
Pattern Recognition Letters 26 (2005) 1658–1674

www.elsevier.com/locate/patrec
Online mining maximal frequent structures in
continuous landmark melody streams

Hua-Fu Li a,*, Suh-Yin Lee a, Man-Kwan Shan b

a Department of Computer Science and Information Engineering, National Chiao-Tung University, 1001 Ta Hsueh Road,

Hsin-Chu 300, Taiwan
b Department of Computer Science, National Chengchi University, 64, Sec. 2, Zhi-nan Road, Wenshan, Taipei 116, Taiwan

Received 10 January 2004; received in revised form 13 November 2004

Available online 14 April 2005

Communicated by E. Backer
Abstract

In this paper, we address the problem of online mining maximal frequent structures (Type I & II melody structures)

in unbounded, continuous landmark melody streams. An efficient algorithm, called MMSLMS (Maximal Melody Struc-

tures of Landmark Melody Streams), is developed for online incremental mining of maximal frequent melody substruc-

tures in one scan of the continuous melody streams. In MMSLMS, a space-efficient scheme, called CMB (Chord-set

Memory Border), is proposed to constrain the upper-bound of space requirement of maximal frequent melody struc-

tures in such a streaming environment. Theoretical analysis and experimental study show that our algorithm is efficient

and scalable for mining the set of all maximal melody structures in a landmark melody stream.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Machine learning; Data mining; Landmark melody stream; Maximal melody structure; Online algorithm
1. Introduction

Recently, database and knowledge discovery

communities have focused on a new data model,
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2005.01.016

* Corresponding author. Tel.: +886 35731901; fax: +886

35724176.

E-mail addresses: hfli@csie.nctu.edu.tw (H.-F. Li), sylee@

csie.nctu.edu.tw (S.-Y. Lee), mkshan@cs.nccu.edu.tw (M.-K.

Shan).
where data arrives in the form of continuous,

rapid, huge, unbounded streams. It is often re-

ferred to as data streams or streaming data.

Many applications generate large amount of data

streams in real time, such as sensor data generated

from sensor networks, transaction flows in retail

chains, Web record and click streams in Web

applications, performance measurement in net-
work monitoring and traffic management, call re-

cords in telecommunications, etc. In such a data
ed.

mailto:hfli@csie.nctu.edu.tw
mailto:sylee@ csie.nctu.edu.tw
mailto:sylee@ csie.nctu.edu.tw
mailto:mkshan@cs.nccu.edu.tw

User
Query

Streams
Melody

(Sequence)
Streams

Music
Database

User
Query

Processor
•••

Melody
Stream

Processor

Maximal
Melody

Structure
Streams

Music
ID

Melody
Sequence

•••

B
uf

fe
r

Summary Data
Structure in Main

Memory

Fig. 1. Computation model for music melody streams.

H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674 1659
stream model, knowledge discovery has two major
characteristics (Babcock et al., 2002). First, the

volume of a continuous stream over its lifetime

could be huge and fast changing. Second, the con-

tinuous queries (not just one-shot queries) require

timely answers, and the response time is short.

Hence, it is not possible to store all the data in

main memory or even in secondary storage. This

motivates the design of in-memory summary data

structure with small memory footprints that can

support both one-time and continuous queries.

In other words, data stream mining algorithms

have to sacrifice the exactness of its analysis result

by allowing some counting error.

Although several techniques have been deve-

loped recently for discovering and analyzing the

content of static music data (Bakhmutora et al.,
1997; Hsu et al., 2001; Shan and Kuo, 2003;

Yoshitaka and Ichikawa, 1999; Zhu et al., 2001),

new techniques are needed to analyze and discover

the content of streaming music data. Thus, this pa-

per studies a new problem of how to discover the

maximal melody structures in a continuous un-

bounded melody stream. The problem comes from

the context of online music-downloading services
(such as Kuro at www.music.com.tw), where the

streams in question are streams of queries, i.e.,

music-downloading requests, sent to the server,

and we are interested in finding the maximal

melody structures requested by most customers

during some period of time. With the computation

model of music melody streams presented in Fig.

1, the melody stream processor and the summary
data structure are two major components in the
music melody streaming environment. The user
query processor receives user queries in the form

of hTimestamp, Customer-ID, Music-IDi, and then

transforms the queries into music data (i.e., melody

sequences) in the form of hTimestamp, Customer-

ID, Music-ID, Melody-Sequencei by retrieving

the music database. Note that a buffer can be

optionally set for temporary storage of recent

music melodies from the music melody streams.
In this paper, we present a novel algorithm

MMSLMS (Maximal Melody Structures of Land-

mark Melody Streams) for mining the set of all

maximal melody structures in a landmark melody

stream. Moreover, the music melody data and pat-

terns are represented as sets of chord-sets (Type I

Melody structures) or strings of chord-sets (Type

II Melody structures). While providing a general
framework of music stream mining, algorithm

MMSLMS has two major features, namely one scan

of music melody streams for online frequency collec-

tion, and prefix-tree-based compact pattern repre-

sentation. With these two important features,

MMSLMS is provided with the capability to work

continuously in the unbounded streams for an

arbitrary long time with bounded resources, and
to quickly answer users� queries at any time.
2. Preliminaries

2.1. Music terminologies

In this section, we describe several features
of music data used in this paper. For the basic

http://www.music.com.tw

1660 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
terminologies on music, we refer to (Jones, 1974).

A chord is a sounding combination of three or

more notes at the same time. A note is a single

symbol on a musical score, indicating the pitch

and duration of what is to be sung and played.
A chord-set is a set of chords (Shan and Kuo,

2003).

Definition 1. The type I melody structure is

represented as a set of chord-sets. The type II
melody structure is represented as a string of chord-

sets.
2.2. Problem statement

Let W = {i1,i2, . . . , in} be a set of chord-sets,

called items for simplicity. A melody sequence S

with m chord-sets is denoted by S = hx1x2 � � � xmi,
where xi 2 W, "i = 1,2, . . . ,m. A block is a set of

melody sequences.

Definition 2. A landmark melody stream LMS =

[B1,B2, . . . ,BN), is an infinite sequence of blocks,

where each block Bi is associated with a block

identifier i, and N is the identifier of the ‘‘latest’’

block BN. The current length of LMS, written as
jLMSj, is N. The blocks arrive in some order

(implicitly by arrival time or explicitly by time-

stamp), and may be seen only once.
Definition 3. A set Y � W is called an item-set, i.e.,

a set of chord-sets. k-item-set is represented by

(y1y2 � � � yk). The support of an item-set Y, denoted
as r(Y), is the number of melody sequences con-

taining Y as a subset in the LMS seen so far. An

item-set is frequent if its support is greater than

or equal to minsup Æ jLMSj, where minsup is a

user-specified minimum support threshold in the

range of [0, 1], and jLMSj is the current length

of the landmark melody stream LMS.
Definition 4. A string Z is called an item-string,

i.e., a string of chord-sets. A k-item-string is

represented by hz1z2 � � � zki, where zi 2 W,

"i = 1,2, . . ., k. The support of an item-string Z,

denoted as r(Z), is the number of melody

sequences containing Z as a substring in the

LMS seen so far. An item-string is frequent if its
support is greater than or equal to minsup Æ jLMSj,
where minsup is a user-specified minimum support

threshold in the range of [0, 1], and jLMSj is the

current length of the landmark melody stream seen

so far.

Definition 5. A frequent item-set (or item-string)

is called maximal if it is not a subset (or sub-

string) of any other frequent item-set (or item-

string).

In fact, the total number of maximal melody

structures is smaller than that of frequent mel-

ody structure. Hence, the type of maximal melody

structures is more suitable for the performance

requirements of music stream mining.

Definition 6. (Problem Definition of Online Min-

ing Maximal Melody Structures in Continuous

Landmark Melody Streams.) Given a landmark

melody stream LMS = [B1,B2, . . . ,BN) and the user

specified minimum support, minsup, in the range of

[0, 1], the problem of online mining maximal
melody substructures is to discover the set of all

maximal melody structures, i.e., maximal item-sets

or maximal item-strings, in single one scan of the

landmark music stream.
2.3. Main performance requirements of music

melody stream mining

The main performance challenges of mining

melody streams are:

(1) Online, one-pass algorithm: each sequence in

the landmark melody stream is examined

once.

(2) Bounded-storage: limited memory for storing

crucial, compressed information in summary

data structure.

(3) Real-time: per item processing time must be

low.

The proposed MMSLMS algorithm possesses all

of these characteristics, while none of previously

published methods (Bakhmutora et al., 1997;

Hsu et al., 2001; Shan and Kuo, 2003; Yoshitaka

and Ichikawa, 1999; Zhu et al., 2001) can claim

the same.

H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674 1661
3. Online mining maximal frequent structures in

landmark melody streams

3.1. Chord-set memory border

In this section, the upper bound on the number

of candidate maximal melody structures is dis-

cussed, and an efficient algorithm for chord-set

memory border construction is proposed.

Theorem 1. Given a set of k frequent chord-sets

from a landmark melody stream, an upper bound of

the amount of maximal frequent melody structures is

Ck
dk=2e.

Proof. Assume that there are k frequent chord-

sets, i.e., k frequent items, in the current landmark

melody stream. The solution space of mining all
frequent item-sets in the worst case is

Ck
1 þ Ck

2 þ � � � þ Ck
i þ � � � þ Ck

dk=2e þ � � � þ Ck
k, where

Ck
1 is the total number of frequent 1-item-sets, Ck

i is

that of frequent i-item-sets, and Ck
k is that of fre-

quent k-item-sets. We observe that the value of

Ck
dk=2e is the maximum value among all the binom-

inal coefficient Ck
i ; 8i ¼ 1; 2; . . . ; k, in mining all

frequent i-item-sets. In other words, the number

of frequent dk/2e-item-sets is a maximum. We will
prove the number of maximal frequent item-

sets can not be greater than the value Ck
dk=2e, i.e.,

Ck
dk=2e is the upper bound. We prove it by

contradiction.

Assume that the value of Ck
dk=2e is not the

maximum number of maximal frequent item-sets,

i.e., a larger upper bound U exists, where

U > Ck
dk=2e. Consider that there are one or more

frequent melody structures with length L, where

L > dk/2e. If F is a frequent melody structure with

length dk/2e + i and it is maximal, where

i = 1,2, . . ., k � dk/2e, then all of the substructures

of F are frequent, which is based on the anti-

monotone Apriori heuristic (Agrawal and Srikant,

1994): if any i-item-set (or i-item-string) is not

frequent, its (i + 1)-item-set (or (i + 1)-item-string)
can never be frequent, but not maximal, which is

based on the definition 5: a frequent item-set (or

item-string) is called maximal if it is not a subset (or

substring) of any other frequent item-set (or item-

string). In other words, it means that when one
maximal frequent structure with length L, where

L > dk/2e, is added, at most L frequent melody

structures with length L � 1, are decremented from

the current collection of maximal frequent melody

structures found so far. Hence, the maximum
number of maximal melody structures is changed

from U to U 0, where U 0 = U + 1 � L, which is not

greater than Ck
dk=2e. This conflicts with the assump-

tion of U > Ck
dk=2e and results in a contradiction.

Thus the statement is proven to be true. Therefore,

we conclude that the maximum number of max-

imal melody structures is Ck
dk=2e in the problem of

online mining maximal melody structures in a

landmark melody stream. h

Example 1. Assume that there are five frequent
items (i.e., frequent 1-item-sets) a, b, c, d, and e

in the landmark melody stream as shown in

Fig. 2. Let MF denote the total number of maxi-

mal frequent item-sets. At this point, a, b, c, d and

e are maximal and MF ¼ C5
1. Based on the Apri-

ori heuristic, C5
2 frequent 2-item-sets are discov-

ered in the worst case. In this case, these

frequent 2-item-sets are also maximal and those
frequent 1-item-sets are not maximal any more.

The current MF is C5
1 þ C5

2 � C5
1 ¼ C5

2. Next, C5
3

frequent 3-item-sets are found in the worst case.

These frequent 3-item-sets are maximal but the

sub-sets of the maximal 3-item-sets, i.e., frequent

2-item-sets, are not maximal any more. Now,

the MF becomes C5
2 þ C5

3 � C5
2 ¼ C5

3. At this

time, suppose the frequent 4-item-set abcd exists
in this instance and it is also a maximal 4-item-

set. The frequent subsets, with length three, of

abcd, i.e., abc, abd, acd and bcd, are not maximal

any more. Now, the MF becomes C5
3 þ 1� 4 ¼ 7,

i.e., abcd, ace, ade, bcd, bce, bde, cde are maximal

frequent item-sets. The new MF is smaller than

the upper bound C5
d5=2e. Hence, we can find that

if one or more frequent item-sets with length
L, where L > d5/2e, are added into the collection

of maximal frequent item-sets found so far, the

value of MF would be changed and would be

less than C5
d5=2e. Consequently, the C5

d5=2e is the

upper bound of the number of maximal melody

structures.

a b c d e

ab ac ad deae bc bd be cd ce

abc abd abe cdeacd ace ade bcd bce bde

abce abde acde bcdeabcd

abcde

C 5
1

C 5
2

C 5
3

C 5
4

C 5
5

Fig. 2. Item-set enumeration lattice with respect to five items: a, b, c, d and e.

1662 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
The key property of algorithm MMSLMS is de-

rived from the recent work (Karp et al., 2003) for

finding frequent elements in streaming data. The

basic scheme of mining chord-sets from music data

streams is generalized from the well-known algo-
rithm (Fisher and Salzberg, 1982) for determining

whether a value (majority element) occurs more

than n/2 times, i.e., minsup = 0.5, in a data stream

of length n.

The method can be extended to an arbitrary

value of minsup. The scheme is processed as fol-

lows. At any given time, a superset of k probably

frequent chord-sets with at most 1/minsup times
is maintained. Initially, the set is empty. As a

chord-set is read from the melody sequence in

the current block, two operations are performed

as follows. First, if the current chord-set is not

contained in the superset and some entries are free,

it is inserted into the superset with a count set to

one. Second, if the chord-set is already in the sup-

erset, its count is incremented by one. However, if
the superset is full, the count of each entry in the

superset is decremented by one, and the chord-sets

whose frequencies are just one are dropped. The

method thus identifies at most k candidates for

having appeared more than n/(k + 1) times, and

uses O(1/minsup) memory entries.
3.2. The proposed algorithm: MMSLMS

Algorithm MMSLMS has three modules:

MMSLMS-buffer, MMSLMS-summary, and

MMSLMS-mine. MMSLMS-buffer repeatedly reads
in a block of melody sequences into available main

memory. All compressed and essential information

about the maximal melody structures will be

maintained in the MMSLMS-summary. Finally,

MMSLMS-mine finds the maximal melody struc-

tures by a depth-first manner in the current

MMSLMS-summary. Therefore, the challenges of

online mining landmark melody streams lie in
the design of a space-efficient representation of

the in-memory summary data structure and a fast

discovery algorithm for finding maximal melody

structures in real time.

3.2.1. MMSLMS-summary

First of all, the in-memory data structure

MMSLMS-summary is defined and the construct-
ing process of MMSLMS-summary is discussed.

Then we use a running example to illustrate.

Definition 7. A MMSLMS-summary is an extended
prefix-tree-based summary data structure defined

below.

nition Letters 26 (2005) 1658–1674 1663
1. MMSLMS-summary consists of a CMB (Chord-
set Memory Border), and a set of MPI-trees

(Maximal Prefix-Item trees of item-suffixes)

denoted as MPI-trees(item-suffixes).
2. Each node in the MPI-tree(item-suffix) consists

of four fields: item-id, support, block-id and

node-link, where item-id is the item identifier

of the inserting item, support registers the num-

ber of melody sequences represented by a por-

tion of the path reaching the node with the

item-id, the value of block-id assigned to a

new node is the block identifier of the current
block, and node-link links up a node with the

next node with the same item-id in the same

MPI-tree or null if there is none.

3. Each entry in the CMB consists of four fields:

item-id, support, block-id, and head of node-link

(a pointer links to the root node of the MPI-tree

with the same item-id), abbreviated as head-link,

where item-id registers which item identifier the
entry represents, support records the number of

transactions containing the item carrying the

item-id, the value of block-id assigned to a new

entry is the block identifier of current block,

and head-link points to the root node of the

MPI-tree(item-suffix). Notice that each entry

with item-id in the CMB is an item-suffix and it

is also the root node of the MPI-tree(item-id).
4. Each MPI-tree(item-suffix) has a specific CMB-

table (Chord-set Memory Border table) with

respect to the item-suffix (denoted as CMB-

table(item-suffix)). The CMB-table(item-suffix)

is composed of four fields, namely item-id,

support, block-id, and head-link. The CMB-

table(item-suffix) operates the same as the CMB

except that the field head-link links to the first
node carrying the item-id in the MPI-tree(item-

suffix). Notice that jCMB-table(item-suf-

fix)j = jCMBj in the worst case, where jCMBj
denotes the total number of entries in the CMB.

The construction of MMSLMS-summary is de-

scribed as follows. First of all, MMSLMS reads a

melody sequence S from the current block. Then,
MMSLMS projects the sequence S into many sub-

sequences and inserts these subsequences into

the CMB and MPI-trees. In details, each melody

H.-F. Li et al. / Pattern Recog
sequence S, such as hx1,x2, . . . ,xmi, in the current

block should be projected by inserting m item-

suffix melody subsequences into the MMSLMS-

summary. In other words, the melody sequence

S = hx1,x2, . . . ,xmi is converted into mmelody sub-
sequences; that is, hx1,x2, . . . ,xmi, hx2,x3, . . . ,xmi,
. . . , hxm�1,xmi, and hxmi. The m melody subse-

quences are called item-suffix sequences, since the

first item of each melody subsequence is an item-

suffix of the original melody sequence S. This step

is called sequence projection, and is denoted as

Sequence-Projection (S) = {x1jS,x2jS, . . . ,xijS, . . . ,
xmjS}, where xijS = hxi,xi+1, . . . ,xmi, "i = 1,2, . . . ,
m. Furthermore, the cost of sequence projection

of a melody sequence with length m is (m2 + m)/

2, i.e., m + (m � 1) + � � � + 2 + 1.

After Sequence-Projection (S), MMSLMS algo-

rithm removes the original melody sequence S

from the MMSLMS-buffer. Next, the set of items

in these item-suffix sequences are inserted into

the CMB and the MPI-trees(item-suffixes) as a
branch, and the CMB-table(item-suffixes) are up-

dated according to the item-suffixes. If an item-

set (or item-string) share a prefix with an item-set

(or item-string) already in the tree, the new item-

set (or item-string) will share a prefix of the branch

representing that item-set (or item-string). In addi-

tion, a support counter is associated with each

node in the tree. The counter is updated when an
item-suffix sequence causes the insertion of a new

branch.

In order to limit the memory size of the sum-

mary data structure MMSLMS-summary, a space

pruning technique is performed. Let the minimum

support threshold be minsup, in the range of [0, 1],

and the current length of the landmark melody

stream be N. The rule for space pruning is as fol-
lows. A melody structure E is deleted if E.sup-

port < minsup Æ N. E is called an infrequent

melody structure. After pruning all infrequent mel-

ody structures from the CMB, CMB-table-(item-

suffix) and MPI-trees, the MMSLMS-summary

contains all information about frequent melody

structures of the landmark melody stream gener-

ated so far. Example 2 below illustrates the algo-
rithm step by step. Note that the h i of

sequences are omitted for clear presentation.

1664 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
Example 2. Let a block Bj of the landmark

melody stream LMS be hacdefi, habei, hcefi,
hacdfi, hcefi and hdfi, and the minimum support

threshold be 0.5 (i.e., minsup = 0.5), where a, b, c,

d, e and f are chord-sets (i.e., items) in a landmark
melody stream seen so far. MMSLMS algorithm

constructs the MMSLMS-summary with respect to

the incoming block Bj and prunes all item-sets that

are infrequent from the current MMSLMS-sum-

mary in the following steps. Note that each node

or entry represented as (f1:f2:f3) is composed of

three fields: item-id, support, and block-id. For

example, (a:2:j) indicates that, from block Bj, item
a appeared twice.
Step 1: MMSLMS reads current block Bj into main
memory for constructing the MMS -
LMS

summary.

(a) First melody sequence acdef: First of

all, MMSLMS algorithm reads the first

melody sequence acdef and calls the

Sequence-Projection (acdef). Then

MMSLMS inserts the item-suffix se-

quences acdef, cdef, def, ef, and f into
Fig. 3. MMSLMS-summary construction after inserting first melod

demonstrated in Fig. 4 through Fig. 9, the head-links of each CMB-t
the CMB, [MPI-tree(a), CMB-table(a)],

[MPI-tree(c), CMB-table(c)], [MPI-

tree(d), CMB-table(d)], [MPI-tree(e),

CMB-table(e)], and [MPI-tree(f),

CMB-table(f)], respectively. The result
is shown in Fig. 3. In the following

sub-steps, as demonstrated in Fig. 4

through Fig. 9, the head-links of each

CMB-table (item-suffix) are omitted for

concise presentation.

(b) Second melody sequence abe: MMSLMS

reads the second melody sequence abe

and calls the Sequence-Projection (abe).
Next, MMSLMS inserts the item-suffix

sequences abe, be and e into the CMB,

[MPI-tree(a), CMB-table(a)], [MPI-

tree(b), CMB-table(b)] and [MPI-

tree(e), CMB-table(e)], respectively.

The result is shown in Fig. 4.

(c) Third melody sequence cef: MMSLMS

reads the third melody sequence cef

and calls the Sequence-Projection (cef).

Then, MMSLMS inserts the item-suffix

sequences cef, ef and f into the CMB,
y sequence acdef in block Bj. In the following sub-steps, as

able (item-suffix) are omitted for concise presentation.

Fig. 4. MMSLMS-summary construction after inserting second melody sequence abe.

H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674 1665
[MPI-tree(c), CMB-table(c)], [MPI-

tree(e), CMB-table(e)] and [MPI-

tree(f), CMB-table(f)], respectively.
The result is shown in Fig. 5.

(d) Fourth melody sequence acdf: MMSLMS

reads the fourth melody sequence acdf

and calls the Sequence-Projection

(acdf). Next, MMSLMS inserts the

item-suffix sequences acdf, cdf, df

and f into the CMB, [MPI-tree(a),

CMB-table(a)], [MPI-tree(c), CMB-
table(c)], [MPI-tree(d), CMB-table(d)]

and [MPI-tree(f), CMB-table(f)], resp-

ectively. The result is shown in

Fig. 6.

(e) Fifth melody sequence cef: MMSLMS

reads the fifth melody sequence cef

and calls the Sequence-Projection (cef).

Then, MMSLMS inserts the item-suffix
sequences cef, ef and f into the CMB,

[MPI-tree(c), CMB-table(c)], [MPI-

tree(e), CMB-table(e)] and [MPI-

tree(f), CMB-table(f)], respectively.

The result is shown in Fig. 7.
(f) Sixth melody sequence df: MMSLMS

reads the sixth melody sequence df

and calls the Sequence-Projection (df).
Next, MMSLMS inserts the item-suffix

sequences df and f into the CMB,

[MPI-tree(d), CMB-table(d)] and [MPI-

tree(f), CMB-table(f)], respectively.

The result is shown in Fig. 8.

Step 2: After computing the current block Bj, all

infrequent melody structures are pruned
by MMSLMS from the current MMSLMS-

summary. At this time, MMSLMS deletes

the MPI-tree(b) and its corresponding

CMB-table(b), and prunes the entry b

from the CMB, since item b is an infre-

quent item; that is, r(b) < minsup Æ jLMSj,
where r(b) = 1 and minsup Æ jLMSj =
0.5 Æ 6 = 3. Next, MMSLMS reconstructs
the MPI-tree(a) by eliminating the infor-

mation about the infrequent item b. The

result is shown in Fig. 9.

The description stated above is the constructing

process of MMSLMS-summary with respect to the

Fig. 5. MMSLMS-summary construction after inserting third melody sequence cef.

Fig. 6. MMSLMS-summary construction after inserting third melody sequence acdf.

1666 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
incoming block over a landmark melody stream.

The MMSLMS-summary construction algorithm

is depicted in Fig. 10.
3.2.2. MMSLMS-mine

In this section, the module, called MMSLMS-

mine, of mining maximal melody item-sets and

Fig. 7. MMSLMS-summary construction after inserting fifth melody sequence cef.

Fig. 8. MMSLMS-summary construction after inserting sixth melody sequence df.

H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674 1667
maximal melody item-strings from the current

MMSLMS-summary is discussed (Fig. 11).
First of all, given an entry id (from left to right,

for example) in the current CMB, MMSLMS-mine

Fig. 9. Current MMSLMS-summary after pruning all infrequent melody structures with respect to infrequent item b.

1668 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
generates candidate maximal melody structures by

a top-down approach. The top-down method uses

the frequent items (i.e., chord-sets) of CMB-table-

(id) and item id to generate the candidates. The

generating order of these candidates is determined

by the size of item-set, from item-set size

1 + jCMB-table(id)j down to size 2. Note that,
the generating order ends in 2-item-sets because

all frequent entries in the current CMB-table are

frequent 1-item-sets. Then MMSLMS-mine checks

these candidates whether they are frequent or not

by traversing the MPI-tree(id). The MPI-tree tra-

versing principle is described as follows. First,

MMSLMS-mine generates a candidate maximal

melody item-set, (j + 1)-item-set, containing the
item id and all items of the CMB-table(id), where

jCMB-table(id)j = j. Second, MMSLMS-mine tra-

verses the MPI-tree via the node-links of the fre-

quent candidate. After that if the candidate is

not a frequent item-set, MMSLMS-mine generates

substructure candidates with j-item-sets. Next,

MMSLMS-mine executes the same MPI-tree tra-

versing scheme for item-set counting. The process
stops when MMSLMS-mine finds all maximal
frequent melody structures from the current

MMSLMS-summary. Moreover, MMSLMS-mine

stores these maximal melody structures into a tem-

poral pattern list, called MMSLMS-list. Notice that

MMSLMS-mine can find the set of frequent 2-item-

sets by combining the item-suffix id with the fre-

quent items of the CMB-table(id).

Example 3. This example illustrates the mining of

the maximal melody item-sets from the current

MMSLMS-summary in Fig. 9. Let the minimum

support threshold be 0.5, i.e., minsup = 0.5.

(1) Now, we start the maximal melody item-set

mining scheme from the frequent item a. At

this moment, the frequent item-set is the only

1-item-set (a), since the support of items c, d,

e and f in the CMB-table (a) are less than

minsup Æ jLMSj, where jLMSj = jBjj = 6.

(2) Next, MMSLMS-mine starts on the second
entry c for maximal melody item-set mining.

MMSLMS-mine generates a candidate maxi-

mal 3-item-set (cef), and traverses the MPI-

tree(c) for counting its support. As a result,

Algorithm 1 (MMSLMS-summary Construction)

Input: A landmark melody stream, LMS = [B1, B2, …, BN), and a user-specified minimum
support threshold, minsup.

Output: A current MMSLMS-summary.

1: CMB = ∅ /*initialize the CMB to empty.*/
2: foreach block Bj do /* j = 1, 2, …, N */
3: foreach melody sequence S = <x1, x2, …, xm> ∈ Bj (j = 1, 2, …, N) do
4: foreach item xi S do /*the CMB maintenance*/
5: if xi ∉ CMB then
6: create a new entry (xi, 1, j, head-link) into the CMB;

/* the entry form is (item-id, support, block-id, head-link)*/
7: else /* the entry already in the CMB*/
8: xi.support = xi.support + 1; /* increment the support of item-id xi by one*/
9: end if
10: end for
11: call Sequence-Projection(S);

/* project the sequence with every prefix-item xi for the construction of MPI-tree(xi)*/
12: end for
13: call MMSLMS-summary-pruning(MMSLMS-summary, minsup, |LMS|);
14: end for

Subroutine Sequence-Projection
Input: A melody sequence S = <x1, x2, …, xm> and the current block-id j;
Output: MPI-trees(xi), ∀i=1, 2, …, m;

1: foreach item xi (i =1, 2, …, m) do
2: MPI-tree-maintenance([xi|X], MPI-tree(xi), j);

/* X = x1, x2, …, xm is the original melody sequence */
/* [xi|X] is an item-suffix melody sequence with item-suffix xi*/

3: end for

 Subroutine MPI-tree-maintenance
Input: An item-suffix melody sequence <xi, xi+1, …, xm> (i=1, 2, …, m), MPI-tree(xi) and the

current block-id j;
Output: The modified MPI-tree(xi), where i=1, 2, ..., m;

1: foreach item xi do /* i=1, 2, …, m */
2: if MPI-tree has a child Y such that Y.item-id = xi.item-id then
3: Y.support = Y.support +1; /*increment Y’s support by one*/
5: else
6: create a new node Y = (item-id, 1, j, node-link);

/* initialize the Y’s support to 1, and link its parent link to MPI-tree, and its node-link
linked to the nodes with same item-id via the node-link structure. */

7: end if
8: end for

Fig. 10. Algorithm of MMSLMS-summary construction.

H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674 1669
the candidate (cef) is a maximal frequent
item-set, since its support is 3, and it is not

a sub-structure of any other maximal melody

structures within the MMSLMS-list. Now,

MMSLMS-mine stores the maximal item-set

(cef) into the MMSLMS-list.
(3) MMSLMS-mine starts on the third entry d
and generates a maximal frequent 2-item-

set (df). We store this item-set (df) into the

MMSLMS-list because it is not a sub-struc-

ture of any other maximal melody structures

within the current MMSLMS-list.

Algorithm 2 (MMSLMS-mine)

Input: A current MMSLMS-summary, the current length of landmark melody stream |LMS|,
and a minimum support threshold minsup.

Output: A temporal-pattern-list, MMSLMS-list, of maximal melody structures.

1: MMSLMS-list = ∅;
2: foreach entry e in the current CMB do
3: do generate a candidate maximal melody structure E with size |E|

/* |E| = 1+|CMB-table(e) */
4: counting E.support by traversing the MPI-tree(e);
5: if E.support minsup |LMS| then
6: if E ∉ MMSLMS-list and E is not a substructure of any other maximal frequent

structures contained into the MMSLMS-list then
7: add E into the MMSLMS-list;
8: remove E’s substructures from the MMSLMS-list;
9: end if
10: else /* if E is not a frequent melody structure*/
11: enumerate E into melody substructures with size |E|—1;
12: end if
13: until MMSLMS-mine find the set of all maximal frequent structures with respect to the

item e;
14: end for

Fig. 11. Algorithm of MMSLMS-mine.

Subroutine MMSLMS-summary-pruning
Input: An MMSLMS-summary, a user-specified minimum support threshold, minsup, and the

current length of LMS, |LMS|;
Output: An MMSLMS-summary which contains the set of all frequent melody structures.

1: foreach entry xi (i=1, 2, …, d) ∈ CMB, where d =|CMB| do
2: if xi .support < minsup |LMS| then /* xi is not a frequent item */
3: delete those nodes (item-id = xi) via node-link structure;
4: merge the fragmented sub-trees;

/* a simple way is to reinsert or to join the remainder sub-trees into the MPI-tree*/;
5: delete MPI-tree(xi);
6: delete the entry xi from the CMB;
7: end if
8: end for

Fig. 10 (continued)

1670 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
(4) On the fourth entry e, since its maximal

melody item-set (ef) is a sub-structure of

previous maximal melody item-set (cef),

MMSLMS-mine does not store it into the

MMSLMS-list.

(5) Finally, MMSLMS-mine computes the entry
f, and generates a maximal frequent 1-item-

set (f) directly, since the CMB-table(f) is
empty. MMSLMS-mine does not store it

into the MMSLMS-list, because it is a sub-

structure of a generated maximal item-set

(cef).
In conclusion, the Maximal Type I Melody

Structures determined by algorithm MMSLMS are

(a), (cef) and (df). Now, we describe the mining

H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674 1671
principle of maximal melody item-strings, i.e.,

Maximal Type II Melody Structures, as below.

MMSLMS-mine generates maximal melody item-

strings from the current MMSLMS-summary as

shown in Fig. 9 by a depth-first-search (DFS) ap-
proach. Hence, the Maximal Type II Melody

Structures determined by algorithm MMSLMS are

hai, hci, hdi and hefi. Note that hfi is not maximal

melody item-string since it is a sub-string of the

existing maximal melody 2-item-string hefi.
Based on the algorithm MMSLMS-mine in Fig.

10, we have the following lemma.

Lemma 2. A melody structure is a maximal melody

structure if and only if it is generated by algorithm

MMSLMS-mine.

Proof. Algorithm MMSLMS-mine is composed of
two major steps: frequent melody structure selection

(step 1) and maximal melody structure verification

(step 2). These steps are performed in sequence.

First of all, in the step of frequent melody struc-

ture selection, MMSLMS-mine finds frequent mel-

ody structure based on the Apriori property if

any length i-item-set (or i-item-string) is not fre-

quent, its length (i + 1)-item-set (or (i + 1)-item-
string) can never be frequent. That means

MMSLMS-mine does not miss any frequent melody

structures. Next, in step 2, MMSLMS-mine checks

the frequent melody structures generated from

step 1 against the maximal melody structures of

the MMSLMS-list, a temporal pattern list of maxi-

mal melody structures. If this frequent melody

structure is a sub-structure (i.e., sub-set or sub-
string) of any other structures within the

MMSLMS-list, then it is not a maximal melody

structure according to the Definition 5; otherwise

it is a candidate maximal melody structure before

the next execution of step 2. Repeating step 1

and step 2, MMSLMS-mine can generate all the

maximal melody structures contained in the

MMSLMS-list. Hence, we have the lemma: a mel-
ody structure is a maximal melody structure if and

only if it is generated by algorithm MMSLMS-mine.

Space complexity analysis: The space require-

ment of MMSLMS-summary consists of two parts:

the working space needed to create a CMB and the

CMB-tables, and the storage space needed to
maintain the set of MPI-trees. Assume that CMB

contains k frequent chord-sets such as e1,e2, . . . ,
ei, . . . ,ek at any time. Based on the Theorem 1, we

know that there are at most Ck
dk=2e maximal

frequent chord-sets in the landmark melody
stream seen so far. If we construct the MMSLMS-

summary for all these maximal frequent melody

structures, the maximum height of all the MPI-

trees is dk/2e. There are 1þ Ck�1
1 þ Ck�1

2 þ � � � þ
Ck�1

dk=2e�1 nodes in the MPI-tree(e1), where the value

1 indicates the root node e1 of the MPI-tree(e1),

and Ck�1
1 þ Ck�1

2 þ � � � þ Ck�1
dk=2e�1 are internal and

leaf nodes of the MPI-tree(e1). Moreover, there are

1þ Ck�2
1 þ Ck�2

2 þ � � � þ Ck�2
dk=2e�1 nodes in the

MPI-tree(e2), . . ., 1þ Ck�i
1 þ Ck�i

2 þ � � � þ Ck�i
dk=2e�1

nodes in the MPI-tree(ei), 1þ Ck�ðk�1Þ
1 nodes in the

MPI-tree(ek�1), and 1 (root) node in the MPI-

tree(ek). Thus, the total number of nodes of MPI-

trees in the MMSLMS-summary is

ð1þ Ck�1
1 þ Ck�1

2 þ � � � þ Ck�1
dk=2e�1Þ

þ ð1þ Ck�2
1 þ Ck�2

2 þ � � � þ Ck�2
dk=2e�1Þ þ � � �

þ ð1þ Ck�i
1 þ Ck�i

2 þ � � � þ Ck�i
dk=2e�1Þ þ � � �

þ ð1þ Ck�ðk�1Þ
1 Þ þ 1

¼ ðCk�1
0 þ Ck�1

1 þ Ck�1
2 þ � � � þ Ck�1

dk=2e�1Þ

þ ðCk�2
0 þ Ck�2

1 þ Ck�2
2 þ � � � þ Ck�2

dk=2e�1Þ þ � � �

þ ðCk�i
0 þ Ck�i

1 þ Ck�i
2 þ � � � þ Ck�i

dk=2e�1Þ þ � � �

þ ðCk�ðk�1Þ
0 þ Ck�ðk�1Þ

1 Þ þ Ck�k
0 :

This number equals Ck
1 þ Ck

2 þ � � � þ Ck
dk=2e based

on Pascal�s Identity: let x and y be positive integers

with x P y. Then Cxþ1
y ¼ Cx

y�1 þ Cx
y .

Moreover, the worst case working space
requires at most (k2 + k)/2 entries, which is based

on the process of Sequence-Projection. Thus, the

space requirement of MMSLMS-summary is

ðk2 þ kÞ=2þ Ck
1 þ Ck

2 þ � � � þ Ck
dk=2e. Finally, the

upper bound of space requirement is O(2k). h

The worst case space complexity of algorithm

MMSLMS can be analyzed in terms of melody se-

quence size as described below. Assume that the

average melody sequence size is m, the current

1672 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
length of the landmark melody stream isN, and the

minimum support threshold is minsup. The space

requirement of algorithm MMSLMS is composed

of two parts, working space and storage space. The

working space is used to store the CMB and
CMB-tables and the storage space is used to store

the MPI-trees. The working space requirement is

m + (m � 1) + (m � 2) + � � � + 1 and the storage

space requirement is also about m + (m � 1) +

(m � 2) + � � � + 1. Hence, the space requirement of

MMSLMS for inserting a melody sequence with

average size m into MMSLMS-summary is 2[m +

(m � 1) + (m � 2) + � � � + 1] = m2 + m. Hence, the
space requirement of the stream generated so far

in the worst case is N Æ (m2 + m). Note that in the

analysis, we assume that the sminsup Æ N is just one

and therefore every item of the incomingmelody se-

quence is a frequent item, which is the worst case.

However, we know that the value of N increases

as time progresses. Hence, the pruning mechanism

of MMSLMS-summary is deployed to limit
the memory requirement not to exceed an upper

bound.

From the space complexity analysis, it is not

surprising to find that the space complexity grows

exponentially into the number of frequent items in

the CMB, as all frequent item-sets are represented

in the data structure. It is also the solution space of

the problem.
Time complexity analysis: From the construc-

tion process of MMSLMS-summary, we can see

that exactly one scan of a landmark melody stream

is required. The cost (denoted by Time-cost(S)) of

inserting a melody sequence S into the MMSLMS-

summary by sequence projection is jSj + (jSj � 1)

+ � � � + 1 = (jSj2 + jSj)/2; that is O(jfreq(S)j2),
where freq(S) is the set of frequent items in the
melody sequence S. Note that jfreq(S)j 6 jSj,
where jSj denotes the size of the melody sequence

S.

Because the items within the CMB are frequent

items, therefore, the cost of inserting a melody se-

quence S can be stated in terms of the size of

CMB. Time-cost(S) = O(jS 0j2), where jS 0j is the

number of chord-sets of melody sequence S within
the CMB. In the worst case, if the melody se-

quence S contains all the frequent items within

the CMB, Time-cost(S) = O(jCMBj2).
4. Experimental results

In this section, we first describe the data and

experiment set-up used to evaluate the perfor-

mance of the proposed algorithm, and then report
our experimental results.

4.1. Synthetic data and experiment set-up

To evaluate the performance of MMSLMS algo-

rithm, two experiments are performed. The exper-

iments were carried out on the IBM synthetic

market-basket test data generator proposed by
Agrawal and Srikant (1994). Two data streams,

denoted by S10.I5.D1000K and S30.I15.D1000K,

of size 1 million melody sequences each are stud-

ied. The first one, S10.I5.D1000K with 1 K unique

items, has an average melody sequence size of 10

with average maximal potentially frequent struc-

ture size of 5. The second one, S30.I15.D1000K

with 10 K unique items, has an average melody se-
quence size of 30 with average maximal potentially

frequent structure size of 15. In all experiments,

the melody sequences of each datasets are looked

up in sequence to simulate the environment of a

landmark melody stream. All the experiments are

performed on a 1066-MHz Pentium III processor

with 128 megabytes main memory, running on

Microsoft Windows XP. In addition, all the pro-
grams are written in Microsoft/Visual C++ 6.0.

4.2. Experimental results

In the first experiment, two primary factors,

memory and execution time, are examined in the

online mining of a landmark melody stream, since

both should be bounded online as time advances.
In Fig. 12(a), the execution time grows smoothly

as the dataset size increases. This is because the

average execution time of dataset S10.I5 and

S30.I15 are about 12 and 25 s per block respec-

tively, where a block is composed of 50,000 mel-

ody sequences. In other words, the computation

time of dataset S10.I5 by algorithm MMSLMS is

12 s every 50,000 melody sequences, and for data-
set S30.I15 is 25 s every 50,000 melody sequences.

Hence, it grows smoothly as the dataset size in-

creases. The memory usage in Fig. 12(b) for both

Fig. 12. Required resources for synthetic datasets: (a) execution time and (b) memory.

Fig. 13. (a) Linear scalability of the data stream size and (b) relative error of mining results.

H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674 1673
synthetic datasets is stable as time progresses, indi-

cating the feasibility of algorithm MMSLMS. Note

that the synthetic landmark melody stream is par-

titioned into blocks with size 50 K.

In the second experiment, we investigate the

scalability and relative error of algorithm

MMSLMS with respect to varying minimum sup-

ports. The relative error is defined as the differ-
ence between the measured support and the

actual support estimation divided by the actual

support. In Fig. 13(a), the execution time grows

smoothly as the dataset increases (assume min-

sup = 0.01%) indicating linear scalability. Fig.

13(b) shows that the relative error decreases as

minisup decreases, i.e., as the size of CMB de-

creases. Generally, the more frequent items are
maintained in the CMB, the more accurate the

mining result is.
5. Conclusions

In this paper, we proposed a single-pass algo-

rithm,MMSLMS, to discover and maintain all max-
imal melody structures in a landmark model that

contains all the melody sequences in a data stream.

In the MMSLMS algorithm, an efficient in-memory

summary data structure, MMSLMS-summary, is

developed to record all maximal frequent struc-

tures in the current landmark model. In addition,

MMSLMS uses a space-efficient scheme, the

Chord-set Memory Border (CMB), to guarantee

1674 H.-F. Li et al. / Pattern Recognition Letters 26 (2005) 1658–1674
the upper-bound of space requirements of mining

maximal melody sequences in a streaming environ-

ment. Theoretical analysis and experimental results

with synthetic data show that MMSLMS algorithm

can meet the performance requirements of data
stream mining: one-scan, bounded-space and real

time. Further work includes online mining maxi-

mal melody structures in count-based and time-

based sliding window that contains the most recent

melody sequences in a data stream.
Acknowledgements

The authors thank the reviewers� precious com-

ments for improving the quality of the paper. The

research is supported by National Science Council

of R.O.C. under grant no. NSC93-2213-E-009-043.
References

Agrawal, R., Srikant, R., 1994. Fast algorithms for mining

association rules. In: Proceedings of 20th International

Conference on Very Large Data Bases, pp. 487–499.
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.,

2002. Models and issues in data stream systems. In:

Proceedings of 21th ACM Symposium on Principles of

Database Systems, pp. 1–16.

Bakhmutora, V., Gusev, V.U., Titkova, T.N., 1997. The search

for adaptations in song melodies. Computer Music Journal

21 (1), 58–67.

Fisher, M.J., Salzberg, S.L., 1982. Finding a majority among n

votes: solution to problem 81-5. Journal of Algorithms 3 (4),

362–380.

Hsu, J.L., Liu, C.C., Chen, A.L.P., 2001. Discovering non-

trivial repeating patterns in music data. IEEE Transactions

on Multimedia 3 (3), 311–325.

Jones, G.T., 1974. Music Theory. Harper & Row, Publishers,

New York.

Karp, R.M., Papadimitrious, C.H., Shanker, S., 2003. A simple

algorithm for finding frequent elements in streams and

bags. ACM Transactions on Database Systems 28 (1), 51–

55.

Shan, M.-K., Kuo, F.-F., 2003. Music style mining and

classification by melody. IEICE Transactions on Informa-

tion and Systems E86-D (4), 655–659.

Yoshitaka, A., Ichikawa, T., 1999. A survey on content-based

retrieval for multimedia databases. IEEE Transactions on

Knowledge and Data Engineering 11 (1), 81–93.

Zhu, Y., Kankanhalli, M.S., Xu, C., 2001. Pitch tracking and

melody slope matching for song retrieval. In: Proceedings of

the Second IEEE Pacific Rim Conference on Multimedia:

Advances in Multimedia Information, pp. 530–537.

	Online mining maximal frequent structures in continuous landmark melody streams
	Introduction
	Preliminaries
	Music terminologies
	Problem statement
	Main performance requirements of music melody stream mining

	Online mining maximal frequent structures in landmark melody streams
	Chord-set memory border
	The proposed algorithm: MMSLMS
	MMSLMS-summary
	MMSLMS-mine

	Experimental results
	Synthetic data and experiment set-up
	Experimental results

	Conclusions
	Acknowledgements
	References

