
c

domain
D) sim-

hbor list
scheme
posed to
istributed

s in the
e obtained

old
Computer Physics Communications 170 (2005) 175–185

www.elsevier.com/locate/cp

Parallel implementation of molecular dynamics simulation
for short-ranged interaction

Jong-Shinn Wu∗, Yu-Lin Hsu, Yun-Min Lee

Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan

Received 13 January 2005; received in revised form 17 March 2005; accepted 24 March 2005

Available online 13 June 2005

Abstract

A parallel molecular dynamics simulation method, designed for large-scale problems, employing dynamic spatial
decomposition for short-ranged molecular interactions is proposed. In this parallel cellular molecular dynamics (PCM
ulation method, the link-cell data structure is used to reduce the searching time required for forming the cut-off neig
as well as for domain decomposition, which utilizes the multi-level graph-partitioning technique. A simple threshold
(STS), in which workload imbalance is monitored and compared with some threshold value during the runtime, is pro
decide the proper time for repartitioning the domain. The simulation code is implemented and tested on the memory-d
parallel machine, e.g., PC-cluster system. Parallel performance is studied using approximately one million L-J atom
condensed, vaporized and supercritical states. Results show that fairly good parallel efficiency at 49 processors can b
for the condensed and supercritical states (∼60%), while it is comparably lower for the vaporized state (∼40%).
 2005 Elsevier B.V. All rights reserved.

Keywords: Parallel molecular dynamics; Short-ranged interaction; Dynamic domain decomposition; Parallel efficiency; Simple thresh
scheme
de-
nd
ing

-

-3-

ing
size
to

ing
ena,
ow

uly
d is
ion
re-
ent
1. Introduction

Classical molecular dynamics (MD) has been wi
ly used to simulate properties of liquids, solids, a
molecules in several research disciplines, includ
material science[1–4], biological technology[5–7],
and heat and mass transfer[8–10]among others. It be

* Corresponding author. Tel.: +886-3-573-1693; fax: +886
572-0634.

E-mail address: chongsin@faculty.nctu.edu.tw(J.-S. Wu).
0010-4655/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.cpc.2005.03.110
comes increasingly important due to the burgeon
of nanoscience and nanotechnology, in which the
is often too small to characterize experimentally or
simulate properly by continuum methods. In apply
the MD method to model these nanoscale phenom
two main issues need to be resolved. The first is h
to choose a physically correct potential model to tr
represent the inter-particle interaction. The secon
how to reduce the often time-consuming computat
to an acceptable level. In this paper, we focus on
solving the second issue by developing an effici
parallel molecular dynamics method.
.

http://www.elsevier.com/locate/cpc
mailto:chongsin@faculty.nctu.edu.tw


176 J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185

as a
for

the
rgy
ch
em.
les,
hus
-
ber
re-

ds
he
to

of
d to
ad-
are
ize

e.g.,
on
er-
-
at-
m-
ors
lly
m-
ion
o-
es

od;
the
in-

sue

th-
is-
pre-
ob-
ns
n
ur-
in

the
he
hen
very
el

of
etter

hm
u-
in
al-
ain-
is
ed,

ial-
oal
ble
es-
h as
hers

od
he
of

hen
ma-

the
m
wn
-

Molecular dynamics simulates theN -particle
(atoms or molecules) system treating each particle
point mass, and Newton’s equations are integrated
all particles to compute the motion. The physics of
modeled system is contained in the potential ene
functional from which the Newton’s equation for ea
particle is derived, assuming a conservative syst
Being averaged from the trajectories of the partic
various useful static and dynamic properties can t
be derived[11]. As mentioned previously, MD simu
lation is very time-consuming due to the large num
of time steps and possibly large number of atoms
quired to complete a meaningful simulation. In liqui
and solids, MD simulation is required to resolve t
vibration of the atoms, which limits the time step
be on the order of fentoseconds. Many hundreds
thousands or even millions of time steps are neede
simulate a nanosecond on the “real” time scale. In
dition, hundreds of thousands or millions of atoms
needed in the MD simulation, even for a system s
on the nanometer scale.

In the past, there has been considerable effort (
[12]) that concentrated on parallelizing MD simulati
on memory-distributed machines by taking the inh
ent parallelism[13,14]. Generally, parallel implemen
tation of the MD method can be divided into three c
egories, including atom decomposition, force deco
position or domain decomposition among process
[12]. The atom decomposition method is genera
suitable for small-scale problems. In the force deco
position method, it is based on a block-decomposit
of the force matrix rather than a row-wise decomp
sition in the atom-decomposition method. It improv
the O(N) scaling to O(N/

√
P ). It generally performs

much better that the atom decomposition meth
however, there exist some disadvantages. First,
number of processors has to be the square of an
teger. Second, load imbalance may become an is
From previous experience[12], it is suitable for small-
and intermediate-size problems.

In the spatially static domain decomposition me
od, simulation domains are physically divided and d
tributed among processors. This method so far re
sents the best parallel algorithm for large-scale pr
lems in MD simulation for short-ranged interactio
[12]; however, it only works well for a system, i
which the atoms move only a very short distance d
ing simulation or possibly are distributed uniformly
.

space. MD simulation of solids represents one of
typical examples. In contrast, if the distribution of t
atoms has much variation in configuration space, t
the load imbalance among processors develops
quickly during simulation, which lowers the parall
performance. Thus, a parallel MD method capable
adaptive domain decomposition may represent a b
solution for resolving this difficulty.

In the current study, we present a parallel algorit
for MD simulation, named parallel cellular molec
lar dynamics (PCMD), employing dynamic doma
decomposition to address the issue of load imb
ance among processors in the spatially static dom
decomposition method. This parallel algorithm
tested using one million L-J atoms in the condens
vaporized and supercritical state, which all are init
ized from a FCC-arranged atomic structure. Our g
is to develop a parallel MD method that is scala
for very large problems and large number of proc
sors on memory-distributed parallel machines, suc
a PC-cluster system, which is accessible to researc
in general.

This paper is organized as follows. The MD meth
is described next, followed by the description of t
proposed parallel implementation in detail. Results
parallel performance for the different test cases is t
presented and discussed. Finally, the paper is sum
rized with some important conclusions.

2. Numerical method

2.1. Molecular dynamics simulation

Molecular dynamics simulation is used to solve
dynamics of theN -particle (atom or molecule) syste
by integrating Newton’s equation of motion, as sho
in Eqs.(1) and (2), for each particle to obtain the po
sition of the particle as a function of time,

(1)

mi

d �vi

dt
=

∑

j

F2(�ri , �rj )

+
∑

j

∑

k

F3(�ri , �rj , �rk) + · · · ,

(2)
d�ri
dt

= �vi,

wheremi is the mass of atomi, �ri and �vi are its po-
sition and velocity vectors, respectively.F is a force
2



J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185 177

ms,
ac-
d if
riv-

s a
er

ed
tal

is
ith
e-
tep.

er a
er

ion
sted
ic
in-

on.
er-
D

are
x-

as-
o-

ess
o be
rt-
in-

ng
unt

list
e

ch
hich
gh-

we
ime

the
ing
the

ga-
m
ork

a-
ge
e

n a
or
nd
-
for
r 26
f is
the
at-

st.
ore
ach
c-
ults
ffi-

dy-

ar-
si-
as
nly
up
ba-

ied
on

gas
n-
term describing pair-wise interactions between ato
F3 is a force term describes the three-body inter
tions, and many-body interactions can be adde
needed. The force on each atom is the spatial de
ative of potential energy that is generally written a
function of the position of the atom itself and oth
atoms.

In practice, only one or a few terms in Eq.(1) are
kept to simplify the problem. They are construct
from either fitting some properties to experimen
data or a quantum computation. Thus, classical MD
intrinsically cheaper in computation as compared w
ab initio electronic structure calculations, which r
quire solving Schrodinger’s equation at each time s

2.1.1. Interaction potential model
Potential energy can also be categorized as eith

short- or long-ranged interaction in nature. The form
(e.g., the L-J potential) only considers the interact
between the atoms geometrically nearby the intere
atom, while the latter (e.g., Coulomb potential in ion
solids or biological systems) needs to consider the
teraction far away from the atom under considerati
Because of the simplicity of the short-ranged int
action, it has been applied extensively in many M
simulations in the past[15], especially for liquids and
solids. In contrast, long-ranged interaction models
not commonly used in classical MD simulations e
cept for polarized molecules, such as water[16]. In
this paper, we are only interested in dealing with cl
sical MD using short-ranged interactions. The L-J p
tential will be used throughout the current study unl
otherwise specified. The proposed method can als
applied to other potential interactions if they are sho
ranged. Strategies employed for the short-ranged
teraction in the current study are introduced next.

2.1.2. Concept of neighbor list
In principle, all potentials on each atom resulti

from all other atoms have to be taken into acco
when computing the force—this scales as O(N2). In
practice, each atom stores an array containing the
(or neighbor list) [11] of atoms located within som
cutoff distance(rc = 2.5σ). Note thatσ is the zero-
potential distance of L-J potential. Basically, ea
neighbor list has to be updated at each time step, w
is very time-consuming. Thus, the radius of this nei
bor list is often extended to ber + δ, whereδ = 0.3σ ,
c
to reduce the frequency of updating. In contrast,
only have to update each neighbor list every 8–10 t
steps using the above choice. This reduces greatly
frequency of neighbor atom search. However, build
the neighbor list through searching all the atoms in
system is also very time-consuming.

2.1.3. Concept of link-cell + concept of neighbor list
Link-cell data structure provides a means of or

nizing information (position and velocities) of ato
into a form that avoids most of the unnecessary w
and thus reduces the computational cost to O(N). The
general idea of the link cell is to divide the simul
tion domain into a lattice of small cells having ed
length exceedingrc. In the current study, we take th
cell-edge length asrc + δ, which coincides with the
designated radius of neighbor list. Thus, atoms i
cell only interact with atoms either in the same cell
cells nearby. Details of implementation can be fou
in Rapaport[11] and only a brief description is pro
vided here. During the update of each neighbor list
each atom, we only search the atoms in the othe
neighboring cells and the cell where the atom itsel
located, rather than search through all the atoms in
computational domain. This can also reduce dram
ically the time required to build up the neighbor li
The price we have to pay is to add an array to st
the atoms in each cell and to update this array e
time step, which is straightforward in the cell stru
ture having equal edge length for all cells. Past res
show that this combination represents the most e
cient technique nowadays in classical molecular
namics simulation[11].

2.2. Parallel molecular dynamics simulation

In this current study, we focus on developing a p
allel MD method using dynamic domain decompo
tion by taking advantage of the existing link-cells
mentioned earlier. In this proposed method, not o
are the cells used to reduce the cost for building
the neighbor list, but also are used to serve as the
sic partitioning units. A similar idea has been appl
in the parallel implementation of the direct simulati
Monte Carlo (DSMC) method (e.g.,[19]), which is a
particle simulation technique often used in rarefied
dynamics. Note that in the following IPB stands for i
terprocessor boundary. General procedures (Fig. 1) in
the sequence include:



178 J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185
Fig. 1. Proposed flow chart for parallel molecular dynamics simulation using dynamic domain decomposition.

s
es-

d,
y

ors,

nd

the
1. Initialize the positions and velocities of all atom
and equally distribute the atoms among proc
sors;

2. Check if load balancing is required. If require
then first repartition the domain, followed b
communicate cell/atom data between process

renumber the local cell and atom numbers, a

update the neighbor list for each atom due to

data migration;



J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185 179

s in

list

and

le

x-
ula-
e
nt

om
8. If

ded
le.
sary
and
im-
as

ne
he
se

of

for
as
in

ur-
n-
-
c-
ed
h-
ta-
ver-
this
sh-
the

art-
At
er
xt
IS
wn
the
sor

e
ith
lying
d to
list
ch
er-
the
ta
n,

rat-
t be
tina-
data
so-

ir-
re
as

oad
ging
es.

esh
ect

p at
l
, it
e
too
he
f

ns
In-
ed

de-
3. Receive positions and velocities of other atom
the neighbor list for all cells near the IPB;

4. Compute force for all atoms;
5. Send force data to other atoms in the neighbor

for all cells near the IPB;
6. Integrate the acceleration to update positions

velocities for all atoms;
7. Apply boundary conditions to correct the partic

positions if necessary;
8. Check if preset total runtime is exceeded. If e

ceeded, then output the data and stop the sim
tion. If not, check if it is necessary to rebuild th
neighbor list of all atoms using the most rece
atom information;

9. If it is necessary to rebuild the neighbor list (N =
8 in the current study), then communicate at
data near the IPB and repeated the steps 2–
not necessary, then repeat steps 3–8.

Note that the subroutines included in the sha
region (Fig. 1) represent the load-balancing modu
In the above procedures, in addition to the neces
data communication when atoms cross the IPB
atom/cell data near the IPB, there are two more
portant steps in the proposed parallel MD method
compared with the serial MD implementation. O
is how to repartition the domain effectively and t
other is the decision policy for repartitioning. The
two steps are described next, respectively.

2.2.1. Repartitioning scheme
Under the framework of graph theory, centers

each link-cell are considered as thevertices and the
lines connecting them are considered asedges. Each
vertex and edge can be assigned with a weight
the purpose of partitioning. Graph partitioning h
been found very useful for an unstructured mesh
the computing community in the past. In the c
rent study, a parallel multilevel graph-partitioning ru
time library, PMETIS[18], is used as the repartition
ing tool in our PCMD code. Thus, the data stru
ture of the link-cell is reconfigured as unstructur
for graph-partitioning purpose. The multilevel grap
partitioning scheme uses the multilevel implemen
tion that matches and combines pairs of adjacent
tices to define a new graph and recursively iterate
procedure until the graph size falls under some thre
old. The coarsest graph is then partitioned and
partition is successively refined on all the graphs st
ing with the coarsest and ending with the original.
evolution of levels, the final partition of the coars
graph is used to give the initial partition for the ne
finer level. A corresponding parallel version, PMET
[18], uses an iterative optimization technique kno
as relative gain optimization, which both balances
workload and attempts to minimize the inter-proces
communication overhead.

This parallel multilevel graph partition runs on th
single program multiple data (SPMD) paradigm w
message passing in the expectation that the under
mesh will do the same. Each processor is assigne
a physical sub-domain and stores a double-linked
of the vertices within that sub-domain. However, ea
processor also maintains a “halo” of neighboring v
tices in other sub-domains. For the serial version,
migration of vertices simply involves transferring da
from one linked-list to another. In the parallel versio
this process is far more complicated than just mig
ing vertices. The newly created halo vertices mus
packed into messages as well, sent off to the des
tion processor, unpacked, and the pointer based
structure recreated there. This provides a possible
lution to the problem of adaptive load balancing[18].

2.2.2. Decision policy for repartitioning
MD represents a typical dynamic (or adaptive)

regular problem, i.e. the workload distributions a
known only at runtime, and can change dramatically
simulation proceeds, leading to a high degree of l
imbalance among the processors. This load-chan
situation is even obvious in simulating liquids or gas
Thus, the partitioning runtime library, PMETIS[18],
described in the above is used to repartition the m
based on some sort of decision policy. In the dir
simulation Monte Carlo (DSMC) simulation[17], it
has been shown that a decision policy based on sto
rise (SAR)[19] works well for improving the paralle
performance. However, from our preliminary study
does not work very well in the MD simulation sinc
the domain repartition is too frequent and, thus,
costly in practice. In addition, the data locality of t
MD simulation using link-cells is lower than that o
the DSMC simulation, which only considers collisio
(interaction) among atoms within the same cell.
stead, a simple threshold-like decision policy, term
“simple threshold scheme” (STS), is designed to



180 J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185

ply
e

e.g.
ms
ph
ni-
ors
ata
ing
ing
now
ng
one
m-
ion
s-
the
e

he
ior
es-
the
ics

a
at

ing
M
PI)

ted
ble
that
s-

are
of

la-

e,
-

in

por-

for
er-
f
nter,
la-

tial
ed
on

dur-
the
ula-

e
s
en-

ng
For
he
llel
sed.
25

, pe-
he

al

riti-

c-

the
c-

th a

es
id-
po-
cide the proper time to repartition. This scheme sim
asks for domain repartitioning if the workload in som
processor is detected over the specified threshold (
±20% of the average workload). The number of ato
in each link-cell is used as the weighting for gra
partitioning. Right after the repartition, the commu
cation between geometrically neighboring process
is required to transfer the cell number and particle d
to the destination processor, followed by renumber
of the cell and particle data into the local number
in the destination processor. Since all processors k
the geometrical information of all cells, renumberi
of the received cells in some specific processor is d
simply by adding up sequentially the local cell nu
bers for the new cells (as shown in the shaded reg
in Fig. 1). Similarly, the cells sent out to other proce
sors are simply removed sequentially by copying
information of the final cell onto the memory of th
sent cells. This decision policy for repartitioning t
domain is inherently advantageous in which no pr
knowledge of the evolution of the problem is nec
sary to determine the repartitioning interval, and
repartitioning can be expected to follow the dynam
of the problem.

The current PCMD code is implemented on
64-bit Itanium PC-cluster system running Linux OS
the National Center for High-performance Comput
in Taiwan (64-node, dual processor and 4 GB RA
per node). Standard message-passing interface (M
is used for data communication. It is thus expec
that the current PCMD code should be highly porta
among the memory-distributed parallel machines
is running with Linux (or equivalent) operating sy
tem.

3. Results and discussions

3.1. Problem descriptions and simulation conditions

Three test problems, including L-J(12,6) atoms
in condensed, vaporized and supercritical states,
chosen to test the current parallel implementation
the molecular dynamics simulation. Related simu
tion conditions are summarized inTable 1. Densities
(ρ∗ = Nσ 3/V ) are all taken to be 0.7 for convenienc
while temperatures(T ∗ = kT /ε) are varied to repre
sent different states. Note that the number of cells
,

Table 1
Simulation conditions for three different cases (condensed, va
ized and supercritical states)

Temp.(T ∗) Density(ρ∗) No. of link-cells

Condensed 0.7 0.7 75× 75× 75
Vaporized 1.1 0.7 75× 75× 75
Supercritical 0.7 0.7 39× 39× 39

Table 1represents the number of link-cells used
simulation. Note that the simulation volume is gen
ally much larger (∼10 times) than the initial volume o
FCC-arranged atomic structure near the system ce
except the case of supercritical state, which simu
tion volume is approximately the same as the ini
FCC volume. Each atom of an initially FCC-arrang
atomic structure is given random velocities based
the desired temperature and starts to run for 105 time
steps. Rescaling the kinetic energy of the system
ing runtime enforces the desired temperature of
simulation system for all three test cases. The sim
tion time step is 0.005 of the dimensionless MD tim
scale (or about 0.005× 10 fs). Current test problem
represent a more severe test for the parallel implem
tation of the MD method due to the rapidly changi
workload among processors during the simulation.
example, it is rather difficult to parallel compute t
condensed state efficiently if a conventional para
paradigm such as static domain decomposition is u
All results presented below were obtained using
processors, unless otherwise specified. In addition
riodic boundary conditions are used to simplify t
analysis in the current study.

3.2. Snapshots of MD evolution

Snapshots of the atomic distribution at the fin
time step (105 time steps) of the L-J atoms (∼1 million
atoms) for the condensed, vaporized and superc
cal states are illustrated, respectively, inFigs. 2(b)–(d).
Note thatFig. 2(a) shows the initial FCC atomic stru
ture and the simulation volume (75× 75× 75 cells)
for both the condensed and vaporized states. For
supercritical state, the size of the initial FCC stru
ture is the same as the other two cases, but wi
much smaller simulation volume (39× 39× 39 cells).
It is clear that the initial and final atomic structur
differ to a large extent for all three cases cons
ered. This renders the static spatial domain decom



J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185 181

densed
(a) (b)

(c) (d)

Fig. 2. Atomic structures of three test cases at 105 time steps: (a) initial FCC structure for the condensed and vaporized states; (b) final con
state; (c) final vaporized state; (d) final supercritical state.
en
se

n-
ra-
er

ized
ly

set
riti-
g
uta-
or
the

mu-

in
d,
the
cut

ese
ion
fi-

e, in
he
e
ys-
ain
red

tion

the
nal
of
o-

nts
he
ions
lain
dy,
sition very inefficient or even useless, which is oft
used for the large-scale MD simulation. In the ca
of the condensed state (Fig. 2(b)), a spherical liquid
droplet (∼25 nm in diameter) is formed at the ce
ter of the simulation system, around which compa
tively few vaporized atoms spread, due to the low
preset temperature (0.7). In the case of the vapor
state (Fig. 2(c)), the atoms spread rather random
uniform in the simulation domain due to the pre
higher temperature (1.1). In the case of the superc
cal state (Fig. 2(d)), several irregular cavities havin
vaporized atoms inside are present in the comp
tional domain, in which the state is neither liquid n
gas in essence. Note that the spatial distribution of
cavities does not remain unchanged during the si
lation.

3.3. Evolution of domain decomposition

Fig. 3(a)–(b), (c)–(d), and (e)–(f) show the doma
decompositions (500�t , and final) for the condense
vaporized and supercritical states, respectively, on
system surface and on some special cross sections
 -

ting through the system center. By comparing th
figures, we can find that the domain decomposit
changes to a large extent from the initial to the
nal state, except the case of the supercritical stat
which the initial FCC structure almost occupies t
simulation volume. InFig. 3(b) (condensed state), th
domain size of the droplet near the center the s
tem center is very small as compared with the dom
size in other regions since the atoms are cluste
near the system center. In contrast, the distribu
of the domain size is relatively uniform inFig. 3(d)
(vaporized state) in the simulation volume since
atoms are spreading randomly in the computatio
domain.Fig. 3(f) shows the domain decomposition
the supercritical state, in which the distribution of d
main is similar to the vaporized state (Fig. 3(d)) but
with higher ordered structure. The above argume
about the evolution of domain decomposition in t
test cases, along with the time-dependent distribut
of the number of atoms in each processor, can exp
the parallel performance obtained in the current stu
which are introduced next.



182 J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185

nal states
teps (super-
(a) (b)

(c) (d)

(e) (f)

Fig. 3. Evolution of domain decomposition simulation domain on the system surface and special sections for the different atomic fi
(25 processors): (a) at 500 steps (condensed); (b) final (condensed); (c) at 500 steps (vaporized); (d) final (vaporized); (e) at 500 s
critical); (f) final (supercritical).
of
r of
ed,
ors

ber
).

pe-
nly
ess
ral
3.4. Distribution of time history of atom numbers

Fig. 4(a)–(c) show the distribution of the number
atoms in each processor as a function of the numbe
simulation time steps, respectively, for the condens
vaporized and supercritical states using 25 process
 ,

along with the upper/lower thresholds of the num
of atoms (±20%, dotted lines, in the current study
In these figures, we do not intend to identify any s
cific processor used in the simulation. We are o
interested in showing the general trend of effectiven
of the dynamic domain decomposition in a gene



J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185 183

sed state;
(a) (b)

(c)

Fig. 4. Distribution of the number of atoms in each processor as a function of simulation time steps (25 processors): (a) conden
(b) vaporized state; (c) supercritical state.
e-
rv-
ral,
ly
es-
ors.
w)
m-
any

n in
ber
er

ive
lti-

par-
at
can
but
m

or-

he
-
for
sense. In addition, we can roughly identify how fr
quent the repartition is from these figures by obse
ing the abrupt change of number of atoms. In gene
the repartition in PCMD is rather effective in even
redistributing the number of atoms in each proc
sor, or approximately, the workload among process
However, the load balancing in some (relatively fe
processors is not so effective in bringing up the nu
ber of atoms to the averaged value due to too m
atoms in a cell (e.g.,Figs. 4(a) and (c)). The situation
is much better for the vaporized-state case as show
Fig. 4(b), where the repartition can keep the num
of atoms roughly within the range of upper and low
threshold values. Another reason for this ineffect
domain decomposition may be related to the mu
level graph-partitioning tool (PMETIS[18]) used in
the current study, which assumes it optimizes the
tition heuristically, rather than theoretically. Note th
a more severe criterion of the threshold values
result in better load balance among processors,
possibly computational inefficiency can result fro
the frequent repartition of the domain. Another imp
tant observation fromFigs. 4(a)–(c) is that it requires
most frequent repartition during the simulation for t
vaporized-state case (Fig. 4(b)) due to the fast mov
ing atoms, while it requires much less repartition



184 J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185

tical states).
Fig. 5. Parallel speedup as a function of the number of processors for three different test cases (condensed, vaporized and supercri
rom
tter
ion-
und
ced

-up
the
ted
p is
l-

llel
the
ted
es-

on
ugh
the
e

uent
in,
in

m-
of
rti-

od
le-
of

ors,
ng a

m-
dy-
ge-
ster
ro-
g
om-
eme
the supercritical-state case (Fig. 4(c)). Thus, it is not
necessary that a better load balancing resulting f
effective domain decomposition can lead to a be
parallel speed-up since the repartition is computat
ally expensive. The above observation has a profo
influence on the parallel speed-up, which is introdu
next.

3.5. Parallel performance

Fig. 5 shows the corresponding parallel speed
for all three test cases (up to 49 processors) in
current study along with the ideal speed-up (dot
line). Using 49 processors, the parallel speed-u
32 (∼65% parallel efficiency) for the supercritica
state case and 28 (∼57% parallel efficiency) for the
condensed-state case, while it is 17 (or 35% para
efficiency) for the vaporized-state case. Note that
above parallel speed-up/efficiency are all compu
assuming the value of speed-up as two for two proc
sors. It is attributed to the too frequent repartiti
of the domain in the vaporized-state case, altho
slightly better load balancing is observed than in
other two cases (Fig. 4(b)). This could further degrad
the speed-up due to the rapid increase of the freq
communication required for repartitioning the doma
in addition to the large number of processors, which
turn complicates and slows down the network co
munication. This can be shown by the increase
speed-up to 21 (49 processors) if we do not repa
tion the domain after the thermal equilibration peri
(∼30 000 time steps). Using the current parallel imp
mentation of the MD code, approximately 70–80%
parallel efficiency can be achieved with 25 process
which may be accessible for most researchers usi
practical PC-cluster system.

4. Conclusions

In the current study, a parallel molecular dyna
ics simulation for short-ranged interactions using
namic domain decomposition is developed for lar
scale problems on the memory-distributed PC-clu
system, which uses MPI as the communication p
tocol. In the method, a multi-level graph-partitionin
scheme is used to dynamically re-decompose the c
putational domain based on a simple threshold sch



J.-S. Wu et al. / Computer Physics Communications 170 (2005) 175–185 185

ms
old
llel
es,
ical
s,

e.
he
eved
y if
em-
-
let

and

nal
he
nks
nal
ci-
to
r-

ol
la-

la-
m,

ics
ale,

n
7–

B-

uter
me-
108

m-
3)

cs
r 46

s
. 96

la-
01)

n,

ular

tion

K.
nt

88.
m-

16.
cs
and
996)

dy-
p.

ntre

ity
ber

al-
ns.
(STS), which is expected to keep the number of ato
in each processor within the range of the thresh
values. Parallel performance of the current para
MD method is studied using three different test cas
including the condensed, vaporized and supercrit
states, using approximately one million L-J atom
which all are initialized from a FCC atomic structur
Results show that fairly good parallel efficiency in t
range of 40–65% using 49 processors can be achi
for the three test cases, compared with low efficienc
static domain decomposition or other methods are
ployed. Application of this parallel MD code to com
pute the dynamical processes involved with drop
evaporations and collisions is currently in progress
will be reported in the near future.

Acknowledgements

This investigation was supported by the Natio
Science Council, Grant No. 93-2212-E-009-015. T
authors also would like to express their sincere tha
to the computing resources provided by the Natio
Center for High-speed Computing of National S
ence Council of Taiwan. Also, sincere thanks go
Prof. Karypis at University of Minnesota for gene
ously providing the partitioning library, PMETIS.

References

[1] R. Komanduri, N. Chandrasekaran, L.M. Raff, Effect of to
geometry in nanometric cutting: a molecular dynamics simu
tion approach, Wear 219 (1998) 84–97.

[2] R. Komanduri, N. Chandrasekaran, L.M. Raff, MD simu
tion of indentation and scratching of single crystal aluminu
Wear 240 (2000) 113–143.

[3] T.H. Fang, C.I. Weng, Three-dimensional molecular dynam
analysis of processing using a pin tool on the atomic sc
Nanotechnology 11 (2000) 148–153.
[4] K. Cheng, X. Luo, R. Ward, et al., Modeling and simulatio
of the tool wear in nanometric cutting, Wear 255 (2003) 142
1432.

[5] Y.M. Pan, T.J. Hou, M.J. Ji, et al., MD simulations of PTP 1
inhibitor complex, Acta Chim. Sinica 62 (2004) 148–152.

[6] L.J. Smith, H.J.C. Berendsen, W.R. van Gunsteren, Comp
simulation of urea–water mixtures: a test of force field para
ters for use in biomolecular simulation, J. Phys. Chem. B
(2004) 1065–1071.

[7] P.J. Connolly, A.S. Stern, C.J. Turner, et al., Molecular dyna
ics of the long neurotoxin LSIII, Biochemistry-US 42 (200
14443–14451.

[8] L. Consolini, S.K. Aggarwal, S. Murad, A molecular dynami
simulation of droplet evaporation, Int. J. Heat Mass Transfe
(2003) 3179–3188.

[9] L.N. Long, M.M. Micci, B.C. Wong, Molecular dynamic
simulations of droplet evaporation, Comput. Phys. Comm
(1996) 167–172.

[10] J.H. Walther, P. Koumoutsakos, Molecular dynamics simu
tions of nanodroplet evaporation, J. Heat Transfer 123 (20
741–748.

[11] D.C. Rapaport, The Art of Molecular Dynamics Simulatio
Cambridge University Press, UK, 1995.

[12] S. Plimpton, Fast parallel algorithms for short-range molec
dynamics, J. Comput. Phys. 117 (1995) 1–19.

[13] B.M. Boghosian, Computational physics on the connec
machine, Comput. Phys. (1990).

[14] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.
Salmon, D.W. Walker, Solving Problems on Concurre
Processors, vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 19

[15] S. Matsunaga, Structural study on liquid Au–Cs alloys by co
puter simulations, J. Phys. Soc. Japan 69 (2000) 1712–17

[16] D. DiCola, A. Deriu, M. Sampoli, et al., Proton dynami
in supercooled water by molecular dynamics simulations
quasielastic neutron scattering, J. Chem. Phys. 104 (11) (1
4223–4232.

[17] J.-S. Wu, K.-C. Tseng, Concurrent DSMC method using
namic domain decomposition, in: Proc. 23rd Internat. Sym
on Rarefied Gas Dynamics, Whistler Conference Ce
Whistler, British Columbia, July 2002, pp. 20–25.

[18] G. Karypis, K. Schloegel, V. Kumar, ParMetis, Univers
of Minnesota, Department of Computer Science, Septem
1998.

[19] D.M. Nicol, J.H. Saltz, et al., Dynamic remapping of par
lel computations with varying resource demands, IEEE Tra
Comput. 37 (1988) 1073–1087.


	Parallel implementation of molecular dynamics simulation  for short-ranged interaction
	Introduction
	Numerical method
	Molecular dynamics simulation
	Interaction potential model
	Concept of neighbor list
	Concept of link-cell + concept of neighbor list

	Parallel molecular dynamics simulation
	Repartitioning scheme
	Decision policy for repartitioning


	Results and discussions
	Problem descriptions and simulation conditions
	Snapshots of MD evolution
	Evolution of domain decomposition
	Distribution of time history of atom numbers
	Parallel performance

	Conclusions
	Acknowledgements
	References


