero coefficients, we just skip the
transform.
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Figure 6. The composition of a new symbol in the bitstream.

4.3.4. A Fast CAVLD Using a Table Lookup Tech-
nique. MPEG-4 AVC baseline profile uses many cod-
ing tables for CAVLD [16]. Each context refers to a dif-
ferent table for decoding. Currently, reference software
uses exhaustive search for symbol decoding [1]. The
symbol matching is conducted in a bit-by-bit manner.
As a result, decoding each symbol takes many branch-
ing and comparison instructions in CAVLD module,
which reduces the overall performance.

To speed up CAVLD, we replace the branching and
comparison instructions with a table lookup technique.
Figure 6 shows that each VLC symbol in AVC bit-
streams is composed of leading zeros (M bits) and
non-leading zero part (N bits). To speed up the sym-
bol decoding, we organize new VLD tables to avoid
branching and comparison instructions. With the novel
table lookup method, the symbol decoding is identi-
cal to the table indexing. In the new VLD tables, each
decoded symbol can be indexed by the length of lead-
ing zeros and the value of non-zero part. For example,
Table 7 is used to decode the leading zeros of com-
ing symbol. Each entry of Table 7 maps the input data

Table 7. The “leading one” indexing table and its rel-
ative return values.

Return value Symbol Range of value

1 1xxxxxxxx 128–255

2 01xxxxxxx 64–127

3 001xxxxxx 32–63

4 0001xxxxx 16–31

5 00001xxxx 8–15

6 000001xxx 4–7

7 0000001xx 2–3

8 00000001 1

Jump to the next byte 00000000 0

of length k to the corresponding output index, which
indicates the length of leading zeros. To balance perfor-
mance and memory, we choose k to be 8, which takes
one byte. After checking leading zeros parts, we will
fetch N bits at the same time to decode the non-zero
part (or info part in Fig. 6) by table lookup. Since non-
zero part occupies smaller than 4 bits in AVC syntax,
each entry of the new lookup table takes 8 bits. Thus,
the lookup table for symbols with leading zeros (M
bits) and non-leading zero part (N bits) has a total size
of M × 2N bytes.

For decoding a symbol in Fig. 7, our proposed ap-
proach needs to look up the table of leading zeros
at most twice. The longest symbol length is 16 bits.
Consequently, 2 byte-wise operations can fully decode
leading zeros and one operation is required for com-
pleting the non-zero part. With the specified tables, the
total amount of the extra memory required is less than
4 kilo-bytes, which may be proper by considering the
increased throughputs. As compared to the decoding
rates of [17], we can achieve 37% savings for CAVLC
and 40% savings for UVLC (or called Exp-Golomb)
on a Pentium-IV 2.0 GHz desktop as shown in Fig. 8.
For processing the bitstreams with 300 kbps, the over-
all throughput is improved by 7.12% on a Pentium-IV

Figure 7. CAVLD symbol decoding using a table lookup technique.
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Figure 8. Performance evaluation for CAVLC and UVLC decod-
ing.

Figure 9. Execution time comparison of MPEG-4 AVC decoders
with and without optimization.

Figure 10. Throughput comparison on the decoding frame rates for
MPEG-4 AVC decoders with and without optimization.

2.0 GHz desktop and by 8.3% on the proposed ARM
platform.

In our decoding system, the decoding throughput
and program code size are both optimized. After our

optimization, the code size of baseline decoder is re-
duced from 244 kilo-bytes (KB) (JM 6.1 [1]) to current
92 KB, which presents 62.3% reduction. As shown in
Fig. 9, the overall throughput of CIF/QCIF resolution
video sequences is enhanced from 25/92 fps to cur-
rent 186/803 fps, which shows a speedup of 7.44/8.72
times, respectively. To give a complexity analysis of
each module, the operation counts in Fig. 10 are also
greatly reduced with more than 80% time saving as
compared to the original decoder [1].

4.4. Dedicated Coprocessor Design

With the MB level scheduling, the minimum granular-
ity of a task for the dedicated coprocessors is one MB.
In designing the hardware, we hope to build an area ef-
ficient architecture under the throughput requirement
of decoding QCIF video sequences at 7.5 fps.

4.4.1. MB Based MC. To speed up the interpolation
prior to MC, we design a dedicated coprocessor in
Fig. 11. For a MB interpolation, the coprocessor uses
a local memory to store 1500 integer pixels. It also has
two interpolation engines for luminance and chromi-
nance component respectively. With the two interpola-
tors, interpolation process can be sped up by parallel
processing. Each engine consists of multiple multipli-
ers and accumulators. The multiplier is implemented
in a hardwired manner to maximize performance.
Within each MB requiring 2-D interpolation, the in-
termediate results (output) of row filtering in each en-
gine is fed back to conduct the filtering of another
columns.

AVC uses variable block size motion compensation
with smallest size of 4 × 4. Thus, our interpolation en-
gine is designed for a 4 × 4 block. The interpolation
of each MB takes 16 iterations. In the worse case, our
design takes 1280 cycles to interpolate one MB. As op-
erating at 10 MHz, the throughput for each MB is 7812
MBs per second (MBs/sec) exceeding the requirements
in Table 1.

4.4.2. MB Based Q−1DCT−1. The Q−1DCT−1 mod-
ule involves two major tasks. The first task is to store
a MB into a local memory with size 3 kilo-bits. The
second task is the 4 × 4 integer inverse DCT, which
consists of two multiplication-free transforms and one
transpose operation. The IQ is done with a hardwired
multiplier. In our implementation, we integrate three
different types of inverse transform for luminance 4 × 4
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Figure 11. Interpolation architecture for quarter-pel motion compensation.

DC block, chrominance 2 × 2 DC block and lumi-
nance 4 × 4 blocks, respectively. In the worse case, the
Q−1DCT−1 takes 210 cycles for one MB. When oper-
ating at 10 MHz, the MB throughput is 47619 MBs/sec,
which is over the requirement of the AVC decoder in
Table 1.

4.4.3. MB Based Loop Filtering. The main idea of
MB based loop filtering design is to modify the original
frame based loop filtering to fit our design optimization.
The MB based architecture introduces 2 advantages
including less storage memory and no macroblock de-
pendency in a frame for deeper pipelining. From the
viewpoint of memory usage, the original method in
the reference software of JM 6.1 needs two buffers of
frame size to store the un-loop filtered and loop fil-
tered data. In the proposed MB loop filtering, at most
2 rows of MBs (current and top row) loop filtered data
are needed to be buffered. Because the current MB will
need only upper and left MB data for loop filtering. The
other rows of loop filtered data can overwrite the un-
used data that will not be used again. Thus, MB based
loop filtering can achieve almost 50% reduction of the
redundant memory for QCIF or CIF resolution video
frames. From the viewpoint of parallel processing, the
proposed scheme deepens the pipeline stages accord-
ing to the synchronization scheduling in Section 4.2
and Fig. 4. Thus MB based loop filtering is well sched-

Figure 12. Loop filtering on 4 × 4 block edges in a macroblock.

uled to work with the MB based MC and Q−1DCT−1

modules in FPGA modules.
Two-dimensional (2-D) loop filtering of the AVC de-

coding system is processed in a separable manner. To
execute the 2-D loop filtering, one-dimensional (1-D)
filtering is applied horizontally and then vertically to
the handling pixels. As shown in Fig. 12, each 1-D
filtering involves at most 16 iterations of edge filter-
ing for the 4 × 4 blocks. In the worst case, the loop
filtering takes 480 cycles to complete the operations in
one MB including luminance and chrominance compo-
nents. When operating at 10 MHz, the MB throughput
for the loop filtering is 20833 MBs/sec, which fits the
requirement of the AVC decoder in Table 1. In addition,
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Table 8. Summary of the dedicated coprocessors.

Modules MC LF Q−1DCT−1

RAM size (Kbits) 12 3.84 3

Gate count 11172 6156 11489

Throughput (MBs/sec) 7812 20833 47619
(Running in 10 MHz)

Longest delay to 1280 480 210
run a MB (cycles)

we need to reserve 3.84 kilo-bits local memory space
for loop filtering coprocessor.

To simplify our hardware design and reduce the cost,
we replace 2-D interpolation for MC by applying 1-D
interpolation filter twice. Although the 1-D interpola-
tion incurs longer delay, it is still fast enough to meet
the target frame rate of 7.5 fps.

The total gate counts required for all dedicated co-
processors are 28826. The MC coprocessor contributes
11,172 gates, Q−1DCT−1 coprocessor occupies 11,489
gates, and loop filtering coprocessor requires 6,156
gates. Table 8 summarizes the design parameters for
each coprocessor.

5. Experimental Results

5.1. Performance Evaluation of Optimized Software

To show the performance of our optimized software,
we use the work in [4] as the baseline system for com-
parison. In [4], a moderately optimized AVC decoder
adopts algorithm level optimization techniques and a
highly optimized version using Intel MMX technol-
ogy. In our comparison, all simulations are done on a
Pentium III processor with 500 MHz CPU and our op-
timized software is built from the reference software
of version JM6.1. Since the baseline system uses dif-
ferent machines and different reference software, we
scale our decoding throughput to match the configu-
ration of baseline system in [4]. Table 9 shows that
there are only minor updates from the reference soft-
ware of version JM5.0h to that of version JM6.1, which
indicates that the two versions have similar complex-
ity. In addition, we scale our decoding throughput by
a factor of 4/5 for a fair comparison with the results
in [4], which are evaluated on a Pentium III proces-
sor with a 400 MHz CPU [4]. Because the encoding
information provided is insufficient in [4], we assume
that all the baseline tools including rate-distortion op-
timization, Hadamard transform, and intra prediction

Table 9. Updates for AVC codec from JM5.0h to JM6.1.

New features • Slice header and parameter sets
(except POC) (JM5.0h)

• Chroma loop filtering update (JM 6.0)

• SEI decoding re-enabled and
new messages added (JM 6.1)

• Weighted Prediction Updates (JM 6.1)

• POC updated (JM 6.1)

• CABAC slice initializations (JM 6.1)

Removed feature • ABT (JM5.0h)

were enabled in [4]. Thus, we then encode the test bit-
streams on the same basis as illustrated in Table 10.
The throughput ratio over the decoding frame rate of
[4] is defined by

Ratio =
(

4

5
fpsproposed

)/(
fpsref[4]

)
(1)

In Table 11, both the medium optimized version (M.O.)
and highly optimized version (H.O.) in [4] are com-
pared. The results show that we get a ratio of 2.82–
3.52, which means the proposed AVC decoder is 2.8
times faster than the M.O. [4] on a similar platform.
The results in Table 11 show that we can get a ratio of
2.16–2.67, which indicates the proposed decoder has
double throughput over that by H.O. decoder [4].

5.2. Performance Evaluation of Proposed
Embedded System

Our decoding system is emulated with the configura-
tion as described in Fig. 2. The ARM966 CPU (system
clock is set as 140 MHz), embedded SRAM (1 Mbytes)
and external memory interface are replaced with a ded-
icated hard core. The other parts of the decoding system
including the dedicated coprocessors are implemented
on a FPGA module (running at 10 MHz). In addition,
the AHB bus is running at 33 MHz. No cache is enabled
in this system.

Table 12 lists the decoding throughput in fps on
ARM966 CPU. If only the optimized software was
used, the decoding speed ranges from 3.4 to 9.4
fps with an average of 5.9 fps. With the aid of
the coprocessors, the throughput can be further in-
creased by 17–38%. The overall throughput ranges
from 4.4 to 11.5 fps with the average value of
7.4 fps.
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Table 10. Test conditions for Lapplainen’s work [4] and the proposed.

Lapplainen’s [4] Lapplainen’s [4]
(Moderately Optimized) (Highly Optimized) The proposed

Version JM 5.2 JM 6.1
Test platform Pentium III 400 MHz Pentium III 500 MHz

Sequence format QCIF

MMX support No Yes No
Compiler Visual C++ 6.0 Intel C compiler 4.0 Visual C++ 6.0

Encoding parameter • Fixed QP • Fixed QP

• Reference frame rate: 30fps • Reference frame rate: 30 fps

• Encoded frame rate: 10fps • Encoded frame rate: 10 fps

• 1 reference frame • 5 reference frame

• 7 modes of search block • 7 modes of search block

• Search range of ±16

• Hadamard transform

• Intra prediction

• Rate Distortion

• optimization

• GOV: 1I/99P

Table 11. Performance evaluation for Lapplainen’s work (Moderately optimized. and highly optimized version)
[4] with the proposed.

Sequence Bit rate PSNR Y PSNR U PSNR V Decoding Throughput
(QCIF) Version (kbps) (dB) (dB) (dB) rate (fps) ratiob

Foreman M.O. [4] 24 28.5 37.6 37.7 66.4 2.87

H. O. [4] 24 28.5 37.6 37.7 88.1 2.16

Proposeda 26.93 30.6 37.7 37.9 238.1 1

Akiyo M.O. [4] 24 40.9 44.2 44.9 94.7 3.52

H. O. [4] 24 40.9 44.2 44.9 125.0 2.67

Proposeda 25.49 40.9 43.0 43.8 416.7 1

Mother Daughter M.O. [4] 24 37.2 42.6 43.1 81.6 2.97

H. O. [4] 24 37.2 42.6 43.1 101.5 2.39

Proposeda 25.24 37.4 41.4 42.2 303.0 1

aSize = QCIF, Group of Picture = 1I + 149P, QP = I(30)P(31), frame rate = 15 fps Reference frames = 5.
bRatio = ( 4

5 · fpsproposed)/(fpsref[4]) (unit: fps).

In Table 12, we observe that the decoding through-
put is sequence dependent. Our decoder performs bet-
ter for slow motion sequences, which have more zero
DCT blocks and higher probability of using integer-
pixel MC. Therefore, the decoding rate is increased
due to the less interpolation of MC and less computa-
tion of Q−1DCT−1 for slow motion sequences. The im-
provement ratio using coprocessors for decoding slow
motion sequences becomes minor, which is consistent

with the observations of Amdahl’s law and the results
in Table 12.

5.3. Decoding Throughput Analysis with Overhead

In Section 4.1, we approximate the ideal decod-
ing frame rates using the proposed synchronization
scheme. Since the operation counts of the decoder are
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Table 12. Performance of our prototype decoder.

Bit rate PSNR Y SW only SW + HW Throughput
QCIF (kbits/s) (dB) (fps) (fps) speedup (%)

Container 13.15 34.18 8.56 9.98 17

Akiyo 8.67 36.50 9.36 11.50 22

Coastguard 58.69 32.10 3.40 4.40 29

Mother Daughter 14.43 35.55 5.55 7.68 38

Foreman 42.47 34.00 3.53 4.54 29

Silent 25.99 34.06 6.03 7.29 21

Mobile calendar 58.88 28.40 3.96 5.20 31

Table tennis 38.83 34.00 5.19 6.59 27

Stefan 54.27 26.23 4.07 5.30 30

Hall monitor 16.58 35.50 8.91 11.11 25

Size = QCIF, Group of Picture = 1I+74P, frame rate = 7.5 fps.
Reference frames = 5, 7 modes of block size.

evaluated on a desktop PC, we may expect more opera-
tion counts on ARM platforms. Because the ARM plat-
forms do not support powerful resources, such as large
capacity of cache size (512 Kbytes L2 cache), higher
frequency DDR ram (333 MHz), etc, the operation data
in Section 4.1 may not reflect the real performance of
our proposed platform. Therefore, we re-evaluate the
data to study a more realistic scenario for an ARM
platform.

In Section 5.2, the pure software decoding frame rate
on ARM processor is 5.9 fps on the average, which
leads to that 175 Mcycles/sec5 is required to achieve
the throughput of 7.5 fps with QCIF resolution on the
ARM platform. Due to the limited resources on the
ARM platform and lower clock frequency, it is diffi-
cult to achieve this target using the pure software de-
coder. By analyzing the SW/HW partitioning scheme
and the weightings of dedicated hardware modules for
the MC, the inverse DCT and the loop filtering in Fig. 3,
the ideal upper bound is 11.8 fps.6 The practical de-
coding rate of 7.4 fps is smaller than that of ideal
case due to the overhead for synchronization and data
transfer.

Synchronization introduces additional memory ac-
cess. In our current implementation, the input data of
each coprocessor always come from the CPU. There-
fore, the CPU needs extra memory space for data
transport among different coprocessors. In addition,
the memory movement incurs great penalty during the
preparation of input data for each coprocessor. Thus,
the synchronization overhead causes the performance
degradation.

The other overhead is data movement. In the ideal
case, we assume the time for data movement can be ig-
nored. Observing the scheme in Fig. 13(a), we assume
that the tasks in each coprocessor and CPU can be fully
parallelized in each pipeline stage, and syntax parsing
can cover all the running time slots of coprocessors.
In practice, the data is required to sequentially move
from CPU to each coprocessor. In addition, for rapid
and efficient transmission via bus we need extra time
to pack the data. Even with the data packing, the buses
may conflict as in a more realistic scenario depicted
in Fig. 13(b), which takes some CPU cycles. With the
overhead for data movement, duration for each pipeline
stage is increased. As a result, the overall throughput
is decreased. Table 13 shows the amount of data trans-
ferring between CPU and coprocessors for a MB com-
putation. To complete a MB processing, CPU has to
transfer 4.97 kilo-bytes data in total. Consequently, the
total data transferred could be up to 492.3 kilo-bytes
for decoding a QCIF frame. Thus, the bandwidth of
system bus and the overhead for synchronization set
an upper bound for the decoding throughput. The best
throughput achieved on the consideration of both the
overhead for synchronization and data transfer can be
estimated by

fpsideal = fpsSW/(1 − RHW) (2)

fpspractical =
f psSW

{(1 − RHW) ∗ TSW + Tdata transfer + Tsynchronization)}/TSW

(3)
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Figure 13. Time scheduling with the proposed synchronization scheme. (a) ideal case (b) practical case.

Where fpsidealis the ideal decoding frame rate and
fpspractical is the decoding frame rate with overhead.
RHW means the ratio for dedicated hardware. TSW is the
total time used for running software level AVC decoder

Table 13. Maximum amount of sent or received data for
MB based MC, Q−1DCT−1 and loop filtering.

Data Data
sending receiving

Modules Parameter (bytes) (bytes)

MC Luma 1296 256

Chroma 256 128

MV info 64 –

Total 1616 384

Loop Filtering Luma and boundary 384 384

Chroma and boundary 192 192

Edge info and QP 4 –

Total 580 576

Q−1DCT−1 Luma 1296 256

Chroma 256 128

Info and QP 8 –

Total 1560 384

Total 3756 1344

and Tdata transfer is additional overhead for data trans-
ferring. Tsynchronization indicates additional overhead for
synchronization.

The cost of extra memory movement for synchro-
nization is 5%, and the term of RHW is almost 50%
as demonstrated in Fig. 3. Since the AHB is operated
at 33 MHz for 32-bit data, we can approximate that
the data transferring via the AHB bus takes 3.64 mil-
liseconds for each frame (492.3 kilo bytes/33 × 4 mega
bytes per second). In the preceding sections, we get
the decoding frame rate to be 5.9 fps on the average.
The results show that about 1/6 seconds are spent for
decoding a frame in SW level. To calculate the practi-
cal decoding frame rate according to Eq. (3), we can
get

fpspractical =
1

(1 − 50%) · 1
6 + (

1
6 · 5%

) + (
492.3

33 ∗ 4 ∗ 1024 · h
)

where h is large than or equal to 5.9 (improved decod-
ing frame rate will be greater than 5.9 fps of pure SW
decoding). Thus, we can obtain the practical decoding
frame rate to be 8.8 fps that is closer to the experimen-
tal results of average 7.4 fps. According to the above
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analysis, we can reasonably explain the non-ideal ex-
perimental results.

6. Conclusions

In this paper, we have presented a MB level pipelin-
ing architecture for a MPEG-4 AVC baseline de-
coder based on both SH/HW joint optimization design
methodology and circuit design principles. In the as-
pect of software, our work is highly optimized for the
ARM architecture with innovative algorithms for frame
buffer management, boundary padding, content-aware
inverse transform and context-based entropy decoding.
The algorithms are specifically designed for the AVC
decoder to achieve a speedup by 7 to 8 times. In ad-
dition, the code size is as small as 92 kilo-bytes that
can easily fit into an existing mobile device. As for the
hardware aspect, we proposed a MB level pipelining
based on complexity analysis to yield the best partition-
ing. The scheduling approach considers the tradeoff
between efficiencies and flexibility. We implemented
three dedicated coprocessors for the MC, Q−1DCT−1,
and loop filtering modules with only 28,826 gates. With
such small additional chip area, the three coprocessors
can improve the performance by 27 % that justifies the
additional complexity.

In conclusion, our design has shown a highly ef-
ficient and cost effective implementation of an AVC
decoder. The AVC specific optimization demonstrates
that MPEG-4 AVC standard may be applicable for the
next generation mobile multimedia communications
using a platform-based design methodology.

Notes

1. 217.6(Mcycles)−140(Mcycles)
217.6(Mcycles) = 35.7%.

2. 4.83 · 1
100%−49% = 9.47.

3. 4.83 · 1
100%−50% = 9.66.

4. padded image size
original image size = (176+64·2)·(144+64·2)

176·144 = 3.26.

5. 7.5 (fps) / 5.9 (fps) × 140 (MHz) = 178 (Million cycles per sec-
ond).

6. 5.9 fps/(100%–50%) = 11.8 fps, 50% for MC + Inverse DCT+
loop filtering.
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