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Abstract

The Black—Scholes Option pricing model (OPM) developed in 1973 has always been taken as the cornerstone of option pricing model. The
generic applications of such a model are always restricted by its nature of not being suitable for fuzzy environment since the decision-making
problems occurring in the area of option pricing are always with a feature of uncertainty. When an investor faces an option-pricing problem,
the outcomes of the primary variables depend on the investor’s estimation. It means that a person’s deduction and thinking process uses a
non-binary logic with fuzziness. Unfortunately, the traditional probabilistic B-S model does not consider fuzziness to deal with the
aforementioned problems. The purpose of this study is to adopt the fuzzy decision theory and Bayes’ rule as a base for measuring fuzziness in
the practice of option analysis. This study also employs ‘Fuzzy Decision Space’ consisting of four dimensions, i.e. fuzzy state; fuzzy sample
information, fuzzy action and evaluation function to describe the decision of investors, which is used to derive a fuzzy B—S OPM under fuzzy
environment. Finally, this study finds that the over-estimation exists in the value of risk interest rate, the expected value of variation stock
price, and in the value of the call price of in the money and at the money, but under-estimation exists in the value of the call price of out of the
money without a consideration of the fuzziness.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction where
C call price;
In this paper, we compare our results with the B—S results S current stock price;

(Black & Scholes, 1973). The basic model of the B—S OPM is K striking price;

C = SN(d,) — K e—RTN(dZ) R r'iskless i.ntere.st rate; o
T time until option expiration;
o standard deviation of return on the underlying
security;
N(d;) cumulative normal distribution function evaluated
at d;.

d, = [In(S/K) + (R + o*/2)TV/aT;
(1)
d2 = d] — U\/T

In decision-making uncertainty is unknown. There are
. many factors that affect the decision-making, including
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hardly catch human psychology state and external infor-
mation input. Although, B—S model has been improved, for
instant, Cox and Ross (1975) brought out the concept of
Constant-Elasticity-of-Variance for volatility. MacBeth and
Merville (1979) pointed out that B-S model underprices in-
the-money options (S>K), and overprices out-of-the-
money (S<K) options. Cox, Ross, and Rubinstein (1979)
used a simplified approach to estimate the volatility. Hull
and White (1987) released the assumption that the
distribution of price of underlying asset and volatility are
constant. Wiggins (1987) and Scott (1987) let go the
assumption that the volatility is constant and assumed the
volatility follow Stochastic-Volatility. Amin (1993) con-
sidered the Jump-Diffusion process of stock price and the
volatility were random process. The Bakshi, Cao, and Chen
model (1997) derived call price when riskless interest rate
and volatility are uncertain. Kenneth (1996) and Rabino-
vitch (1989) have also used empirical data for verifying the
correctness of B—S model. They still did not adequately
address the difficulties mentioned above. In this paper, we
will use fuzzy concept to address the difficulties mentioned
above. Its relevant decision-making is described with
decision space B={S,D,P(S,),C(d;,S;)}, where S=
{81,55,...,87} stands for the state set of the environment is
element, S;, i=1,2,...,I, stands for a possible state or an
actual condition of the state set; D={d,,d,,...,d;} stands for
a decision action set; and d;, [=1,2,...,L, stands for an
action or alternative available for the investor. P(S;) is the
probability of S;, and C(d;,S;) stands for the premium which
is a function on D X S. In the B-S model, C(d,,S;) stands for
the call price. If the investors know for sure that (S,K,R,0,T)
meet the requirements of a normal distribution, lognormal
distribution, or other designated distribution with precise
assessment of probabilities, then the optimal alternative (d;°)
for the investors is such that:

1
C(d) = NEiH {; C(djaSi)P(Si)} 2

However, the investor often encounters two difficulties
when determining the optimal alternative (d;) with the
classical statistical decision model in a B-S model:

(i) An investor usually depends on an expert’s
judgment to derive the probability distribution of
primary variables in a B-S model. However, an
investor often subjectively describes the uncertainty
he/she faces with implicit fuzziness or imprecise-
ness, which can be expressed as, for example, ‘there
is a good chance for a riskless interest rate of 3%
next year, the riskless interest rate is very unlikely
to go below 1%, and it is most probable in the
range of 1.5-2.5%.” For another example, ‘In a
booming economy, there is about a 60% probability
that riskless interest rate will grow 10% next year.’
The phrases ‘booming economy’ and ‘about 60%’

mean implicitly that the probability for the event of
‘10% riskless interest rate’ could be 55, 58, 60, or
65%. In other words, an investor uses both random
and fuzzy elements as a base to subjectively assess
uncertainty. However, the precondition of the
probabilistic and stochastic B—S model assumes
that the probability used for the decision analysis is
a ‘precise’ number. In addition, it is calculated and
derived from repeated samples and the concept of
relative frequency. Thus, it is different from the
fuzzy probability calculated and derived in accord-
ance with the ‘degree of belief” by experts in the
real world. Therefore, it is difficult to use the -
traditional probabilistic B-S model under
uncertainty for fuzzy decision-making (Bellman
and Zadeh, 1970). In this paper, the fuzzy decision
theory measures fuzziness and includes the con-
clusion in the B-S OPM in order to determine an
optimal decision (d}).

(ii) While assessing the distribution of a primary
variable in a B—S model, an expert should evaluate
the influence of sample information. This involves
the fuzzy factor of the expert’s subjective
judgment. That is, the fuzzy factor of the expert’s
subjective judgment in the call price should not be
overlooked. Otherwise, the evaluation will not
accurately reflect the problem and will lead to
inaccurate decision-making. However, the tra-
ditional probability B—S model does not take into
consideration on pricing the fact that investors face
fuzzy (vague/imprecise/uncertain) factors in B-S
analysis. In this paper, the posterior probability will
be derived through sample information in accord-
ance with Bayes’s rule. The fuzzy sample
information will also be included in the B-S
OPM to reflect more accurately the situation faced
by the investor. An example is illustrated to
demonstrate the fuzzy theory to the Black—Scholes
call OPM. The results show that the fuzzy B-S
OPM to determine an optimal pricing for option is
superior to the traditional B—S model in explaining
market prices in a fuzzy environment.

The remainder of this paper is organized as follows. The
concepts of the probability of fuzzy events are introduced in
Section 2. Section 3 describes the B—S model under fuzzy
environment, which consist four dimensions: fuzzy state,
fuzzy sample information, fuzzy action and evaluation
function to describe the decision of investors. Section 4
describes the derivation of fuzzy B-S OPM. Section 5
compares three propositions that is superior to the
traditional B-S OPM model in explaining market prices in
a fuzzy environment. Section 6 assesses the accuracy of the
approximation to the fuzzy B-S with an illustrative
example, and conclusions are presented in Section 7.
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2. Probability of fuzzy events

The concept of probability is employed in describing
fuzzy events and in using sample information to make
statistical inferences. An event is an experimental outcome
that may or may not occur. Assume the probability of a
fuzzy event that measures the chance, or likelihood, the
degree of compatibility or degree of truth.

2.1. Prior probability of fuzzy events

In the B—S model under uncertainty, the distributions of
the primary variables are assessed subjectively. Therefore,
an investor faces the problem of implicit fuzziness. It is
difficult to measure the impreciseness with the concept of
probability (Zadeh, 1965) because probability is used to
measure randomness. Randomness is relevant to the
occurrence or non-occurrence of an event, while fuzziness
is relevant to the degree of an event (Bellman and Zadeh,
1970). According to the definition given by Zadeh (1965), a
fuzzy set is used to describe the set of an event without clear
boundaries. The membership function ujz:X—[0,1]
express the fuzzy set A in set X where if element xEX,
then pz(x) €[0, 1], u;(x) expresses the grade of membership
x (also, the degree of compatibility or degree of truth) of X in
A, which maps X to the membership space. The greater the
value of uz(x) is, the higher the grade of membership of x
belong to A. According to the concept of a fuzzy set,
when there is no extra sample information, the prior
probability P(A) of fuzzy event A can be defined as (Zadeh,
1968, 1972):

PA) = wi()P(x,) 3)

2.2. Posterior probability of fuzzy events

Let X={x,x,,...,x,,} be the sample information space.
In S; state, if the prior probability P(x,|S;) of acquiring
sample information x, is known, then the posterior
probability of acquiring sample information x, is:

P(x,|S)P(S;)

P(Silx,) = Px)

“)

One could evaluate the sample information acquired
through this method. Therefore, it still involves the
subjective opinion of experts. For instance, provided that
the prior probability R, of riskless rate in ¢ period is known,
and o, drops from 60 to 40% due to the change of pricing,
experts will then deduce the riskless interest rate as:
‘According to the new volatility of the company, the
volatility currently drops from 60 to 40% with approxi-
mately a 10% riskless rate growth.’

Therefore, the posterior probability of the sample
information with fuzziness can be calculated as shown

in the following. Let sample information space be X=
{x1,%0,....xm}, {x,}, ¥=1,2,...,m be an independent event,
and let M = {M,,M,, ..., M,} be the concept of fuzzy sample
information. The posterior probability P(S; IM ;) is calculated

in accordance with Bayes’ rule after deriving M;

P(M;1S)P(S;)

P(S;\M;) = =
! P(M))
where
PV1S) = P, IS (x,)
r=1

PV} =) PO (x,)
r=1

Therefore
=1 P(xrlSi)uM,(xr)P(Si)
T PO ()

P(S;IM;) = ®)
when fuzzy sample information exists, the occurrence
probability of S; state can be described using the above
formula. Therefore, there is uncertainty in the future price of
option; we want to bring in the concept of ‘fuzzy’ to
describe the B—S model under fuzzy environment.

3. B-S model under fuzzy environment

When dealing with the actual B-S issues, an investor not
only faces a fuzzy sample information space, but he/she also
stays in a fuzzy state space. For example, industry forecasts
its future riskless interest rate in accordance with the
classification of ‘booming economy’, ‘fair economy’, or
‘depression’. The definitions of ‘booming economy’, ‘fair
economy’, and ‘depression’, depend on the investor’s
subjective opinion. Therefore, the state space encountered
by the investor also involves implicit fuzziness. Besides, the
actions that the investor plans to take will cause the price
structure and change accordingly in the analysis. Let us take
the pricing change for example, when o, drops; R, is
expected to go down. However, due to the investor’s
environment, timing of the decision-making, and the
inability to give it a trial, it is virtually impossible to wait
a longtime for the collection of perfect information. Under
these circumstances, the alternative adopted by the investor
for B-S model under uncertainty contains fuzziness. In
summary, the B-S model, which an investor actually deals
with, is in a fuzzy state with fuzzy sample information and
fuzzy action. As a result, the B—S model can be defined with
fuzzy decision space B={F, A, P(F), C(A, F)}, in which F
={F|,F,, ..., Fy} stands for fuzzy state set F, k=12,....K
stands for a fuzzy set in S; S={5,5,,...,5;} stands for the
state set S;, i=1,2,...,I stands for a state of the state set.
A={A|,A,,..,Ay} stands for fuzzy action set A,, n=
1,2,...,N stands for a fuzzy action set in D; D= {d,,d,,...,d,}
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stands for action set d;, j=1,2,...,J stands for an action or
alternative available for the investor. P(Fy) is the prior
probability of Fj. C(A,F) is the evaluation function of
AXF.

3.1. The prior probability of fuzzy state (F})

The prior probability of fuzzy state P(F,) is defined in
accordance with Eq. (3) as:

1
P(F) =Y up (SHP(S) (6)
i=1

3.2. The posterior probability of fuzzy state (F)

Let M={M,,M,,...,M,} be the fuzzy sample infor-
mation space in X. ]\7[_,-, j=1.2,....J, is the fuzzy sample
information; X={x,x,,...,X,,} is the sample information
space, and {x,}, r=1,2,...,m is an independent event.

The posterior probability of fuzzy state F, is defined in
accordance with the posterior probability of fuzzy events

after the fuzzy sample information M; is derived in
accordance with Eqgs. (3) and (5)

1
P(FIM) =y, (SHP(S;|M))
i=1

1 ZT:I P(xrlsl)l»LM/(xr)P(Sl)
= ur(S) PUT)
i=1 J

=1 o7 i, (S, ()P CxIS)PS))
E’;;l :u'M]-(xr)P(xr)

3.3. The expected call price of fuzzy action

An investor must consider the call price after he or she
has realized the fuzzy state F, and the fuzzy sample
information M ; of the industry in order to draft an optimal
decision and action A,. Let the call price be the value
C@,,F,) of evaluation function C(A,F), then the
expected call price C(A,|M ;) of A, can be defined as:

K

CA,IM)) =" C(A,, F)P(F M) ®)
k=1

The optimal action A: can be determined by C@A,IM )

The call price C(A,|M ;) of the optimal fuzzy action A, can
be defined as

I N
CANI) = A CA,lity) ©)
where, AN, is selecting the minimum value of N values.

The lower the call option prices the better for investor to
reduce the loss.

4. The derivation of fuzzy B-S option pricing model

The expected value S of R,, o, and the fuzzy B-S call
option pricing are derived in the following.

4.1. Expected value of R,

For instance, a company’s expert in its sales department
has long been performed the riskless interest rate R,. If this
sales expert always forecasts the company’s riskless interest
rate of the next term in accordance with the economy’s
condition, which might be classified as a ‘booming
economy,” a ‘fair economy,” and a ‘depression’. Let the
state set be S={51,5,,...,5;}, where §;, i=1,2,...,I stands for
the riskless interest rate, and the fuzzy stat set be
F={F, F,,...,Fg}, in which F,, k=1,2,...,K stands for
an economy condition. If this company prepares a new lower
price plan to respond to the price competition in the market,
the sales department expects riskless interest rate. Let the
sample information space be X = {x,x5,...,x,,}, where {x,},
r=1,2,...,m stands for rate of riskless interest rates growth
under the different price plans and {x,} is an independent
event. Also let the fuzzy sample information space
M={M,,M,,...,M,}, in which M;, j=12,...,J stands for
a riskless interest growth rate condition that might be
classified as ‘high riskless interest growth rate’ or ‘fair
riskless interest growth rate’. The expected value of R, in F;
state, R,(F}) can be defined in accordance with Eq. (3) as:

m

1
R(F) =Y lsi (1 +
i=1 r

er(xrlsi)>] u (SHP(S)  (10)
T

4.2. Expected value of a,

Taking a change of the price policy in fuzzy environ-
ment, the company estimates its future a,, which depends on
the investor’s subjective judgment. Therefore, the expected
value of o, in F « state, E;(d,) can be defined in accordance
with Eq. (3) as:

Ei(6) =Y 0w 13(0,) P(oy,) (11)
u=1

in which u=1,2,...,v stands for different volatility in o,

4.3. The Fuzzy B-S Option Pricing Model

Combining Eqgs. (10) and (11), the Fuzzy B-S Option
Pricing Model and the expected call price C(A,|M ;) can be
defined in accordance with Eq. (8) as:



334 C.-F. Lee et al. / Expert Systems with Applications 29 (2005) 330-342

K
CA,IM) =" C(A,, F)P(F,IM))
k=1

1
CAuF)> g (SHPS;|M;)
i=1

L

M- -

C(An, Fk)

~
Il

» Sotet DMy e, ()b (6P ISHP(S)
Sorn g, (6)P(,)

(12)

According to the expected call price C@A, M ), the optimal
action A,, under the fuzzy B—S model can be defined as:

CAAIN) = A CGA, ) (13

5. General inference

According to the definition of the fuzzy set given by Zadeh
(1965), Ais a fuzzy set of X and uz : X — [0, 1]. ujz is the
membership function of A, that is, when x€X, then
ui(x) €10, 1]. When the range of the membership function
is improved to {0, 1}, then A will be transformed to a crisp set
A.The ujz will be transformed into C, (characteristic function)
. This kind of transformation for a decision maker in the B-S
model means that the estimates of the primary variable (S, K,
T, R, o) are without fuzziness, that is, uz(x,)=1 or 0.
Under these circumstances, uj(x) = C4(x)=1 if xEA, or
uzi(x,)=0, if x&A, therefore, the probability for the
occurrence of fuzzy event A can be defined as:

PA) =3 wi(x)-P(x) = Y Cox,)-P(x,) = P(A) (14)
r=1 r=1

According to the traditional probabilistic B—S model, the
decision space faced by aninvestor is B= {S,D,P(S,),C(d},S,) },
in the B—S model, C = SN(d,) — K ¢ *"N(d,), the C value is
C(dj |x,). Therefore, under S; state and x, sample information,
the expected call price C(d] |x,) of the optimal alternative is
defined as:

1
C(df ) = Min {Z] C(d;, S,-)P(S,-Ix,)}

= A3 Pl as)

J

i=

The following results can be proved. To avoid distraction,
the detailed mathematical proofs are put in the Appendices.

5.1. Proposition 1

Assume that E;(G,) and E(o,) stands for the expected
value of o, of the fuzzy B-S model and the traditional
probabilistic B-S model, respectively. When F; and M ; are
existentially, but its fuzziness has been neglected irration-
ally, then E(o,) > E;(G,). This means that the expected
value of g, will be increased falsely and it will lead to false
decision-making.

Proof: please see Appendix A.

5.2. Proposition 2

Assume that R,(F ) and R; stands for the expected value
of riskless interest rate in the fuzzy B—S model and the
traditional probabilistic B-S model, respectively. When M f
and F), are existentially, but its fuzziness has been
overlooked irrationally, then R,(F,) <R,. This means that
the expected value of riskless interest rate will be increased
falsely and it will lead to a false decision-making.

Proof: please see Appendix B.

5.3. Proposition 3

(1) When M; and F, are existentially and under a fixed
o, and R, condition, it is assumed that c¢,= G,y and
R,(F,)=R,y. Therefore, the option of in the money
(§>K) deriving C(d}'|x,) > C(A, |M,). This means that
the value of the expected call price of in the money
will be overestimated.

Proof: please see Appendix C.

(2) When Mj and F, are existentially and under a fixed
o, and R, condition, it is assumed that ¢,= G,y and
R,(F,)=R,. Therefore, the option of at the money
(S=K) deriving C(d} |x,)> C(A, |M;). This means that
the value of the expected call price of at the money
will be overestimated.

Proof: please see Appendix D.

(3) When M; and F, are existentially and under a fixed o,
and R, condition, it is assumed that o,=0,y and
R,(F,)=R,. Therefore, the option of in the money
(S<K) deriving C(d}'|x,) < C(A, |M;). This means that
the value of the expected call price out of the money
will be underestimated.

Proof: please see Appendix E.

From Proposition 3 we know that the option of in
the money and at the money will be over-estimated, but the
option of out of the money will be under-estimated. If the
investor makes a decision in accordance with the estimated
call price, then the optimal alternative might not be chosen,
because of the target call price or requirement rate of return
considerations without a consideration of the fuzziness.
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Table 1 Table 3

17, (S;) and P(S)) gz, (%) and P(x,)

wp () o SR, wg, () or x,

P(Sy) 1% 2% 3% 4% 5% P(x,) 10% 15% 20% 25%
w, (S) 0 0 0.8 0.9 1.0 Mz, (%)) 0 0.2 0.8 0.8
K, (S) 0 0.9 1.0 0.8 0 JOREN 0.2 0.8 0.6 0
wE, (S) 1.0 0.9 0.8 0.5 0 P(x,) 0.2 0.3 0.3 0.2
P(S;) 0.1 0.2 0.4 0.2 0.1

6. Illustrative example for simulation

This paper takes the call option of stock Y, the target
stock of Company Z, as an example to discuss the
application of call prices derived by the investor using
fuzzy OPM under uncertainty. Company Z’s fuzzy-decision
space is described below in the following.

6.1. Fuzzy state

It is known to assume that the investor has acquired stock
Y, the single target stock from Company Z, of which
the estimation of risk interest rate (R,) has long been carried
out by the sales specialists of the company, who have been
projecting respective possible risk interest rates in the next
term for different future outlooks of ‘booming economy’,
‘fair economy’, and ‘depression’. Suppose state set S=
{51,55,53,54,55}, where S; denotes the risk interest rate of
call option, the set represents a collection of fuzzy states
(Table 1).

6.2. Fuzzy sample information

In response to recent return fluctuations on the stock
market, the investor has readjusted the magnitude of
fluctuation for the rate of return on the stock (o). While S,
K, T, and R can be derived directly from observation; o
calculation requires the use of daily return data of the target
stock over a past period of time. Based on historical
statistics, ¢ is revised downwards from its current level of
60—40%. It is expected that this change will cause the risk
interest rate to drop. Suppose the sample message space X =
{x1,%2,x3,x4}, where x,, r=1-4, denotes the growth of risk
interest rate and where (x,) is an independent event. The
investor produces estimations on two basic assumptions of
‘very high risk interest rate growth’ and ‘relatively flat risk

Table 2
P(x,1S;)
Si R, (%) X,
10% 15% 20% 25%
S 1 0.3 0.3 0.2 0.2
S, 2 0.5 0.4 0.1 0
S3 3 0.6 0.3 0.1 0
M 4 0.8 0.2 0 0
Ss 5 1.0 0 0 0

interest rate growth’. Hence, the fuzzy sample message
space can be expressed as M={M 1> 1\712}, where M | denotes
very high-risk interest rate growth and M,, a relatively flat
interest risk interest rate growth. It is also known that
historically given S;, Company Z’s prior probability of the
occurrence of x, is P(x,|S;), as shown in Table 2, and the
prior probability of the merpbership function Mt ) and x,
for fuzzy sample message M;, j=1, 2 is P(x,), as shown in
Table 3.

6.3. Fuzzy action

In response to the growth of risk interest rate in the next
term and considering the market status, the investor has
decided on his/her action set D={d,,d,}, where Solution 1
(d,) is to purchase large volumes of stock options under the
expectation of very high stock price fluctuation and Solution
2 (d,) is when the expected stock price fluctuation is low,
hence only small quantities of stock options will be
purchased. The evaluation of the respective solutions
shows the following results in the call option price:

Solution 1: When the investor purchases large quantities
of stock options, the action will either fuel or
dampen the market, causing ¢ to rise creating
a larger room for profit. Hence, the call option
price will increase.

Solution 2: When the investor purchases only small
quantities of stock options, the action has
little effect on market fluctuation, while it will
limit the level of rising in ¢ and result in much
smaller room for profit. Hence, the call option
price will fall.

Suppose the fuzzy action set A={A,,A,}, where A,
denotes the fuzzy set for d; with ¢ at around 60%, and A,
denotes the fuzzy set for d, with ¢ at around 40%, we then
obtain u ,(0,), as shown in Table 4.

Table 4
uz,(o,) and P(ay,)
HA, (o)) [

20% 40% 60% 80%
ui, (o) 0 0.6 1.0 0.8
w4, (o) 0.8 1.0 0.5 0
P(o,,) 0.2 0.3 0.3 0.2

Ex(6) =Y 01 0 13(04) P(0,,). where E;(3,) =038, E;(3,) = 0.242.
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Table 5

R,(Fy)

Fy Fy Py Fs
R,(F}) 0.020 0.025 0.023

6.4. Evaluation function

With A, and F, given, the investor then introduces S, K,
and T into the B—S OPM to determine the call option price,
which can be derived by calculating the value C(A,, F},) of
the pricing function C(A, F).

6.4.1. Expected value of risk interest rate under F,

After taking into account the risk interest rate growth x,,
r=1-4 of Company Z, and with S;, i=1-5 given, the
expected value of the new risk interest rate R,(S;) is:

4
R(S) =S, (1 + Zx,.P<x,|Si>>
r=1

According to Table 2, R(S;)=0.012, R/(S,)=0.023,
R.(S3)=0.034, R.(S4)=0.044, and R(S5)=0.055, we can
obtain the expected values of risk interest rates R,(F,) under
Fi, k=1-3 as

I
P(Fy) = Z wi, (SHP(S;); R(Fy) = P(FR/(S))
i=1

Using the data provided in Table 1, we can obtain the
values of R,(F}) as shown in Table 5.

6.4.2. The value of evaluation function

Since the new stock price fluctuation of Company Z is set
at 40%, we can bring the previously derived R,(F,) values
into Eq. (1). We assume that under the current market state
of Company Z, where S=100 (NT $), K=100 (NT $), T=1
(year) and with Company Z having only one target stock Y,
the call option price is then the value C(4,,, F;) of Company
Z’s pricing function C(A, F). We derive the following:
C@A,,F))=15925; C(A,,F|)=10552; C(A, F,)=
16.128; C(A,, F,)=10.773; CA,,F3)=16.07;
C(A,,F3)=10.71.

6.5. Expected value of call option price at optimal actions

To simplify or presentation that assume there are only
two alternative under consideration to generalize from two
to many alternative can be done similarly. With the
investor’s derived C(A,,F,) and given the fuzzy sample
message Mj, j=1, 2, the expected call option price value
C(@A, |M;) for A, can be defined:

K
CA,|M,,M,) = ZC(Aka)P(FHMth)
=1

C(A,|M,,M,) = 8.385; C(A,|M,,M,) = 5.587

Therefore, the investor should adopt Action A,.

The investor’s expected call option price C(A, |1l71j) at
optimal action can be as C(AZIMJ-)Z A2 CA,|M,, My)=
5.587.

6.6. Soundness analysis for fuzzy B-S option pricing model

In pricing options, the fuzzy OPM argues that the
investor’s estimation of the changes in both correlated
variables R and o that contain hidden fuzzy factors.
Therefore, unless the investor possesses complete infor-
mation on correlated variables and has determined the
values of the correlated variables under the constraints of
the objective environment, the fuzzy factors cannot be
completely excluded.

In the following section, the data from the case of
Company Z discussed above will be used as a basis to
compare the differences between C(d} |x,) and C(A, |M ), in
order to better understand the influence of fuzzy factors on
the B—S OPM and to examine the soundness of a fuzzy OPM.

6.6.1. Expected value of risk interest rate

Let R/(S;) be the expected value of risk interest rate
derived from the B-S OPM. According to Eq. (10) and
Bayes’ theorem, R,(S;) can be defined as:

m

1
R(S) =) Si| 1+ xP0xlSHPS)
i=1 r=1

Using the data from the previous case of Company Z in
Tables 1 and 2, we obtain the expected value of risk interest
rate R(S;) as 0.034.

The figures are all higher than the expected values of risk
interest rates derived for the same case of Company Z under
fuzzy OPM. R,(F;)=0.020, R,(F,)=0.025, and
R,(F3)=0.023.

This finding is consistent with the results from
Proposition 1 of this study, suggesting that ignoring hidden
fuzzy factors in the calculation of the expected values of risk
interest rates will result in overestimations and thereby
causing mistakes in investment decisions.

6.6.2. Expected value of stock price fluctuation

Let E(a,) is the expected value of stock price fluctuation
derived from the B-S OPM. According to Eq. (12) and
Bayes’ theorem, E(o;) can be defined as:

E;(3) =) 0uiti(0,)P(0,,)
u=1

Using the data from the previous case of Company Z in
Table 4, we obtain the expected value of stock price
fluctuation E(a;) as 0.5.

The figures are all higher than the expected values of
stock price fluctuations derived for the same case of
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Company Z under fuzzy OPM. Here, E;(6,)=0.38 and
E;(6,)=0.242

This finding is consistent with the results from Proposition
2 of this study, suggesting that ignoring hidden fuzzy
factors in the calculation of expected values of stock price
fluctuations will result in overestimations and increased
investors’ motivation for buying and selling of options,
thereby fueling or dampening the target stock prices on the
market. And this can easily lead to market volatility.

Z{ZI ZTZI ZZZI o'tu:u',i(atu)P(o'tu):qu (Si):qu(-xr)P(xrlSi)P(Si)

a consideration of the fuzziness. So, the expected call price
will be inaccurately estimated and this will lead to
inaccurate decision-making.

Appendix A

When M; and F; are existentially, £(5,) can be defined in
accordance with Eq. (11):

E;(6) = ZUlll“A(Jtu)P(Ulu)P(Fk|Mj) =

u=1

6.6.3. Expected value of call option price
Let C(d} |x,) and C(A, IM_ ;) be the expected values of call
option prices of the two solutions derived from the B-S OPM

S S S PP SPSI = (0 )i, (S iy (x,)

Al
St ()P, A

Assume pg(o,) =1, up(S)=1, MM/()C,): 1. Tt is
inputted into Eq. (A1) to derive E(G,):

1 m v
E(O',) — ZiZI ZrZI ZMZI atuP(atu)P(erSi)P(Si) (A2)

2= P(x,)

E(o,) — E},(&z) =

and the fuzzy OPM, respectively. Again using the previous
case of Company Z with a stock return fluctuation below
40%, and with the values of R,(F ) and E;(G,) derived earlier,
we obtain C(d}|x,) and C(A, |M ) for the solutions under the
two models as 21.09 and 5.587, respectively.

The result shows that the expected values of call option
prices derived from the B-S OPM are higher than those
obtained from the fuzzy OPM. This finding is again
consistent with the results from Proposition 3 (S=K) of
this study, suggesting that ignoring hidden fuzzy factors in
the calculation of the expected values of call option prices
will result in overestimations and thereby causing mistakes
in relevant investment decisions.

7. Conclusions

The impact of implicit ‘Fuzziness’ is inevitable due to
the subjective assessment made by investors in a B-S OPM.
The fuzzy decision theory and Bayes’ rule are used to
measure the effect of this fuzziness. It is included in the
fuzzy B-S OPM to determine the optimal actions for B—-S
model under uncertainty. The thoughts and controlled
behaviors of human involve both fuzziness and non-
quantitative quality. Therefore, the fuzzy B-S model
would result in a more realistic methodology for a B-S
model. Further, corollaries have been made in this paper. It
has been proved that if the fuzziness has been neglected
irrationally, then the expected values of R, ¢ and the value of
the call price of in the money (S > K) and at the money (S=
K) will be over-estimated, but under-estimation exists in the
value of the call price of out of the money (§ <K) without

Z:n:l #M/ (xr)P(xr)

(A3)

Due to 0,>0, pi(o,)—[0,11, wuz(S)—1[0,1],
,U’Mj(xr) —[0,1], I = :U'A(Utu)':uﬁk(si) >0.
Therefore, E(g,) — E;(G,) > 0.

Appendix B

When M; and F are existentially, R,(F}) can be defined
in accordance with Eq. (10) as:

1
R(F) = RSz, (SHPSHP(F M)
i=1

S S RSt (S0P i (5 P, 1)

Z’;;l :u'Mf(xr)P(xr)

(BD)

Assume ,qu(S,-) =1, ,qu(x,) =1. It is inputted into
Eq. (B1) to derive the R;:

_ ol 2 RUSH(PS)) P(x,1S;)

R, 0
ZrZI P()C,)

(B2)

R, —R(Fp)

S RSP )PP IS — (i, (S g (x,)

- S g, (PG,
(B3)
Due to R(S)=S;[1+Y 1 xPxIS)], R(S)>0,
K, ()= 10,11, pyg (x) = (0,11, 1= (up, (5))* =0, there-
fore, R, — R,(F;) > 0.
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Appendix C

Assume option is in the money (§> K), let T=1 then C(A,t |M ;) can be defined in accordance with Eq. (12) as:
In(S/K) + > 71-1 mp, (SHPSHR(S) + [>onmit 0rtti(00)P(0,,)] ’12
Erl:l o'tu:u“,&(atu)P(o'tu)

v m - ) 5 ) )
X Zizl r=1 MF]((Sl)uMi(xr)P(xrlsl)P(Sl) _K e_ Z::l l/«iv'k(si)P(Sx)Rz(S,)
S b 0)Px,)

In(S/K Iz (S)P(S)R,(S; P
N { n(SIK) + Y1 i (SHPSHRAS) + [Shmt 0uti(@,)P ()]’ ZWA (%)P(O_m)}

C@A,IM;) = SN{

Z;:l otu:u',i(o'tu)P(am)
o Soimt o0 i, (S)kiz, (X PO, IS)P(S))
ZTII :u’Mj(xr)P(xr)

Assume MA, (0,)= K, S)= Moz, (x,) =1, when it is inputted into Eq. (C1), the C(A: |1\7Ij) will be transformed into C(d/' |x,):
v 2 m
In(S/K) + Y21y PSHR(S) + [Y =1 0,4, P(0,)] /2} =1 D= POISOPS) o S psires)

u=1

(ChH

cd; = SN
( ! |xr) { ZXZI JtuP(alu) Zm P( r)

IN(S/K) + 12y PSHR(S) + [Shet 00 P(0,)] 1 Sl oy P(x,IS)P(S))
N{ 1 0P ) Z 7o) > Pl ©
Let
IN(S/K) + 12y PSHR(S) + [Shmt 00 P(0,)] 12
Ny N{ EZ:I 0, P(o,)
IS/ + Sy PSDR(S) + [Shet 04 P(0,)]
N(dZ) - N{ 23:1 Cme((Tm) Z o'mP(o'm)
o InGSIK) + S s (SHPSHRAS) + [Shmt Guti (0P| 12
N@d,) =N .
Zuzl o'tu,u,@(o'tu)P(o'm)
- InGSIK) + Iy g (SOPSORAS) + [t bt (0)P(@)] 12 L
N(dZ) - N{ Zu=1 Um,“A(Um)P(Um) Z UlltMA(atu)P(Ulll)}
then
Flon iR Sl v PASHPS) Lk 11 220 P(x,|S)P(S))
C(df |x,) — C(A,1M;) = SN(d)) ST B Ke " N(d,) ™ Pee)
I m
~ i=1 D=1 Mg, (S, (5 )P(x,S)HP(S;)
— SN /
@ ST o, () P(x,)
e ST ST g (S (5 )P(IS)HP(S))
+Ke ® N4 d !
¢ NE ST (5P
(C3)

PO g t, (S, (x,)
;,‘”:1 :LLMI (xr)

_ i o P ISHP(S)
Z;nzl P(-xr)

Soiet Yoriy s, (Smg (x,) _ S S P IS)PGS))
T=l ,LLM]_(.X,,) Zr 1 P(.Xr)

S v m, (S, ()
ernZI luM/-(-xr)

SN(d,) — K e ® N(d,) — SN(d,)

+Ke ®N@,)

X {SN(d,) —Ke ® N, — [SN(d,) —K ek N(Ezz)]}
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where
S Yo P(x,IS)P(S))
Z:n=l P(xr)
due to, di>d, and S>K. 3 o
So, SN(d))—K e ® N(d,) >0, SN(d,)— K ¢ ¥ N(d,) >0, but
Dien 2T g (SR, (xr)
ZTZI Iu'Mj(xr) o

>0,

and

Soimt 2o i, (S, (x,)

- [SN()) — K e F N(dy)]>0
r=1 :uM/.(xr)

SN(d)) — K e ® N(d,) —

Therefore, C(d; |x,) > C(A, |M)).

Appendix D

Assume option is at the money (S=K), let T=1 then C(A,;k |M ;) can be defined in accordance with Eq. (12) as:

CG*LiT) = SN { 11 7, (SOPSHR(S) + [Sh=y amu/;(am)P(am)]z/z} =1 2001 1, (S, ()P, ISHP(S)
n il

Zl,t:l Utuﬂf;(o'tu)P(o.tu) Z’rnfl MM (-xr)P(-xr)

_ _Z/ 1“Fk(s YP(SHR,(S;) Zz 1 ,qu(S )P(S )R (S) + [Zu 1 o-tu:u'A(o'tu)P(atu) /2 _ -
Ke N S 0P Z Tk (01)P(@,,)

Zz 1 2re1 g (St (6 )P, [SHP(S))
Er 1 :u'M (X )P(xr)

Assume u i ()= :qu(Si) = Wy, (x,) =1, when it is inputted into Eq. (D1), the C(A;,k |1\7I_ ;) will be transformed into C(df |x,):

L PSHR(S) + [Xhe omP(o,u)]Z/z} S S PO, IS)P(S)

(D)

C(d/lx,) = SN { S 0Py “1 P(x)

v 2 v 1 m
e oS psorsy | it PODRS) + [ 0P(@)] 12 >oim1 21 PO SHPCS)
Ke N{ Zu latup(attc) ;Gtup(otu) Til P(xr)
(D2)

S P(SHR, (S )+ [Se) 0 P(0,)] 2/2}

u 1 UtuP(Utu)

u 1 UruP(Utu)

SOz (SOPSOR(S) + [Shet btz (0,)P(0,)] 12
Zuzl Utu,uA(Utu)P(Um)

ZMZI OnMi (Utu)P(Utu)

Ndy) = N{Z 1P<S>R<S>+[ 1 0P Z%P(%)}

t lqu(S )P(S )R (S) + [Z lo'tu:uVA(o-m)P(o'tu) _ZO_ ,LL (0_ )P(O’ )}
tul*A\Y tu tu
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then
1 m 1 m
C(d} Ix,) — CAY|1) = SN(dl)Zi=l Zr;lp(xrlsi)P(Si) — Ke R N(dy) 2= r;lp(xrlsi)P(Si)
r=1P(xr) r:lp(xr)
Simi D ore 1 g, (S, ()P, ISHP(S)) Yo or g, (S, (x )PCx,|S)P(S7)

—SN(d,) +Ke RN

Sor g, (X P(x,) Sors b, () P(x,)
(Lim1 L=t PO IS)P(S) it 2or ke (S, ()
>r=1 Pxy) > =1 Mg, (%)
Yint Zi"_lums,-)m,(xr)]
Dot Mg, (%)

L PO, ISHPGS))
;ﬂ: 1 P(-xr)

lN(dl) —e *N(dy) —N(d,))

+e RNy

i1 v i, (S, ()

:’121 :LLM/ (-xr)

=S

{N(dl) —e RN(dy) — [N(dy) —e* N(c?z)]}

(D3)
where
1200 PG, IS)HP(S)
Z;n: 1 P(xr)
due to dy>d,, 3 o
So, N(d;)— e® N(d»)>0, N(d,) — e ¥ N(d,) > 0, but
S iet 7 g (S, () _
Z’rn:l MM]»('XV) N

>0,

and

Soi=t Doren 1, (M, (x)

:'n:l :u’Mj(xr)

N, —e " N(d,) — IN@,) —e R N@,)1=0

Therefore, C(d; |x,) > C(A, |M)).

Appendix E

Assume option is out of the money (S <K), let T=1 then, C(A:: M ;) can be defined in accordance with Eq. (12) as:

CGZ 1A = SN {ln(S/K) + S0, SHPSHRAS) + [Yhmt 00t (00)P (@) 2/2} f=1 2or i, (S, ()P, IS)P(S)

Zl‘;=l UZL&MA(UZM)P(UM) 'rn=l #Mf(xr)P(xr)
ke S sy IS + STi) g SOPSIRS) + [Sim1 0uti(@)P(00)] 12
Z;=] UZM”A(UZM)P(UZM)
_ Zv:‘f (0 )P(0) Soimt 2oriy mp, (kg ()P ISHPCS))
e Yot Mg, (6 P(x,)

(EL)

Assume pj (04,) = pz, (S) = py (x,) = 1, when it is inputted into Eq. (E1), the C(A, |M ;) will be transformed into C(d}’ |x,):
IN(S/K) + S0 PSHR(S) + [Sim 1 00 P(0,)] 712 | S0y S0y PO, IS)PCS)
ZZZI atuP(Utu) ZIrnZIP(xr)

I 2 v m
ke~ S P)R(s) ) INSTK) F Zi:lP(Siv)Rr(Si) + [i=10uP(0,)] /2 S 0P, Z{ZIZrZIP(xrlsi)P(Si)
Eu:lotup(atu) u=1 r:]P(xr)

C(d; |x,) = SN{

(E2)
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N(d)) =

In(S/K) + S0
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1
Ny =N In(S/K) + 1

[ P(SHOR(S) + [Zh=1 00 P(0,)] 12
El‘;:l UZMP(UZM)

\POSYR(S) + [Sim1 0P @) '12
Zu=l JtuP(Uzu) Zotﬂp(atu)}

In(S/K) + S0

N(dy) =

1, SHPESIR(S) + [ 0bt3(0,)P(@,)] 12
ZZZI Utu:uA(O-m)P(g'm)

lﬂf?k(Sl)P(Sz)Rt(Sz)+ [ u= latuuA(Uzu)P(Utu)

Then

Cdflx,) — C(A, IM,-) =SN(dl)Z
—SNd,)

+K

Y o P(x,IS)P(S)

1
N@) =N {ln(S/K) +30

e RN(d,)

SO (00 P01 Z"’”“A("’“)P(“’“)}

S P(x,IS)P(S))
T=l P(xr)

=1 P PO ASHPS)
r=1P(x,)
St 2ot g, (St ()P CxS)PCS))
r=1 Mz, (X, )P(x,)
Simi D M, (Si)NM,(xr)P(xrlsi)P(Si)
D=1tz (x)P(x;)

Ke_RN(dz)E

i v i, (S, (6,)

+Ke

X {SN(dl) —Ke ®NWd,) —

where

S =1 2ot PO IS)P(S))
Zr—lp(xr)

SN(d;)— Ke ®N(dy) —SN(d,)

S P(x,) r=1 Mg, (X;)
Ry =1 0 e, S, 00| ST S PO IS)PGS)
’ i () =1 P()
=1 2071 1, (S, (x,)

- [SN(d;) — Ke ®*N()]
r=1 M}V]/.(xr)

>0

341

(E3)

although, d, <d», but the degree of S <K is bigger than d; <d». So, S-N(d;)—K e "R N(d») <0, SN(d,) — Ke R N(d,) <0, but

Dimt o (SO, () _ |

ZT:I :qu(xr)

and

SN(d;) —Ke ®N(dy) —

Zl IZr llqu l)l’LMf('xr)

[SN(d,) —Ke ®N(d,)1<0

ZrZI :qu(xr)

Therefore, C(d} |x,) < C(A, IMj).
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