

Dissociation of energy-selected c - C 2 H 4 S + in a region 10.6–11.8 eV: Threshold photoelectron—photoion coincidence experiments and quantum-chemical calculations

[Yung-Sheng Fang](http://scitation.aip.org/search?value1=Yung-Sheng+Fang&option1=author), [I-Feng Lin,](http://scitation.aip.org/search?value1=I-Feng+Lin&option1=author) [Yao-Chang Lee](http://scitation.aip.org/search?value1=Yao-Chang+Lee&option1=author), and [Su-Yu Chiang](http://scitation.aip.org/search?value1=Su-Yu+Chiang&option1=author)

Citation: [The Journal of Chemical Physics](http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov) **123**, 054312 (2005); doi: 10.1063/1.1993589 View online: <http://dx.doi.org/10.1063/1.1993589> View Table of Contents: <http://scitation.aip.org/content/aip/journal/jcp/123/5?ver=pdfcov> Published by the [AIP Publishing](http://scitation.aip.org/content/aip?ver=pdfcov)

Articles you may be interested in

[Exploring the dynamics of reaction N + SiH 4 with crossed molecular-beam experiments and quantum-chemical](http://scitation.aip.org/content/aip/journal/jcp/129/17/10.1063/1.3005652?ver=pdfcov) [calculations](http://scitation.aip.org/content/aip/journal/jcp/129/17/10.1063/1.3005652?ver=pdfcov)

J. Chem. Phys. **129**, 174304 (2008); 10.1063/1.3005652

Dynamics of the reaction C (P_3) + SiH 4 : Experiments and calculations J. Chem. Phys. **129**, 164304 (2008); 10.1063/1.3000005

Production of methyl-oxonium ion and its complexes in the core-excited ($HC(O)OCH3$) n clusters: H H + [transfer from the carbonyl](http://scitation.aip.org/content/aip/journal/jcp/123/12/10.1063/1.2044727?ver=pdfcov) J. Chem. Phys. **123**, 124309 (2005); 10.1063/1.2044727

UV photodissociation of the van der Waals dimer (C H 3 I) 2 revisited: Pathways giving rise to ionic features J. Chem. Phys. **122**, 204301 (2005); 10.1063/1.1909083

[Laser desorption time-of-flight mass spectrometry of fluorocarbon films synthesized by C 4 F 8 / H 2 plasmas](http://scitation.aip.org/content/avs/journal/jvsta/21/4/10.1116/1.1577135?ver=pdfcov) J. Vac. Sci. Technol. A **21**, 866 (2003); 10.1116/1.1577135

Re-register for Table of Content Alerts **AIP Publishing**

Dissociation of energy-selected c **-C₂H₄S⁺ in a region 10.6–11.8 eV: Threshold photoelectron—photoion coincidence experiments and quantum-chemical calculations**

Yung-Sheng Fang

Department of Applied Chemistry, National Chiao Tung University, 1001, Ta Hsueh Road, Hsinchu 30010, Taiwan

I-Feng Lin, Yao-Chang Lee, and Su-Yu Chiang^{a)}

National Synchrotron Radiation Research Center, 101, Hsin Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan

Received 20 January 2005; accepted 13 June 2005; published online 9 August 2005-

Dissociation of energy-selected c -C₂H₄S⁺ was investigated in a region of 10.6–11.8 eV with a threshold photoelectron-photoion coincidence technique and a synchrotron as a source of vacuum ultraviolet radiation. Branching ratios and average releases of kinetic energy in channels of formation of c -C₂H₄S⁺, CH₃CS⁺, and HCS⁺ were obtained from well-resolved time-of-flight peaks in coincidence mass spectra. Measured average releases of kinetic energy for channel $CH₃CS⁺$ +H of least energy are substantial and much greater than calculated with quasiequilibrium theory; in contrast, small releases of kinetic energy near the appearance onset for channel $HCS^+ + CH_3$ agree satisfactorily with statistical calculations. Calculations of molecular electronic structures and energetics of c -C₂H₄S⁺ and C₂H₃S⁺ isomers and various fragments and transition states were also performed with Gaussian 3 method to establish dissociation mechanisms. A predicted dissociation energy of 11.05 eV for c -C₂H₄S \rightarrow HCS⁺+CH₃ agrees with a linearly extrapolated threshold at 10.99 ± 0.04 eV and a predicted dissociation mechanism that c -C₂H₄S⁺ isomerizes to CH₃CHS⁺ before dissociating to $HCS^+ + CH_3$ supports the experimental results. The large releases of kinetic energy for channel $CH_3CS^+ + H$ might result from a dissociation mechanism according to which c -C₂H₄S⁺ isomerizes to a local minimum CH₃CSH⁺ and then dissociates through a transition state to form CH3CS+ +H. © *2005 American Institute of Physics*. DOI: 10.1063/1.1993589

I. INTRODUCTION

Photodissociation (PD) and photoionization (PI) of thiirane $(c - C_2H_4S)$ are important topics from both experimental and theoretical perspectives because the large ring strain facilitates the ring-opening processes and isomerization, and also because they offer a powerful means of obtaining information about the structures and energetics of important radicals and ions. $1-8$ For example, photodissociation of c -C₂H₄S to form C₂H₄+S has been investigated with excitation at 193 nm; $3.9-11$ understanding of energetics of triplet $C_2H_4(^3B_{1u})$ was thus obtained with photofragmenttranslational spectroscopy (PTS) using a tunable synchrotron light to probe products selectively.³ Photodissociation to produce important species H_2S , C_2H_2 , CH_4 , H_2 , and S pertinent to combustion and atmospheric chemistry was also reported with excitation in the region of $180-240$ nm.¹²

Butler and Baer investigated the dissociative photoionization of c -C₂H₄S to form fragment ions HCS⁺ and C₂H₃S⁺ with photoionization mass spectroscopy (PIMS) and derived their heat of formation according to the determined appearance energies (AEs) and existing thermochemical data, but the derived heat of formation 245±2 kcal mol−1 for HCS+ is

greater than 233±2 kcal mol−1 obtained from dissociative photoionization of c -C₃H₆S and c -C₄H₈S.¹ They also determined an average release of 0.03 eV of kinetic energy for the formation of HCS^+ at the dissociation threshold from timeof-flight (TOF) peaks in photoelectron-photoion coincidence (PEPICO) spectra of c -C₂H₄S and proposed an angular structure of HCS⁺ on a basis that the experimental value is significantly less than the statistically expected 0.1 $eV^{1,2}$.

We have measured photoionization mass spectra of c -C₂H₄S in a region of \sim 9–20 eV using synchrotron radiation as an ionization source.¹³ The experimental ionization energy (IE) at 90.51 ± 0.003 eV agrees satisfactorily with a theoretical prediction of 9.07 eV for the formation of c -C₂H₄S⁺, reflecting a small structural alternation upon ionization. Five major fragment ions— $C_2H_3S^+$, $C_2H_2S^+$, HCS^+ , H_2S^+ , and $C_2H_3^+$ —were observed with their respective AEs determined from the onset of photoionization efficiency (PIE) curves and six dissociation channels—c-C₂H₄S⁺ $\rightarrow CH_3CS^+ + H$, HCS⁺+CH₃, H₂S⁺+C₂H₂, C₂H₃⁺+HS, $CH_2CS^+ + H_2$, and $CHCSH^+ + H_2$ —are established based on the comparison of experimental AE values and theoretically predicted dissociation energies.

As the dissociation channel c -C₂H₄S⁺ → CH₃CS⁺+H of least energy likely involves structural alternation during dissociation, substantial kinetic energy is expected to be released on dissociation if reverse activation barriers exist. The

a)Author to whom correspondence should be addressed. Fax: (886)3-578-3813. Electronic mail: schiang@nsrrc.org.tw

kinetic energy released after dissociative photoionization is not, however, taken into account in determination of AE from PIMS experiments.^{14,15} The previous proposition of formation of an angular structure of HCS⁺ from dissociation of c -C₂H₄S⁺ through a tight and early transition state also needs more experimental and theoretical studies to understand the dissociation mechanisms. Our aim in this work is to investigate the dissociation properties of c -C₂H₄S⁺ to CH₃CS⁺+H and $HCS^+ + CH_3$ with threshold photoelectron-photoion coincidence (TPEPICO) experiments and quantum-chemical calculations. We measured well-resolved TPEPICO mass spectra of c -C₂H₄S excited at photon energies in a region of 10.6–11.8 eV. From the area and the full width at half maximum (FWHM) of c -C₂H₄S⁺, CH₃CS⁺, and HCS⁺ TOF peaks in coincidence mass spectra, we obtained branching ratios and average releases of kinetic energies at various photon energies, and discuss plausible dissociation mechanisms on this basis and from calculations.

II. EXPERIMENTS

Our apparatus is described in detail elsewhere.^{16,17} Briefly, we performed coincidence measurements with a molecular-beam/threshold-photoelectron-photoion-coincidence (MB/TPEPICO) system on the Seya-Namioka beamline at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. Photon energies with resolution of 30 meV and photon flux $>10^9$ photons s⁻¹ in a region of 10.6– 11.8 eV were selected with Seya-Namioka monochromator $(1 \text{ m}; 1200 \text{ grooves mm}^{-1}; \text{slit width of } 0.15 \text{ mm})$. Absolute photon energies were calibrated within ±0.003 eV on the measurement of Rydberg peaks in the threshold photoelectron spectra (TPES) of Ar and Kr.

 c -C₂H₄S and He in a mixture at a total stagnation pressure of 280 Torr and with a seed ratio \sim 15% were expanded to form a molecular beam. The monochromatic vacuum ultraviolet (VUV) radiation intersected perpendicularly with the beam to ionize cooled c -C₂H₄S molecules in the ionization chamber. The threshold electrons and ions produced were then analyzed with a threshold photoelectron spectrometer and a TOF mass spectrometer, respectively; dual microchannel plates served as detectors in both spectrometers.

A dc field of 1.0 V cm^{-1} in the interaction region was used to extract threshold electrons and a pulsed field of 21 V cm⁻¹ with a duration of 30 μ s was applied to extract ions on detecting a threshold electron. Signals of detected threshold electrons and ions were fed into a time-to-digital converter (TDC) to record flight durations of ions that were detected within 30 μ s of each cycle triggered with a threshold electron. To eliminate a large contribution from uncorrelated ions piling up in the interaction region, a second coincidence spectrum triggered with a signal generated randomly relative to the preceding threshold electron signal was accumulated following each threshold electron-triggered coincidence cycle. Subtraction of the randomly generated coincidence spectrum from the electron-triggered coincidence spectrum yielded a true coincidence spectrum. All data acquisition was controlled with a computer via a computer as-

sisted measurement and control (CAMAC) interface, and output from the TDC converter was transferred to the computer for further processing.

 c -C₂H₄S (Aldrich, \sim 98%) was degassed with several freeze-pump-thaw cycles before use and was kept in an ice bath at 0° C during experiments. He (>99.999%), Kr $($ >99.99%), and Ar $($ >99.99%) were used without further purification.

III. THEORETICAL CALCULATIONS

We calculated the molecular structures and energies of c -C₂H₄S and species pertinent to this work with the Gaussian 3 (G3) method using the GAUSSIAN 2003 program.¹⁸ The equilibrium structure of each species was fully optimized at the $MP2(full)/6-31G(d)$ level and single-point calculations of G3 energy were performed at levels $MP4/6-31G(d)$, $QCSID(T)/6-31G(d)$, $MP4/6-31+G(d)$, $MP4/6-31G(2df, p)$, and MP2 (full)/G3 large; G3 large is a modified $6-311+G(3df,2p)$ basis set. Additional energies include a spin-orbit correction for atomic species, higherlevel corrections for atoms and molecules, and a zero-point vibrational energy; the HF/6-31G(d) vibrational frequencies are scaled by 0.8929 and applied for the correction of zeropoint vibrational energy. All identified structures were verified to have only real vibrational frequencies at the MP2(full)/6-31G(d) level, except transition structures that have one imaginary vibrational frequency. Transition structures for dissociation channels c -C₂H₄S⁺ \rightarrow CH₃CS⁺+H and $HCS^+ + CH_3$ were located in this work; each dissociation path was confirmed with intrinsic reaction coordinate (IRC) calculations.

IV. RESULTS AND DISCUSSION

A. Coincidence TOF spectra in 10.6–11.8 eV

Coincidence mass spectra of $c - C_2H_4S$ having wellresolved TOF peaks were recorded at selected photon energies in a region of 10.6–11.8 eV with 1-ns resolution and corrected for a false coincidence background. Figures $1(a)-1(e)$ show the corrected coincidence TOF spectra of *c*-C₂H₄S excited at 9.06, 10.83, 10.88, 10.98, and 11.04 eV; the solid lines indicate the TOF peaks fitted to Gaussian shapes and all spectra are normalized to 7000 total ion counts. Ion signals at *m*/*z*=59, 60, 61, and 62, corresponding to isomeric structures of $C_2H_3S^+$, c - $C_2H_4S^+$, c - $^{13}C_2H_4S^+$, and c -C₂H₄³⁴S⁺, respectively, were identified according to ion flight durations calculated with an equation T_o /ns $=2175.2(m/z)^{1/2}+231.1$ obtained from coincidence TOF spectra of He, Ar, and Kr excited at photon energies near their ionization thresholds.

In Fig. 1(a), only signals attributed to parent ions c -C₂H₄S⁺ and their two isotopic variants are observed; no attempt was made to fit the ion signals of those variants at greater photon energies because they were not abundant. The TOF peak of c -C₂H₄S⁺ fitted to a Gaussian profile has a FWHM of 26 ns; accordingly the transverse temperature of the molecular beam is calculated to be 10 K.¹⁹ This result indicates a small transverse velocity of the skimmed molecular beam along the detection axis and negligible c -C₂H₄S⁺

FIG. 1. Coincidence TOF spectrum of c -C₂H₄S excited at photon energies (a) 8.89, (b) 10.83, (c) 10.88, (d) 10.98, and (e) 11.04 eV.

signals resulting from thermal (298 K) background that would broaden a TOF peak. In Figs. $1(b)-1(e)$, a wellresolved and symmetrically broadened TOF peak of fragment ion $C_2H_3S^+$ is also observed; the broadened TOF peak indicates the substantial release of kinetic energy upon dissociation and its bandwidth and intensity increase with increasing photon energy.

Figures $2(a)-2(e)$ show corrected coincidence TOF spectra of *c*-C₂H₄S excited at 11.13, 11.31, 11.50, 11.71, and

FIG. 2. Coincidence TOF spectrum of c -C₂H₄S excited at photon energies (a) 11.13, (b) 11.31, (c) 11.50, (d) 11.71, and (e) 11.81 eV.

11.81 eV; all spectra are normalized to 7000 total ion counts. In these figures, a broadened TOF peak of fragment ion HCS^+ is observed in addition to those of c -C₂H₄S⁺ and $C_2H_3S^+$. The broadening also reflects the release of kinetic energy upon dissociation and was fitted well to a Gaussian shape; moreover, its bandwidth and intensity increase with increasing photon energy. Also discernible in the figures, c -C₂H₄S⁺ signals become less distinct but remain nearly constant at greater photon energies. The constantly small c -C₂H₄S⁺ signals are attributable to coincidences with hot electrons due to the hot-electron tail function of our threshold electron analyzer, because a continuous background through the Franck-Condon gap region of 10.0–10.7 eV is observed in our TPES and this continuum could extend to a band that is associated with removal of a σ_a electron in the region of 10.9–11.8 eV.^{20–22} We observed also a small TOF peak at $m/z = 53$, not shown in Figs. 1 and 2, at photon energies smaller than 11.71 eV, but its formation as a result of dissociation of c -C₂H₄S⁺ is excluded because its TOF peak is narrow, \sim 20 ns; its source is unclear, but likely an impurity in the sample.

B. Theoretical calculations of dissociation energies and vibrational frequencies

We obtained fully optimized structures [MP2(full)/ $6-31G(d)$ of the five most stable isomers of c -C₂H₄S⁺-CH₃CHS⁺(1), cis -CH₂CHSH⁺(2a), , *trans*- $CH_2CHSH^+(2b)$, $c-C_2H_4S^+(3)$, and $CH_2SCH_2^+(4)$, three isomers of $C_2H_3S^+$ –CH₃CS⁺(5), $CH_2CSH^+(6),$ c -C₂H₃S⁺(7), HCS⁺, CH₃, H, and species at local minimum and transition states that occur in isomerization processes of c -C₂H₄S⁺. Predicted structural parameters for c -C₂H₄S⁺, $CH_2SCH_2^+$, CH_3CS^+ , CH_2CSH^+ , and $c-C_2H_3S^+$ agree with previous calculations using varied methods in the literature.^{23,24}

Table I lists the calculated G3 energies $(E_0 / \text{hartree})$ for species pertinent to this work and Table II lists the predicted ionization energies and dissociation energies $(\Delta E/eV)$ calculated from Table I. According to Table II, predicted IE for the formation of $CH_3CHS^+(1)$, *cis*-CH₂CHSH⁺(2a), *trans*-CH₂CHSH⁺(2b), c -C₂H₄S⁺(3), and CH₂SCH₂⁺(4) are 8.85, 8.89, 8.91, 9.07, and 9.37 eV, respectively; CH_3CHS^+ is the most stable structure among the five isomers of c -C₂H₄S⁺, but *cis*- and *trans*-CH₂CHSH⁺ have energies only 0.04 and 0.06 eV greater than that for $CH₃CHS⁺$, respectively. A prediction of 9.07 eV for the formation of c -C₂H₄S⁺ agrees satisfactorily with literature values IE=9.04±0.01, 9.051 ± 0.003 , or 9.051 ± 0.006 eV determined in various experiments;^{2,13,15} this result reflects no significant structural alternation from c -C₂H₄S to c -C₂H₄S⁺ and is associated with removal of a nonbonding electron on the S atom upon ionization.

Predicted dissociation energies for $c - C_2H_4S$ \rightarrow CH₃CS⁺(5)+H, CH₂CSH⁺(6)+H, and *c*-C₂H₃S⁺(7)+H are 10.51, 11.61, and 11.74 eV, respectively. CH_3CS^+ has the least energy among three isomers of $C_2H_3S^+$; unstable CH_2CHS^+ , unlike $CH_2CHSH^+(2a, 2b)$, with one imaginary frequency corresponds to no local minimum. In contrast to

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 140.113.38.11 On: Wed, 30 Apr 2014 06:26:13

TABLE I. Calculated G3 energies (E_0) for species pertinent to dissociation channels c -C₂H₄S⁺ \rightarrow CH₃CS⁺+H and HCS⁺+CH₃.

Species	Symmetry	E_0 /hartree
c -C ₂ H ₄ S	$C_{2n}({}^1A_1)$	-476.56145
$CH3CHS+(1)$	$C_s({}^2A')$	-476.23622
cis -CH ₂ CHSH ⁺ $(2a)$	$C_s({}^2A'')$	-476.23475
trans-CH ₂ CHSH ⁺ (2b)	$C_s({}^2A'')$	-476.23385
c -C ₂ H ₄ S ⁺ (3)	$C_{2v}({}^2B_1)$	-476.22832
$CH2SCH2+(4)$	$C_{2n}({}^2A_2)$	-476.21704
$CH3CS+(5)$	$C_{3v}({}^1A_1)$	-475.67411
$CH2CSH+(6)$	$C_s({}^1A')$	-475.63377
c -C ₂ H ₃ S ⁺ (7)	$C_s({}^1A')$	-475.62884
$HCS+$	$C_{\alpha n}({}^1\Sigma)$	-436.36196
CH ₃	$D_{3h}({}^2A''_2)$	-39.79330
H	(^{2}S)	-0.50100
TS ₁	$C_1({}^2A)$	-476.15671
$TS1-2$	$C_1({}^2A)$	-476.18702
TS ₂	$C_1({}^2A)$	-476.18050
TS ₃	$C_1({}^2A)$	-476.15987
TS4	$C_s({}^2A')$	-476.16409
$LM1-1$	$C_1({}^2A)$	-476.18743
$LM1-2$	$C_1({}^2A)$	-476.18768
LM3	$C_s({}^2A')$	-476.19997

dissociation $c - C_2H_4O^+ \rightarrow c - C_2H_3O^+ + H$ reported previously,²⁵ the formation of c -C₂H₃S⁺ is excluded as its predicted dissociation energy of 11.74 eV is much greater than the experimental AE value of 10.71 ± 0.01 eV determined in PIMS experiments;^{2,13} $CH₃CS⁺$ is the most likely structure on energetic grounds despite a small difference of 0.2 eV between predicted and experimental values.

A predicted dissociation energy of 11.05 eV for c -C₂H₄S \rightarrow HCS⁺+CH₃ is near previously reported AE values of 11.13 ± 0.04 and 11.13 ± 0.01 eV for the formation of HCS^{+ 2,13} This small discrepancy supports an observation of a small release of kinetic energy near the dissociation threshold reported from a previous PEPICO investigation and in

TABLE II. Predicted ionization energies and relative energies (ΔE) for species pertinent to this work.

Species	$\Delta E/eV$
c -C ₂ H ₄ S \rightarrow CH ₃ CHS ⁺ (1)	8.85
\rightarrow <i>cis</i> -CH ₂ CHSH ⁺ (2a)	8.89
\rightarrow trans-CH ₂ CHSH ⁺ (2b)	8.91
\rightarrow c-C ₂ H ₄ S ⁺ (3)	9.07
\rightarrow CH ₂ SCH ₂ ⁺ (4)	9.37
$\rightarrow CH_3CS^+(5)+H$	10.51
\rightarrow CH ₂ CSH ⁺ (6)+H	11.61
\rightarrow c-C ₂ H ₃ S ⁺ (7)+H	11.74
\rightarrow HCS ⁺ +CH ₃	11.05
\rightarrow TS1	11.01
\rightarrow TS1-2	10.19
\rightarrow TS2	10.37
\rightarrow TS3	10.93
\rightarrow TS4	10.81
$\rightarrow LM1-1$	10.18
\rightarrow LM1-2	10.17
\rightarrow LM3	9.84

TABLE III. Vibrational wave numbers of ground-state CH_3CS^+ and HCS^+ calculated at the HF level and scaled by 0.8929.

Ion	Modes	Vibrational wave numbers/ cm^{-1}
$CH3CS+$	$v_1(e)$	2937
	$v_2(a_1)$	2852
	$v_3(a_1)$	1585
	$v_4(e)$	1381
	$v_5(a_1)$	1365
	$v_6(e)$	991
	$v_7(a_1)$	715
	$v_8(e)$	336
$HCS+$	$v_1(\sigma)$	3122
	$v_2(\pi)$	788
	$v_3(\sigma)$	1421

this work, which are discussed later. Especially noteworthy is our predicted structure of HCS⁺ at the threshold that is linear, not angular as reported previously; $¹$ a previous propo-</sup> sition of a tight and early transition state for this dissociation channel to form a bent HCS⁺ is thus excluded.

Vibrational wave numbers of $CH₃CHS⁺$ for eight normal modes and of HCS⁺ for four normal modes in their ground states calculated at the HF/6-31 $G(d)$ level and scaled by 0.8929 are listed in Table III and used for subsequent quasiequilibrium theory (QET) calculations. Scaled vibrational wave numbers 3122 and 788 cm⁻¹ for HCS⁺ are consistent with the experimental values of 3141 and 766 cm^{-1.26}

C. Branching ratios and average releases of kinetic energy

Figure 3 shows the branching ratios of c -C₂H₄S⁺ and fragment ions CH_3CS^+ and HCS^+ in the region of 10.6–11.8 eV obtained from the area ratios of TOF peaks in coincidence spectra. Fragment ion $CH₃CS⁺$ appears at threshold \sim 10.76 eV and then increases to a crossing point with *c*- $C_2H_4S^+$ at 10.87 eV before reaching a maximum at \sim 11.18 eV, after which it diminishes toward greater photon energies because of the formation of HCS⁺. Fragment ion HCS^+ appears at an onset \sim 11.13 eV that lies between the onset at \sim 10.7 eV and the maximum at 11.37 eV of the first excited electronic state of c -C₂H₄S⁺; formation of HCS⁺ is thus likely due to a new dissociation channel opening as the

FIG. 3. Branching ratios of c -C₂H₄S⁺, CH₃CS⁺, and HCS⁺ in a region 10.6–11.8 eV; fractional abundances of these three ions were obtained from their total signals.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 140.113.38.11 On: Wed, 30 Apr 2014 06:26:13

TABLE IV. Calculated average release of kinetic energies from the full width at half maximum (FWHM) at selected photon energies for dissociation channels c -C₂H₄S⁺ \rightarrow CH₃CS⁺+H and HCS⁺+CH₃.

	CH_3CS^+		$HCS+$	
PE/eV	FWHM/ns	$\langle KE \rangle / eV$	FWHM/ns	$\langle KE \rangle / eV$
10.83	62.4	0.434		
10.86	62.4	0.434		
10.88	62.4	0.434		
10.93	63.9	0.459		
10.98	64.9	0.475		
11.04	65.1	0.479		
11.08	66.3	0.500		
11.10	67.5	0.520		
11.11	68.4	0.537		
11.13	69.5	0.556	59.7	0.037
11.18	69.0	0.548	61.0	0.039
11.22	72.2	0.607	62.0	0.040
11.26	73.5	0.631	73.9	0.059
11.31	74.1	0.642	76.1	0.063
11.42	75.5	0.670	91.8	0.093
11.50	76.3	0.686	100.3	0.112
11.61	78.3	0.727	107.9	0.130
11.71	80.5	0.774	116.6	0.152
11.81	85.2	0.876	122.8	0.170

internal energy of the parent ion c -C₂H₄S⁺ increases. The small signals of c -C₂H₄S⁺ remain constant at greater photon energies likely because of coincidences with hot electrons, as mentioned above.

The broadened TOF peak for each fragment ion is well fitted with a Gaussian shape. In general, for a distribution of this type, the average release of kinetic energy (KE) is related to the FWHM of the TOF peak and calculated from that FWHM according to the Maxwellian equation^{19,27}

$$
\langle KE \rangle = \frac{3}{15 \ln 2} \varepsilon^2 (FWHM)^2 \frac{M_p}{M_f (M_p - M_f)}
$$

$$
- \frac{3}{2} RT \frac{M_f}{(M_p - M_f)},
$$
 (1)

in which K E is the average release of kinetic energy, ε $=$ 21 V cm⁻¹ is the strength of the pulsed electric field for ion extraction, FWHM is obtained from the fitted TOF peak of a fragment ion, M_p and M_f are masses of parent and fragment ions, and $T=10$ K is the transverse temperature of the molecular beam. Obtained FWHM and calculated average release of kinetic energy for both dissociation channels at selected photon energies in the region of 10.6–11.8 eV are listed in Table IV. As a pulsed delay extraction might narrow a TOF peak that is broadened because kinetic energy is released, we calculated this effect on our derived $\langle KE \rangle$ based on a delay of \sim 231 ns between a threshold photoelectron detection and a pulsed extraction field from the equation T_o /ns=2175.2 $(m/z)^{1/2}$ +231.1. Within the delay, fragment ions $CH₃CS⁺$ move $\sim 0.04-0.06$ mm away from the interaction region in the weak field 1 V cm^{-1} according to average releases \sim 0.4–0.88 eV of kinetic energy obtained in this work for channel $CH_3CS^+ + H$, and fragment ions HCS^+

FIG. 4. Average kinetic energy released into dissociation channels *c*- $C_2H_4S^+$ \rightarrow (a)HCS⁺+CH₃ and (b) CH₃CS⁺+H with excitation at photon energies in a region 10.6–11.8 eV. Data, a line fitted to data, QET calculations, and a calculation according to an impulsive model are marked as circles, solid line, dashed line and dotted line, respectively; literature data in (a) are marked as solid triangles for comparison.

move \sim 0.08–0.1 mm with average releases \sim 0.04–0.17 eV of kinetic energy for channel $HCS^+ + CH_3$. Because of the small displacements of both fragment ions $CH₃CS⁺$ and HCS+, the effect on narrowing a TOF peak before a pulsed high-voltage applied is expected to be negligible.

In Figs. 4(a) and 4(b), calculated average releases of kinetic energy for channels $HCS^+ + CH_3$ and $CH_3CS^+ + H$ are depicted as circles, respectively. For channel $HCS^+ + CH_3$, a solid line for a linear fit to our data, a dashed curve for QET calculations, and solid triangles representing literature data of Butler and Baer¹ are also depicted in Fig. $4(a)$ for comparison. The QET calculations were performed according to an equation formulated by $Klots^{28-30}$

$$
h\nu - E_0 = \frac{(r+1)}{2} \langle KE \rangle + \sum_i \frac{h\nu_i}{\exp(h\nu_i/\langle KE \rangle) - 1},\tag{2}
$$

in which $h\nu$ is the photon energy, $E_0 = 10.99 \pm 0.04$ eV derived from linear extrapolation of our experimental data, is the dissociation threshold for the formation of HCS+ and $CH₃$, *r* is the number of rotational degrees of freedom of products (two for HCS⁺ and three for CH₃), and ν_i are the vibrational wave numbers of $CH₃$ and $HCS⁺$; vibrational wave numbers 3004.4, 606.5, 3160.8, and 1396 cm−1 for $CH₃$ are taken from the literature³¹ and those of HCS⁺ are listed in Table III.

As seen in Fig. $4(a)$, our data agree satisfactorily with literature values; our linearly extrapolated threshold at 10.99±0.04 eV also agrees with a predicted dissociation energy of 11.05 eV for formation of linear HCS^+ and CH_3 from c -C₂H₄S. Although significant differences are observed at greater photon energies, QET results seem to fit well the experimental data near the dissociation threshold; accordingly, the average release of kinetic energy is 0.037 eV at the

AE value of 11.13 eV for HCS⁺ determined in previous PIMS studies of c -C₂H₄S. Because formation of HCS⁺ and CH3 likely involves H migration before dissociation occurs, the agreement of an extrapolated threshold with a G3 prediction and small releases of kinetic energy near the dissociation threshold imply that the energy for isomerization of c -C₂H₄S⁺ into the dissociation precursor lies below or near the dissociation threshold.

For channel $CH_3CS^+ + H$, a linear solid line fitted to data, a dashed curve for QET calculations, and a dotted line for calculations based on a pure impulsive model 32,33 are depicted in Fig. 4(b) for comparison. In QET calculations, a predicted dissociation energy of 10.51 eV for c -C₂H₄S⁺ \rightarrow CH₃CS⁺+H was taken as the dissociation threshold because, to our knowledge, no experimental dissociation threshold is available, except the experimental AE of 10.71 ± 0.01 eV for CH₃CS⁺ determined in previous PIMS studies. Calculations based on a pure impulsive model were performed with a simple equation

$$
\langle KE \rangle = (\mu_b / \mu_f) E_{\text{av1}}, \tag{3}
$$

in which μ_b is the reduced mass of the two atoms (C and H) between which a bond is broken, μ_f is the reduced mass of the two products (CH₃CS⁺ and H), and $E_{\text{av}}=h\nu-E_0$ is the difference between photon energies and dissociation threshold (E_0) ; $E_0 = 10.51$ eV is taken from a G3 prediction, as explained above.

As seen in Fig. 4(b), unlike channel $HCS^+ + CH_3$, measured releases of kinetic energy for channel $CH_3CS^+ + H$ are substantial, but results of QET calculations lie far below experimental values; moreover, a linearly extrapolated threshold at 9.87 eV for this channel is much smaller than a G3 prediction of 10.51 eV and the experimental AE of 10.71 ± 0.01 eV.^{2,13} A nonstatistical distribution of measured substantial kinetic energies and the discrepancies at the dissociation threshold indicate that dissociation occurs through a dissociative excited state or involves substantial exit barriers. The presence of substantial exit barriers for formation of $CH₃CS⁺$ is likely due to H migration and structural alternations during dissociation. On the other hand, the existence of a dissociative excited state in a region of 10.51–10.71 eV is excluded because there is no electronic state but a Franck-

FIG. 5. Theoretical predictions of relative energies in eV for isomerization of c -C₂H₄S⁺ into CH₃CHS⁺ be-
fore dissociation into channels fore dissociation into $CH_3CS^+ +H$ and $HCS^+ +CH_3$; bond lengths in angstroms and interbond angles in degrees are indicated for molecular structures optimized at the $MP2$ (full)/6-31G(d) level.

Condon gap in a region of \sim 10.0–10.7 eV according to a previously reported photoelectron spectrum and our threshold photoelectron spectrum.^{20–22} Moreover, an impulsive model is generally applied to the dissociation that proceeds rapidly from a repulsive dissociative potential-energy surface, but our calculations based on an impulsive model do not fit well the experimental data.

D. Dissociation mechanisms

Figure 5 shows relative energies of a feasible dissociation mechanism for channels $c-C_2H_4S^+$ \rightarrow CH₃CS⁺ +H and $HCS^+ + CH_3$ predicted with the G3 method; structural parameters for the stationary states are labeled in the figure. In Fig. 5, c -C₂H₄S⁺ first undergoes H migration to form a local minimum c -CHCH₂SH⁺ (LM1-1) via a transition state TS1; a G3 barrier for this process is 1.94 eV. Next, the H atom of the CH group of c -CHCH₂SH⁺ (LM1-1) rotates with nearly no barrier to form its *trans*-isomer *c*-CHCH₂SH⁺ (LM1-2), which subsequently proceeds through ring opening and C-S bond breaking to form *cis*-CH₂CHSH⁺ (2a) via TS2 with a G3 barrier at 1.30 eV. In further formation of CH_3CSH^+ (LM3) and the most stable isomer CH_3CHS^+ (1), the intermediate *cis*-CH₂CHSH⁺ (2a) proceeds through H migrations from the CH group to the $CH₂$ group and from the SH group to the central C atom via TS3 and TS4 with predicted barriers at 1.86 and 1.74 eV, respectively. As dissociation of CH_3CHS^+ (1) to form $CH_3CS^+ + H$ involves only direct cleavage of the C-H bond, one would expect to find a completely statistical distribution of energy, which is not observed in our experiments. In contrast, if dissociation of $CH₃CSH⁺$ (LM3) to form $CH₃CS⁺ + H$ takes place via TS4, substantial kinetic energies are expected to be released during dissociation, compatible with experimental observations. The predicted barrier of TS4 at 1.74 eV agrees with a difference of 1.66 eV between the experimental AE of 10.71 eV and IE of 9.05 eV determined in previous PIMS studies. $13,15$ Although a predicted barrier of 1.94 eV for isomerization of c -C₂H₄S⁺ to the dissociation precursor CH₃CSH⁺ (LM3) is slightly greater than the predicted barrier of TS4 at 1.74 eV, but still within an uncertainty of theoretical calculations for transition states. We sought to break the C-S bond directly to form a ring-opened structure $\text{CH}_2\text{CH}_2\text{S}^+$, which can proceed

through H migrations from one $CH₂$ group to the other $CH₂$ group to form $CH₃CHS⁺$, but located no transition state for this process. Although BelBruno predicted a smaller activation barrier of 1.87 eV for isomerization of c -C₂H₄S⁺ into $CH_2SCH_2^{\{+2,2\}}$ this dissociation mechanism is unexpected because of the weakness of the C-S bond relative to the C-C bond.

For channel $HCS^+ + CH_3$, Fig. 5 shows that dissociation of CH_3CHS^+ (1) to form $HCS^+ + CH_3$ proceeds through direct cleavage of the C-C bond without an exit barrier and would result in a statistical energy distribution in the dissociation; a predicted G3 barrier of 1.94 eV for isomerization of c -C₂H₄S⁺ to CH₃CHS⁺ (1) is nearly the same as a predicted dissociation energy of 1.99 eV. The results of a predicted negligible barrier and a statistical distribution of energy in the dissociation agree satisfactorily with experimental observations.

V. CONCLUSION

Dissociation of energy-selected c -C₂H₄S⁺ into channels $CH_3CS^+ +H$ and $HCS^+ +CH_3$ was investigated in a region of 10.6–11.8 eV with a TPEPICO technique in pulsed mode and quantum-chemical calculations. Branching ratios for *c*- $C_2H_4S^+$, CH_3CS^+ , and HCS^+ and average releases of kinetic energy for CH_3CS^+ and HCS^+ were derived from wellresolved TOF peaks in coincidence spectra. Small releases of kinetic energy for formation of HCS⁺ agree with QET calculations near the appearance threshold, but substantial releases of kinetic energy for formation of $CH₃CS⁺$ differ significantly from statistical calculations. A detailed energy profile for dissociation mechanisms of c -C₂H₄S⁺ to form CH₃CS⁺ $+H$ and $HCS^+ + CH_3$ is reported based on the calculations with the Gaussian 3 method. A large kinetic energy released on the formation of $CH_3CS^+ + H$ is probably due to a reverse activation barrier required for dissociation of $CH₃CSH⁺(LM3)$ through a transition state; in contrast, the statistical energy distribution for formation of $HCS^+ + CH_3$ is due to dissociation of the most stable isomer $CH₃CHS⁺$ without an exit barrier.

ACKNOWLEDGMENTS

The National Synchrotron Radiation Research Center and the National Science Council of Taiwan Contract No. NSC92-2113-M-213-001) provided financial support, and

the National Center for High-Performance Computing provided computing time for theoretical calculations.

- ¹ J. J. Butler and T. Baer, J. Am. Chem. Soc. **104**, 5016 (1982).
- 2 J. J. Bulter and T. Baer, Org. Mass Spectrom. **18**, 248 (1983).
- ³ F. Qi, O. Sorkhabi, and A. G. Suits, J. Chem. Phys. 112, 10707 (2000).
- ⁴ J. W. Gardiner, *Combustion Chemistry* (Springer, New York, 1984).
- ⁵ M. B. Robin, *Higher Excited States of Polyatomic Molecules* (Academic, New York, 1985).
- 6 A. S. Bodke, D. A. Olschki, L. D. Schmidt, and E. Ranzi, Science **285**, 712 (1999).
- ⁷ M. C. Pirrung, Acc. Chem. Res. **32**, 711 (1999).
- 8 T. R. Younkin, E. F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs, and D. A. Bansleben, Science 287, 460 (2000).
- 9H. L. Kim, S. Satyapal, P. Brewer, and R. Bersohn, J. Chem. Phys. **91**, 1047 (1989).
- ¹⁰P. Felder, E. A. J. Wannenmacher, I. Wiedmer, and J. R. Huber, J. Phys. Chem. 96, 4470 (1992).
- 11 F. Qi, O. Sorkhabi, A. G. Suits, S.-H. Chien, and W.-K. Li, J. Am. Chem. Soc. 123, 148 (2001).
- ¹²E. M. Lown, K. S. Sidhu, A. W. Jackson, A. Jodhan, M. Green, and O. P. Strausz, J. Phys. Chem. **85**, 1089 (1981).
- ¹³ S.-Y. Chiang and Y.-S. Fang, J. Electron Spectrosc. Relat. Phenom. **144**, 223 (2005).
- ¹⁴ B. P. Tsai, T. Baer, A. S. Werner, and S. F. Lin, J. Phys. Chem. **79**, 570 $(1975).$
- ¹⁵H. Shiromaru, Y. Achiba, and Y. T. Lee, J. Phys. Chem. **91**, 17 (1987).
- ¹⁶ S.-Y. Chiang and C.-I Ma, J. Phys. Chem. A **104**, 1991 (2000).
- . 17S.-Y. Chiang, Y.-C. Lee, and Y.-P. Lee, J. Phys. Chem. A **¹⁰⁵**, 1226 $(2001).$
- ¹⁸M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, Inc., Pittsburgh, PA, 2003.
¹⁹R. Stockbauer, Int. J. Mass Spectrom. Ion Phys. **25**, 89 (1977).
-
- . 20D. H. Aue, H. M. Webb, W. R. Davidson, *et al.*, J. Am. Chem. Soc. **¹⁰²**, 5151 (1980).
- ²¹ D. C. Frost, F. G. Herring, A. Katrib, and C. A. McDowell, Chem. Phys. Lett. **20**, 401 (1973).
- Lett. **20**, 401 (1973).
²² A. Schweig and W. Thiel, Chem. Phys. Lett. **21**, 541 (1973) ²² A. Schweig and W. Thiel, Chem. Phys. Lett. **21**, 541 (1973). 23 J. J. BelBruno, Chem. Phys. Lett. **254**, 321 (1996).
-
- ²³ J. J. BelBruno, Chem. Phys. Lett. **254**, 321 (1996).
²⁴ S.-W. Chiu, K.-C. Lau, and W.-K. Li, J. Phys. Chem. A **104**, 3028 $(2000).$
- ²⁵ F. Liu, F. Qi, H. Gao, L. Sheng, Y. Zhang, S. Yu, K.-C. Lau, and W.-K. Li, J. Phys. Chem. A **103**, 4155 (1999).
- ²⁶ P. J. Linstrom and W. G. Mallard, *NIST Chemistry Webbook, NIST Stan*dard Reference Database No. 69, 2005 Release (http://webbook.nist.gov).
- . 27T. Baer, G. D. Whillett, D. Smith, and J. S. Phillips, J. Chem. Phys. **⁷⁰**, 4076 (1979).
- ²⁸ C. E. Klots, J. Chem. Phys. **58**, 5364 (1973).
- ²⁹ C. E. Klots, Adv. Mass Spectrom. **6**, 969 (1974).
- ³⁰ C. E. Klots, J. Chem. Phys. **64**, 4269 (1976).
- ³¹ M. E. Jacox, J. Phys. Chem. Ref. Data **32**, 157 (2003).
- ³² G. E. Busch and K. R. Wilson, J. Chem. Phys. **56**, 3626 (1972).
- . 33K. E. Holdy, L. C. Klotz, and K. R. Wilson, J. Chem. Phys. **⁵²**, 4588 $(1970).$