Available online at www.sciencedirect.com

SGIENCE@DIHEGT’ Computer Physics
Communications

s

ELSEVIER Computer Physics Communications 170 (2005) 175-185

www.elsevier.com/locate/cpc

Parallel implementation of molecular dynamics simulation
for short-ranged interaction

Jong-Shinn Wu, Yu-Lin Hsu, Yun-Min Lee

Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan
Received 13 January 2005; received in revised form 17 March 2005; accepted 24 March 2005
Available online 13 June 2005

Abstract

A parallel molecular dynamics simulation method, designed for large-scale problems, employing dynamic spatial domain
decomposition for short-ranged molecular interactions is proposed. In this parallel cellular molecular dynamics (PCMD) sim-
ulation method, the link-cell data structure is used to reduce the searching time required for forming the cut-off neighbor list
as well as for domain decomposition, which utilizes the multi-level graph-partitioning technique. A simple threshold scheme
(STS), in which workload imbalance is monitored and compared with some threshold value during the runtime, is proposed to
decide the proper time for repartitioning the domain. The simulation code is implemented and tested on the memory-distributed
parallel machine, e.g., PC-cluster system. Parallel performance is studied using approximately one million L-J atoms in the
condensed, vaporized and supercritical states. Results show that fairly good parallel efficiency at 49 processors can be obtaine
for the condensed and supercritical state6@%), while it is comparably lower for the vaporized statel0%).

0 2005 Elsevier B.V. All rights reserved.

Keywords: Parallel molecular dynamics; Short-ranged interaction; Dynamic domain decomposition; Parallel efficiency; Simple threshold
scheme

1. Introduction comes increasingly important due to the burgeoning
of nanoscience and nanotechnology, in which the size
is often too small to characterize experimentally or to
simulate properly by continuum methods. In applying
the MD method to model these nanoscale phenomena,
two main issues need to be resolved. The first is how
to choose a physically correct potential model to truly
represent the inter-particle interaction. The second is
how to reduce the often time-consuming computation
¥ Corresponding author. Tel.: +886-3-573-1603; fax: +886-3- [0 @n acceptable level. In this paper, we focus on re-
572-0634. solving the second issue by developing an efficient
E-mail address: chongsin@faculty.nctu.edu.t@.-S. Wu). parallel molecular dynamics method.

Classical molecular dynamics (MD) has been wide-
ly used to simulate properties of liquids, solids, and
molecules in several research disciplines, including
material sciencgl1-4], biological technology[5-7],
and heat and mass transfg+10]among others. It be-

0010-4655/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.03.110

http://www.elsevier.com/locate/cpc
mailto:chongsin@faculty.nctu.edu.tw

176 J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185

Molecular dynamics simulates thev-particle space. MD simulation of solids represents one of the
(atoms or molecules) system treating each particle as atypical examples. In contrast, if the distribution of the
point mass, and Newton’s equations are integrated for atoms has much variation in configuration space, then
all particles to compute the motion. The physics of the the load imbalance among processors develops very
modeled system is contained in the potential energy quickly during simulation, which lowers the parallel
functional from which the Newton’s equation for each performance. Thus, a parallel MD method capable of
particle is derived, assuming a conservative system. adaptive domain decomposition may represent a better
Being averaged from the trajectories of the particles, solution for resolving this difficulty.
various useful static and dynamic properties can thus In the current study, we present a parallel algorithm
be derived11]. As mentioned previously, MD simu- for MD simulation, named parallel cellular molecu-
lation is very time-consuming due to the large number lar dynamics (PCMD), employing dynamic domain
of time steps and possibly large number of atoms re- decomposition to address the issue of load imbal-
quired to complete a meaningful simulation. In liquids ance among processors in the spatially static domain-
and solids, MD simulation is required to resolve the decomposition method. This parallel algorithm is
vibration of the atoms, which limits the time step to tested using one million L-J atoms in the condensed,
be on the order of fentoseconds. Many hundreds of vaporized and supercritical state, which all are initial-
thousands or even millions of time steps are needed toized from a FCC-arranged atomic structure. Our goal
simulate a nanosecond on the “real” time scale. In ad- is to develop a parallel MD method that is scalable
dition, hundreds of thousands or millions of atoms are for very large problems and large number of proces-
needed in the MD simulation, even for a system size sors on memory-distributed parallel machines, such as
on the nanometer scale. a PC-cluster system, which is accessible to researchers

In the past, there has been considerable effort (e.g.,in general.

[12]) that concentrated on parallelizing MD simulation This paper is organized as follows. The MD method
on memory-distributed machines by taking the inher- is described next, followed by the description of the
ent parallelisn{13,14] Generally, parallel implemen- proposed parallel implementation in detail. Results of
tation of the MD method can be divided into three cat- parallel performance for the different test cases is then
egories, including atom decomposition, force decom- presented and discussed. Finally, the paper is summa-
position or domain decomposition among processors rized with some important conclusions.

[12]. The atom decomposition method is generally
suitable for small-scale problems. In the force decom-
position method, it is based on a block-decomposition
of the force matrix rather than a row-wise decompo- 2 1. Molecular dynamics simulation

sition in the atom-decomposition method. It improves

the Q(N) scaling to @GN /+/P). It generally performs Molecular dynamics simulation is used to solve the
much better that the atom decomposition method; dynamics of theV-particle (atom or molecule) system
however, there exist some disadvantages. First, theby integrating Newton’s equation of motion, as shown
number of processors has to be the square of an in-in Egs.(1) and (2) for each particle to obtain the po-
teger. Second, load imbalance may become an issuesition of the particle as a function of time,

From previous experieng#?2], it is suitable for small-

2. Numerical method

) ; ; dv; - -
and intermediate-size problems. m; d—v’ = Z Fo (7, 7))
In the spatially static domain decomposition meth- f j
od, simulation domains are physically divided and dis- -
tributed among processors. This method so far repre- + Z;F3(r”rf’ e s (1)
J

sents the best parallel algorithm for large-scale prob-
lems in MD simulation for short-ranged interactions 2% _ 5. 2
[12]; however, it only works well for a system, in df
which the atoms move only a very short distance dur- wherem; is the mass of atom, ; andv; are its po-
ing simulation or possibly are distributed uniformly in sition and velocity vectors, respectiveli, is a force

J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185 177

term describing pair-wise interactions between atoms, to reduce the frequency of updating. In contrast, we

F3 is a force term describes the three-body interac- only have to update each neighbor list every 8-10 time

tions, and many-body interactions can be added if steps using the above choice. This reduces greatly the
needed. The force on each atom is the spatial deriv- frequency of neighbor atom search. However, building

ative of potential energy that is generally written as a the neighbor list through searching all the atoms in the

function of the position of the atom itself and other system is also very time-consuming.

atoms.

In practice, only one or a few terms in E() are 2.1.3. Concept of link-cell + congept of neighbor list
kept to simplify the problem. They are constructed _ Link-cell data structure provides a means of orga-
from either fitting some properties to experimental NiZiNg information (.posmon and velocities) of atom
data or a quantum computation. Thus, classical MD is into a form that avoids most of _the unnecessary work
intrinsically cheaper in computation as compared with 2nd thus reduces the computational cost (/9 The
ab initio electronic structure calculations, which re- 9€neral idea of the link cell is to divide the simula-

quire solving Schrodinger’s equation at each time step. tion domain m_to a lattice of small cells having edge
length exceeding.. In the current study, we take the

cell-edge length as. + §, which coincides with the
Potential energy can also be categorized as either adeS|gnat_ed radlus_of nelghbqr “Sti Thus, atoms in a
cell only interact with atoms either in the same cell or

short- or long-ranged interaction in nature. The former I bv. Details of imol tati be found
(e.g., the L-J potential) only considers the interaction cells nearby. Details of implementation can be foun

between the atoms geometrically nearby the interested"” Rapaport[ll]_ and only a brief descrlp_tlon IS pro-
atom, while the latter (e.g., Coulomb potential in ionic vided here. During the update of each nglghbor list for
solids or biological systems) needs to consider the in- each atom, we only search the atoms in the other 26

teraction far away from the atom under consideration. neighboring cells and the cell where the atom 'ts?’” 'S
S . located, rather than search through all the atoms in the
Because of the simplicity of the short-ranged inter-

action, it has been applied extensively in many MD computational domain. This can also reduce dramat-

: . ; . - ically the time required to build up the neighbor list.
simulations in the pagi.5], especially for liquids and . ;
. X . The price we have to pay is to add an array to store
solids. In contrast, long-ranged interaction models are : :
: .)) the atoms in each cell and to update this array each
not commonly used in classical MD simulations ex- . C .)
g time step, which is straightforward in the cell struc-
cept for polarized molecules, such as wdte]. In h
. : . . : ture having equal edge length for all cells. Past results
this paper, we are only interested in dealing with clas- : - .
. . ; . show that this combination represents the most effi-
sical MD using short-ranged interactions. The L-J po-

tential will be used throughout the current study unless ﬁfrrr:tictsgmﬁggo?ﬁivlvfdays in classical molecular dy-
otherwise specified. The proposed method can also be '

applied to other potential interactions if they are short- 2.2 Parallel molecular dynamics simulation
ranged. Strategies employed for the short-ranged in-

2.1.1. Interaction potential model

teraction in the current study are introduced next. In this current study, we focus on developing a par-
allel MD method using dynamic domain decomposi-
2.1.2. Concept of neighbor list tion by taking advantage of the existing link-cells as

In principle, all potentials on each atom resulting mentioned earlier. In this proposed method, not only
from all other atoms have to be taken into account are the cells used to reduce the cost for building up
when computing the force—this scales ag\®). In the neighbor list, but also are used to serve as the ba-
practice, each atom stores an array containing the list sic partitioning units. A similar idea has been applied
(or neighbor list) [11] of atoms located within some in the parallel implementation of the direct simulation
cutoff distance(r. = 2.50). Note thato is the zero- Monte Carlo (DSMC) method (e.d19]), which is a
potential distance of L-J potential. Basically, each particle simulation technique often used in rarefied gas
neighbor list has to be updated at each time step, which dynamics. Note that in the following IPB stands for in-
is very time-consuming. Thus, the radius of this neigh- terprocessor boundary. General proceduFés. (1) in
bor list is often extended to be + §, where§ = 0.3, the sequence include:

178 J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185

C Start) CPUO
Initialize and é CPU1
)
.

distribute the data

CPU np-1

Communicate ! Load balancing? Repartition
atom data 0ad balancing the domain

Renumber ommunicate|
Cell / atom Cell / atom
data . data

Rebuild
neighbor list?

t ?
=0
NAI])

receive positions &
velocities of atoms in the neighbor
list

Y

Compute force

v

Send force data to other atoms in
the neighbor list

v

t=tdt Integrate to update
positions & velocities of atoms

v

Apply boundary conditions

(Int]

Yes P

No

(Output)

Fig. 1. Proposed flow chart for parallel molecular dynamics simulation using dynamic domain decomposition.

1. Initialize the positions and velocities of all atoms communicate cell/atom data between processors,
and equally distribute the atoms among proces- e mber the local cell and atom numbers, and
Sors;

2. Check if load balancing is required. If required, update the neighbor list for each atom due to the

then first repartition the domain, followed by data migration;

J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185

3. Receive positions and velocities of other atoms in
the neighbor list for all cells near the IPB;

. Compute force for all atoms;

. Send force data to other atoms in the neighbor list
for all cells near the IPB;

N

velocities for all atoms;

. Apply boundary conditions to correct the particle
positions if necessary;

. Check if preset total runtime is exceeded. If ex-

179

partition is successively refined on all the graphs start-
ing with the coarsest and ending with the original. At
evolution of levels, the final partition of the coarser
graph is used to give the initial partition for the next
finer level. A corresponding parallel version, PMETIS

. Integrate the acceleration to update positions and [18], uses an iterative optimization technique known

as relative gain optimization, which both balances the
workload and attempts to minimize the inter-processor
communication overhead.

This parallel multilevel graph partition runs on the

ceeded, then output the data and stop the simula- single program multiple data (SPMD) paradigm with
tion. If not, check if it is necessary to rebuild the message passing in the expectation that the underlying
neighbor list of all atoms using the most recent mesh will do the same. Each processor is assigned to
atom information; a physical sub-domain and stores a double-linked list
. If it is necessary to rebuild the neighbor li3f & of the vertices within that sub-domain. However, each
8 in the current study), then communicate atom processor also maintains a “halo” of neighboring ver-
data near the IPB and repeated the steps 2—8. Iftices in other sub-domains. For the serial version, the

not necessary, then repeat steps 3-8.

Note that the subroutines included in the shaded
region Fig. 1) represent the load-balancing module.

migration of vertices simply involves transferring data
from one linked-list to another. In the parallel version,
this process is far more complicated than just migrat-
ing vertices. The newly created halo vertices must be

In the above procedures, in addition to the necessary packed into messages as well, sent off to the destina-
data communication when atoms cross the IPB and tion processor, unpacked, and the pointer based data

atom/cell data near the IPB, there are two more im-

structure recreated there. This provides a possible so-

portant steps in the proposed parallel MD method as lution to the problem of adaptive load balanciig].

compared with the serial MD implementation. One
is how to repartition the domain effectively and the
other is the decision policy for repartitioning. These
two steps are described next, respectively.

2.2.1. Repartitioning scheme

Under the framework of graph theory, centers of
each link-cell are considered as thertices and the
lines connecting them are considerededges. Each
vertex and edge can be assigned with a weight for
the purpose of partitioning. Graph partitioning has
been found very useful for an unstructured mesh in
the computing community in the past. In the cur-
rent study, a parallel multilevel graph-partitioning run-
time library, PMETIS[18], is used as the repartition-
ing tool in our PCMD code. Thus, the data struc-
ture of the link-cell is reconfigured as unstructured
for graph-partitioning purpose. The multilevel graph-
partitioning scheme uses the multilevel implementa-

tion that matches and combines pairs of adjacent ver-

2.2.2. Decision policy for repartitioning

MD represents a typical dynamic (or adaptive) ir-
regular problem, i.e. the workload distributions are
known only at runtime, and can change dramatically as
simulation proceeds, leading to a high degree of load
imbalance among the processors. This load-changing
situation is even obvious in simulating liquids or gases.
Thus, the partitioning runtime library, PMETIR8],
described in the above is used to repartition the mesh
based on some sort of decision policy. In the direct
simulation Monte Carlo (DSMC) simulatiofi 7], it
has been shown that a decision policy based on stop at
rise (SAR)[19] works well for improving the parallel
performance. However, from our preliminary study, it
does not work very well in the MD simulation since
the domain repartition is too frequent and, thus, too
costly in practice. In addition, the data locality of the
MD simulation using link-cells is lower than that of
the DSMC simulation, which only considers collisions

tices to define a new graph and recursively iterate this (interaction) among atoms within the same cell. In-

procedure until the graph size falls under some thresh-

stead, a simple threshold-like decision policy, termed

old. The coarsest graph is then partitioned and the “simple threshold scheme” (STS), is designed to de-

180 J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185

cide the proper time to repatrtition. This scheme simply Table 1
asks for domain repartitioning if the workload in some Simulation conditions for three different cases (condensed, vapor-
processor is detected over the specified threshold (e.g.,2¢d and supercritical states)

+20% of the average workload). The number of atoms Temp.(T*) Density(p*) No. of link-cells

in each link-cell is used as the weighting for graph Condensed a 0.7 75x 75x 75

partitioning. Right after the repartition, the communi- Vaporized u 07 75x 75 75
Supercritical o7 0.7 39x 39x 39

cation between geometrically neighboring processors
is required to transfer the cell number and particle data
to the destination processor, followed by renumbering Table 1represents the number of link-cells used for
of the cell and particle data into the local numbering simulation. Note that the simulation volume is gener-
in the destination processor. Since all processors know ajly much larger €10 times) than the initial volume of
the geometrical information of all cells, renumbering FCC-arranged atomic structure near the system center,
of the received cells in some specific processor is done except the case of supercritical state, which simula-

simply by adding up sequentially the local cell num-
bers for the new cells (as shown in the shaded region
in Fig. 1). Similarly, the cells sent out to other proces-
sors are simply removed sequentially by copying the
information of the final cell onto the memory of the
sent cells. This decision policy for repartitioning the
domain is inherently advantageous in which no prior
knowledge of the evolution of the problem is neces-
sary to determine the repartitioning interval, and the
repartitioning can be expected to follow the dynamics
of the problem.

The current PCMD code is implemented on a
64-bit Itanium PC-cluster system running Linux OS at
the National Center for High-performance Computing
in Taiwan (64-node, dual processor and 4 GB RAM

tion volume is approximately the same as the initial
FCC volume. Each atom of an initially FCC-arranged
atomic structure is given random velocities based on
the desired temperature and starts to run for tiie
steps. Rescaling the kinetic energy of the system dur-
ing runtime enforces the desired temperature of the
simulation system for all three test cases. The simula-
tion time step is 0.005 of the dimensionless MD time
scale (or about 005 x 10 fs). Current test problems
represent a more severe test for the parallel implemen-
tation of the MD method due to the rapidly changing
workload among processors during the simulation. For
example, it is rather difficult to parallel compute the
condensed state efficiently if a conventional parallel
paradigm such as static domain decomposition is used.

per node). Standard message-passing interface (MPI)All results presented below were obtained using 25

is used for data communication. It is thus expected
that the current PCMD code should be highly portable
among the memory-distributed parallel machines that
is running with Linux (or equivalent) operating sys-
tem.

3. Resultsand discussions
3.1. Problem descriptions and simulation conditions

Three test problems, including L{12, 6) atoms

processors, unless otherwise specified. In addition, pe-
riodic boundary conditions are used to simplify the
analysis in the current study.

3.2. Shapshots of MD evolution

Snapshots of the atomic distribution at the final
time step (18 time steps) of the L-J atoms-(million
atoms) for the condensed, vaporized and supercriti-
cal states are illustrated, respectivelyigs. Zb)—(d).
Note thatFig. 2(a) shows the initial FCC atomic struc-
ture and the simulation volume (3575 x 75 cells)

in condensed, vaporized and supercritical states, arefor both the condensed and vaporized states. For the

chosen to test the current parallel implementation of
the molecular dynamics simulation. Related simula-
tion conditions are summarized able 1 Densities
(p* = No3/V) are all taken to be 0.7 for convenience,
while temperature$7* = kT /¢) are varied to repre-
sent different states. Note that the number of cells in

supercritical state, the size of the initial FCC struc-
ture is the same as the other two cases, but with a
much smaller simulation volume (3839 x 39 cells).

It is clear that the initial and final atomic structures
differ to a large extent for all three cases consid-
ered. This renders the static spatial domain decompo-

J.-S WU et al. / Computer Physics Communications 170 (2005) 175-185 181

Fig. 2. Atomic structures of three test cases &tiffie steps: (a) initial FCC structure for the condensed and vaporized states; (b) final condensed
state; (c) final vaporized state; (d) final supercritical state.

sition very inefficient or even useless, which is often ting through the system center. By comparing these
used for the large-scale MD simulation. In the case figures, we can find that the domain decomposition
of the condensed stat&i§. 2(b)), a spherical liquid changes to a large extent from the initial to the fi-
droplet ¢~25 nm in diameter) is formed at the cen- nal state, except the case of the supercritical state, in
ter of the simulation system, around which compara- \which the initial FCC structure almost occupies the
tively few vaporized atoms spread, due to the lower sjmuylation volume. IrFig. 3b) (condensed state), the
preset temperature (0.7). In the case of the vaporized yomain size of the droplet near the center the sys-
state £ig. 2c)), the atoms spread rather randomly o center is very small as compared with the domain
uniform in the simulation domain due to the preset g, ¢ i other regions since the atoms are clustered
higher temperature (1.1). In the case of the supercriti- near the system center. In contrast, the distribution
cal St‘f’“e Kig. 2(d))-, s_everal irregular gavities having of the domain size is relatively uniform iRig. 3(d)
vaporized atoms inside are present in the computa- (vaporized state) in the simulation volume since the

tional domain, in which the state is neither liquid nor . : .

. T atoms are spreading randomly in the computational
gas in essence. Note that the spatial distribution of the d nEi h the d ind i f
cavities does not remain unchanged during the simu- omain.Fig. ,3(0 shows the domain decomposition o
lation. the supercritical state, in which the distribution of do-

main is similar to the vaporized statBig. 3(d)) but
3.3. Evolution of domain decomposition with higher ordered structure. The above arguments
about the evolution of domain decomposition in the
Fig. 3a)—(b), (c)—(d), and (e)—(f) show the domain test cases, along with the time-dependent distributions
decompositions (508¢, and final) for the condensed, of the number of atoms in each processor, can explain
vaporized and supercritical states, respectively, on the the parallel performance obtained in the current study,
system surface and on some special cross sections cutwhich are introduced next.

182 J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185

Fig. 3. Evolution of domain decomposition simulation domain on the system surface and special sections for the different atomic final states
(25 processors): (a) at 500 steps (condensed); (b) final (condensed); (c) at 500 steps (vaporized); (d) final (vaporized); (e) at 500 steps (super-
critical); (f) final (supercritical).

3.4. Distribution of time history of atom numbers along with the upper/lower thresholds of the number
of atoms €£20%, dotted lines, in the current study).
Fig. 4(@)—(c) show the distribution of the number of N these figures, we do not intend to identify any spe-
atoms in each processor as a function of the number of Cific processor used in the simulation. We are only
simulation time steps, respectively, for the condensed, interested in showing the general trend of effectiveness
vaporized and supercritical states using 25 processors,of the dynamic domain decomposition in a general

J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185 183

80000 L | L 80000 1 | .
60000 — — 60000 — —

5 upper threshold value (+20%). 5 upper threshold value (+20%).

a a

(%] (3]

= =

2 g

5 =

a K

[5 [3

3 E]

5 c

@ @

E E

2 2

< < ————

20000 —| lower threshold value (-20%).
o T T T o T T T
0 50000 100000 0 50000 100000
Time Step. Time Step.

@ (b)

60000 — —
upper threshold value (+20%).

40000

Atoms number per CPU.

20000 —

0 50000 100000
Time Step.

©

Fig. 4. Distribution of the number of atoms in each processor as a function of simulation time steps (25 processors): (a) condensed state;
(b) vaporized state; (c) supercritical state.

sense. In addition, we can roughly identify how fre- threshold values. Another reason for this ineffective
quent the repartition is from these figures by observ- domain decomposition may be related to the multi-
ing the abrupt change of number of atoms. In general, level graph-partitioning tool (PMETI$18]) used in
the repartition in PCMD is rather effective in evenly the current study, which assumes it optimizes the par-
redistributing the number of atoms in each proces- tition heuristically, rather than theoretically. Note that
sor, or approximately, the workload among processors. a more severe criterion of the threshold values can
However, the load balancing in some (relatively few) result in better load balance among processors, but
processors is not so effective in bringing up the num- possibly computational inefficiency can result from
ber of atoms to the averaged value due to too many the frequent repartition of the domain. Another impor-
atoms in a cell (e.gkigs. 4a) and (c)). The situation tant observation fronfrigs. 4a)—(c) is that it requires

is much better for the vaporized-state case as shown inmost frequent repartition during the simulation for the
Fig. 4(b), where the repartition can keep the number vaporized-state caséif. 4(b)) due to the fast mov-

of atoms roughly within the range of upper and lower ing atoms, while it requires much less repartition for

184 J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185

5 T R U R

Sym. Data*

— — — |deal speedup s
—&—— Condensed
40 —| ——A—— Vaporized —
—<O—— Supercritical 4
———A—— Vaporized (non-repartition **) /

* 1million L-J atoms /
** non-repartition after 30,000 steps Va

Speedup

0 10 20 30 40 50
Number of Processors

Fig. 5. Parallel speedup as a function of the number of processors for three different test cases (condensed, vaporized and supercritical states)

the supercritical-state casEig. 4(c)). Thus, it is not the speed-up due to the rapid increase of the frequent
necessary that a better load balancing resulting from communication required for repartitioning the domain,
effective domain decomposition can lead to a better in addition to the large number of processors, which in
parallel speed-up since the repartition is computation- turn complicates and slows down the network com-
ally expensive. The above observation has a profound munication. This can be shown by the increase of
influence on the parallel speed-up, which is introduced speed-up to 21 (49 processors) if we do not reparti-

next. tion the domain after the thermal equilibration period
(~30000 time steps). Using the current parallel imple-
3.5. Parallel performance mentation of the MD code, approximately 70-80% of

parallel efficiency can be achieved with 25 processors,

Fig. 5 shows the corresponding parallel speed-up Which may be accessible for most researchers using a
for all three test cases (up to 49 processors) in the practical PC-cluster system.
current study along with the ideal speed-up (dotted
line). Using 49 processors, the parallel speed-up is
32 (~65% parallel efficiency) for the supercritical- 4. Conclusions
state case and 28-67% parallel efficiency) for the
condensed-state case, while it is 17 (or 35% parallel In the current study, a parallel molecular dynam-
efficiency) for the vaporized-state case. Note that the ics simulation for short-ranged interactions using dy-
above parallel speed-up/efficiency are all computed namic domain decomposition is developed for large-
assuming the value of speed-up as two for two proces- scale problems on the memory-distributed PC-cluster
sors. It is attributed to the too frequent repartition system, which uses MPI as the communication pro-
of the domain in the vaporized-state case, although tocol. In the method, a multi-level graph-partitioning
slightly better load balancing is observed than in the scheme is used to dynamically re-decompose the com-
other two casedHg. 4(b)). This could further degrade putational domain based on a simple threshold scheme

J.-S Wu et al. / Computer Physics Communications 170 (2005) 175-185

185

(STS), which is expected to keep the number of atoms [4] K. Cheng, X. Luo, R. Ward, et al., Modeling and simulation

in each processor within the range of the threshold
values. Parallel performance of the current parallel

MD method is studied using three different test cases,

of the tool wear in nanometric cutting, Wear 255 (2003) 1427—
1432.

[5] Y.M. Pan, T.J. Hou, M.J. Ji, et al., MD simulations of PTP 1B-
inhibitor complex, Acta Chim. Sinica 62 (2004) 148-152.

including the condensed, vaporized and supercritical [g] L3, smith, H.J.C. Berendsen, W.R. van Gunsteren, Computer

states, using approximately one million L-J atoms,
which all are initialized from a FCC atomic structure.
Results show that fairly good parallel efficiency in the

range of 40—-65% using 49 processors can be achieved Y

for the three test cases, compared with low efficiency if

simulation of urea—water mixtures: a test of force field parame-
ters for use in biomolecular simulation, J. Phys. Chem. B 108
(2004) 1065-1071.

P.J. Connolly, A.S. Stern, C.J. Turner, et al., Molecular dynam-
ics of the long neurotoxin LSIlI, Biochemistry-US 42 (2003)
14443-14451.

static domain decomposition or other methods are em- [8] L. Consolini, S.K. Aggarwal, S. Murad, A molecular dynamics

ployed. Application of this parallel MD code to com-
pute the dynamical processes involved with droplet

evaporations and collisions is currently in progress and

will be reported in the near future.

Acknowledgements

This investigation was supported by the National
Science Council, Grant No. 93-2212-E-009-015. The

simulation of droplet evaporation, Int. J. Heat Mass Transfer 46
(2003) 3179-3188.

[9] L.N. Long, M.M. Micci, B.C. Wong, Molecular dynamics
simulations of droplet evaporation, Comput. Phys. Comm. 96
(1996) 167-172.

[10] J.H. Walther, P. Koumoutsakos, Molecular dynamics simula-
tions of nanodroplet evaporation, J. Heat Transfer 123 (2001)
741-748.

[11] D.C. Rapaport, The Art of Molecular Dynamics Simulation,
Cambridge University Press, UK, 1995.

[12] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117 (1995) 1-19.

authors also would like to express their sincere thanks [13] B.M. Boghosian, Computational physics on the connection

to the computing resources provided by the National
Center for High-speed Computing of National Sci-
ence Council of Taiwan. Also, sincere thanks go to
Prof. Karypis at University of Minnesota for gener-

ously providing the partitioning library, PMETIS.

References

[1] R. Komanduri, N. Chandrasekaran, L.M. Raff, Effect of tool
geometry in nanometric cutting: a molecular dynamics simula-
tion approach, Wear 219 (1998) 84-97.

[2] R. Komanduri, N. Chandrasekaran, L.M. Raff, MD simula-
tion of indentation and scratching of single crystal aluminum,
Wear 240 (2000) 113-143.

[3] T.H. Fang, C.l. Weng, Three-dimensional molecular dynamics
analysis of processing using a pin tool on the atomic scale,
Nanotechnology 11 (2000) 148-153.

machine, Comput. Phys. (1990).

[14] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K.
Salmon, D.W. Walker, Solving Problems on Concurrent
Processors, vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[15] S. Matsunaga, Structural study on liquid Au—Cs alloys by com-
puter simulations, J. Phys. Soc. Japan 69 (2000) 1712-1716.

[16] D. DiCola, A. Deriu, M. Sampoli, et al., Proton dynamics
in supercooled water by molecular dynamics simulations and
quasielastic neutron scattering, J. Chem. Phys. 104 (11) (1996)
4223-4232.

[17] J.-S. Wu, K.-C. Tseng, Concurrent DSMC method using dy-
namic domain decomposition, in: Proc. 23rd Internat. Symp.
on Rarefied Gas Dynamics, Whistler Conference Centre
Whistler, British Columbia, July 2002, pp. 20-25.

[18] G. Karypis, K. Schloegel, V. Kumar, ParMetis, University
of Minnesota, Department of Computer Science, September
1998.

[19] D.M. Nicol, J.H. Saltz, et al., Dynamic remapping of paral-
lel computations with varying resource demands, |IEEE Trans.
Comput. 37 (1988) 1073-1087.

	Parallel implementation of molecular dynamics simulation for short-ranged interaction
	Introduction
	Numerical method
	Molecular dynamics simulation
	Interaction potential model
	Concept of neighbor list
	Concept of link-cell + concept of neighbor list

	Parallel molecular dynamics simulation
	Repartitioning scheme
	Decision policy for repartitioning

	Results and discussions
	Problem descriptions and simulation conditions
	Snapshots of MD evolution
	Evolution of domain decomposition
	Distribution of time history of atom numbers
	Parallel performance

	Conclusions
	Acknowledgements
	References

