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Abstract: Protein phosphorylation, which is an important mechanism in posttranslational modification, affects
essential cellular processes such as metabolism, cell signaling, differentiation, and membrane transportation. Proteins are
phosphorylated by a variety of protein kinases. In this investigation, we develop a novel tool to computationally predict
catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are
categorized by their annotated protein kinases. Based on the concepts of profile Hidden Markov Models (HMM),
computational models are trained from the kinase-specific groups of phosphorylation sites. After evaluating the trained
models, we select the model with highest accuracy in each kinase-specific group and provide a Web-based prediction
tool for identifying protein phosphorylation sites. The main contribution here is that we have developed a kinase-specific
phosphorylation site prediction tool with both high sensitivity and specificity.

© 2005 Wiley Periodicals, Inc.

J Comput Chem 26: 1032-1041, 2005

Key words: phosphorylation; protein kinase; profile hidden Markov model

Introduction

Protein phosphorylation, performed by a group of enzymes
known as kinases and phosphotransferases (Enzyme Commis-
sion classification 2.7), is a posttranslational modification es-
sential to correct functioning within the cell.' The posttransla-
tional modification of proteins by phosphorylation is the most
abundant type of cellular regulation. It affects a multitude of
cellular signal pathways, including metabolism, growth, differ-
entiation, and membrane transport.? The enzymes must be
sufficiently specific and act only on a defined subset of cellular
targets to ensure signal fidelity. Proteins can be phosphorylated
at serine, threonine, and tyrosine residues.

Because of its importance in cellular control, it is desirable to
have a computational tool for quickly and efficiently predicting
phosphorylation sites in protein sequences, as well as the catalytic
kinases involved in the phosphorylation. This will increase the
efficient characterization of new protein sequences.' Therefore, in
this investigation, we designed and implemented a prediction tool

that can facilitate the identification of the phosphorylation sites and
the related catalytic kinases.

PhosphoBase® is a database of experimentally verified phos-
phorylation sites. The entries supply the annotations about the
phosphoprotein and the exact position of its phosphorylation sites.
Furthermore, part of the entries contain information about kinetic
data obtained from enzyme analyzes on specific peptides. Swiss-
Prot* is a comprehensively annotated protein database. Both ex-
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Table 1. The Data Sources of the Phosphorylation Sites.

Number of Number of phosphorylated sites
phosphorylated
Data sources proteins Serine (S) Threonine (T) Tyrosine (Y) Total
PhosphoBase 436 713 164 206 1083
Swiss-Prot (Release 45 796 1005 281 321 1607
of October 2004) 3614 3578 1331 1434 6343

2

“The entries are annotated as “by similarity,” “potential,” or “probable.” The data set will

be considered as test set in the Discussion section.

perimentally validated and putative phosphorylation annotations
can be obtained from the posttranslational modification annotation
in the database.

NetPhos® presents an artificial neural network method that
predicts the phosphorylation sites in independent protein se-
quences with a sensitivity in the range from 69 to 96%. DIPHOS’
is a Web-based tool for the prediction of protein phosphorylation
sites. In this study, the position-specific amino acid frequencies
and disorder information are used to improve the discrimination
between phosphorylation and nonphosphorylation sites. Berry et
al." employ backpropagation neural networks (BPNNG), the deci-
sion tree algorithm C4.5 and the reduced biobasis function neural
networks (rBPNN) to predict phosphorylation sites. NetPhosK® is
an artificial neural network algorithm to predict protein kinase A
(PKA) phosphorylation sites with reported 100% sensitivity and
40% specificity in their experiments.

Most of the previous studies on phosphorylation site prediction
have concentrated on only the substrate specificity. In this inves-
tigation, the catalytic kinases of the protein phosphorylation are
taken into account. The known phosphorylation sites from data
sources in the public domain are categorized by their annotated
protein kinases. To increase the sensitivity of the models, the
sequences in the larger groups of phosphorylated sites can be
further clustered and split into subgroups by the Maximal Depen-
dence Decomposition (MDD) method.” Based on the concepts of
profile Hidden Markov Models (HMM), computational models are
trained from the kinase-specific groups of the phosphorylation
sites. After evaluating the trained models by the k-fold crossvali-
dation method or leave-one-out crossvalidation method, we select
the best performing model in each kinase-specific group and
provide a Web-based prediction tool to facilitate the identification
of protein kinase-specific phosphorylation sites.

Materials and Methods

PhosphoBase® consists of 1083 experimentally verified phosphor-
ylation sites within 436 protein entries. As given in Table 1, the
number of serine sites, threonine sites, and tyrosine sites are 713,
164, and 206, respectively. Swiss-Prot* (release 45 of October
2004) maintains 163,500 protein entries, of which 3614 entries are
annotated as phosphorylated. The entries which contain residues
annotated as “phosphorylation” in the “MOD_RES” fields have
been extracted. The number of serine sites, threonine sites and

tyrosine sites are 1005, 281, and 321, respectively. Those sites
annotated as “by similarity,” “potential,” or “probable” are con-
sidered separately as a test set (see Discussion section, below).

The statistics of kinase-specific phosphorylated sites in the data
sources are given in Table 2. The present study confirms that the
existence of two major types of protein kinases phosphorylating
either at serine/threonine residues or at tyrosine residues. The
collected data sets show that the majority of serine/threonine
specific protein kinases have a preference for serine residues.® The
number of serine phosphorylation sites is, in most case, 3—10 times
more numerous than threonine sites in both PhosphoBase and
Swiss-Prot. Comparing this to the natural situation for the different
proteins annotated in the Swiss-Prot database, the ratio is 1.3:1 for
serine and threonine; we and others are unable to satisfactorily
explain this disparity.’

The flow of the proposed method is shown in Figure 1. We first
extracted the phosphorylated sites as positive sets, nonphosphory-
lated sites as negative sets, and the catalytic kinase annotations
from PhosphoBase and Swiss-Prot. The positive sets are then
categorized by catalytic kinases. Alternatively, in larger positive
groups, the sequences of the phosphorylated sites can be clustered
into subgroups by Maximal Dependence Decomposition (MDD).”
Thereupon, we incorporate the concept of profile Hidden Markov
Model (HMM) to learn computational models from positive sets of
the phosphorylation sites. To evaluate the trained models, k-fold
crossvalidation and leave-one-out crossvalidation are carried out.
After evaluating the models, the model with highest accuracy in
each data set is selected. Each step in the proposed method will be
introduced below.

Constructing Positive Sets and Negative Sets

We construct the phosphorylated sites as the positive sets and the
nonphosphorylated sites as the negative sets. As given in Table 3,
the positive sets, PB_Pos and SP_Pos, are constructed from the
phosphorylation sites extracted from PhosphoBase and Swiss-Prot,
respectively. PB_Pos and SP_Pos are merged into a nonredundant
positive set, namely Com_Pos. Similarly, the negative sets,
PB_Neg and SP_Neg, are the nonphosphorylation sites extracted
from PhosphoBase and Swiss-Prot, respectively. PB_Neg and
SP_Neg are merged into a nonredundant data set, namely
Com_Neg. Generally, the serines, threonines and tyrosines, which
are not annotated as phosphorylation residues, within the experi-
mentally validated phosphorylated proteins are selected as nega-
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Table 2. The Statistics of the Catalytic Kinase-Specific Phosphorylation Sites.

Swiss-Prot (Release 45 of October 2004)

Number of

Catalytic protein kinases substrate sites Serine Threonine Tyrosine
Protein kinase C (PKC) 81 67 14
cAMP-dependent protein kinase (PKA) 106 97 9
Casein kinase IT (CKII) 65 55 10
Calmodulin-dependent protein kinase I (CaM-II) 14 14 0
c¢GMP-dependence protein kinase (PKG) 7 6 1
Casein kinase I (CKI) 14 10 4
Cell division cycle protein kinase p34cdc2 47 30 17
Mitogen-activated protein kinase (MAPK) 36 21 15
Epidermal growth factor receptor (EGFR) 10 10
Tyrosine kinase Src 14 14
Insulin receptor (INSR) 11 11
Total 405 300 70 35

PhosphoBase
Catalytic protein kinases Number of substrate sites Serine  Threonine  Tyrosine
Protein kinase C (PKC) 180 150 30
cAMP-dependent protein kinase (PKA) 178 167 11
Casein kinase II (CKII) 83 70 13
Calmodulin-dependent protein kinase II (CaM-II) 35 33 2
c¢GMP-dependence protein kinase (PKG) 26 23 3
Casein kinase I (CKI) 26 24 2
Cell division cycle protein kinase p34cdc2 23 16 7
Mitogen-activated protein kinase (MAPK) 8 7 1
Epidermal growth factor receptor (EGFR) 21 21
Tyrosine kinase Src 17 17
Insulin receptor (INSR) 13 13
Total 610 490 69 51

tive sets, that is, the nonphosphorylated sites. Therefore, two
negative (nonphosphorylated) data sets are extracted from Phos-
phoBase and Swiss-Prot based on the phosphorylation annotation.
Specially, a few phosphorylated residues and nonphosphorylated
residues located at the ends of the protein sequences lead to
incompleteness of the 9-mer phosphorylated sites or nonphospho-
rylated sites. These sites are eliminated from the constructed data
sets.

We define the position 0 as the phosphorylated residue and the
positions (—4——1) and (+1-+4) designated the residues sur-
rounding the phosphorylation residue, such as serine, threonine,
and tyrosine. For the sake of the observation of the sequence
distribution surrounding the phosphorylated residues, we make up
the 9-mer sequence logos'®'! of the phosphorylation sites and the
nonphosphorylation sites. The sequence logos'®'! are a graphical
representation of an amino acid or nucleotide multiple sequence
alignment. Each logo consists of stacks of symbols, one stack
presents each position in the sequence. The overall height of the
stack indicates the sequence conservation at that position, while
the height of the symbols within the stack indicates the information
content of each amino or nucleotide at that position.

As shown in Figure 2, we present the sequence logos built by
the three types of the 9-mer phosphorylated sites and the 9-mer
nonphosphorylated sites. By observing the sequence logos, the
sequences surrounding the phosphorylated sites are more con-
served than the ones surrounding the nonphosphorylated sites.
Especially, the sequence logos of serine, threonine and tyrosine
sites categorized by protein kinases are made and given in Figures
3,4, and 5, respectively. Previous studies have confirmed that the
most of the serine and threonine protein kinases can be divided
into three classes, namely the basophilic kinases (i.e., PKA, PKC,
PKG, and CaM-II), the acidophilic kinases (i.e., CKI and CKII)
and the proline-directed protein kinases (i.e., cdc2 and MAPK).®
For the tyrosine kinases, most of the tyrosine kinases are acido-
philic kinases.

Phosphorylation Sites are Clustered by Maximal
Dependence Decomposition (MDD)

The site sequences in the positive sets with a larger size can be
alternatively clustered by MDD method to increase the predictive
sensitivity and specificity of the models. The Maximal Depen-
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Figure 1. The flow of the proposed method. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

dence Decomposition (MDD)” is a methodology to group an set of
aligned signal sequences to moderate a large group into subgroups
that capture the most significant dependencies between positions.
Furthermore, MDD was originally proposed to group the splice
sites during the identification process of splice site prediction.”
However, in our study, we group protein sequences instead of
nucleotides. To reduce the data complexity of the phosphorylated
sites when doing MDD, we categorize the 20 types of amino acids
into five groups such as neutral, acidic, basic, aromatic and imino
groups, as the mapping given in Table S1 (see Supplementary
Materials). Then, we implement the MDD algorithm for amino
acids groups and apply it to the large sets of the phosphorylated
sites for sequence clustering.

The MDD is a recursive process to divide the positive sets into
tree-like subgroups. When applying MDD to cluster the sequences
of a positive set, a parameter, that is, the minimum cluster size,
should be set. If the size of a subgroup is less than the minimum
cluster size, the subgroup will not be divided any more. The MDD
process terminates when all the subgroup sizes are less than the
minimum cluster size.

When considering a MDD-clustered data set, for instance,
MDD-clustered PKA catalytic serine (S_PKA), the HMMs are
trained separately from the subgroups of the phosphorylated sites
resulted by MDD. Each model is used to search in the given

Table 3. Data Sets Constructed in This Study.

protein sequences for the phosphorylated sites. A positive predic-
tion of the model group is defined by at least one of the model
makes a positive prediction, whereas a negative prediction is
defined as all the models make negative predictions.

Learning Models by HMMER

Profile Hidden Markov Models (HMMs) are trained from the site
sequences in the positive sets. An HMM describes a probability
distribution over a potentially infinite numbers of sequences.'? It can
be used to detect distant relationships between amino acids sequences.
Here, we use the software package HMMER '? (version 2.3.2) to build
the models, to calibrate the models and to search the putative phos-
phorylation sites against the test sets. The emission and transition
probabilities are generated from each of the training set to capture the
characteristics of the training sequences. All three residue types of the
raw phosphorylation sites, the sets of the kinase-specific phosphory-
lation sites, the MDD-clustered sets of the phosphorylation sites, and
the MDD-clustered sets of the kinase-specific phosphorylation sites
are taken as training sets to learn the models.

Evaluating the Trained Models

After the models are trained, it is necessary to evaluate whether the
models are fitted or not. The following measures of the predictive
performance of the models are then calculated: Precision (Prec) =
TP/(TP + FP), Sensitivity (Sn) = TP/(TP + EN), Specificity
(Sp) = TN/(TN + FP), and Accuracy (Acc) = (Sn + Sp)/2, where
TP, TN, FP and FN are true positive, true negative, false positive,
and false negative predictions, respectively. Especially, we make
the equal sizes of the positive samples and the negative samples
during the crossvalidation processes.

To evaluate the trained models, two crossvalidation methods,
k-fold crossvalidation and leave-one-out crossvalidation, are ap-
plied in this study. For a large positive set, that is, the number of
a positive set of the phosphorylated sites is equal or greater than 30
sites, the fivefold crossvalidation is used to evaluate the model
trained from the data set. The size of the negative set, which is
constructed by randomly selected from the corresponding non-
phosphorylation sites, is equal to the size of positive set. The
experiments are repeated for 20 times and the average precision,
sensitivity, specificity, and accuracy are calculated. Furthermore,
to avoid a skewed sampling during the crossvalidation process, for
a small positive set (less than 30), the leave-one-out crossvalida-
tion is alternatively applied. Similarly, the negative set in this

Data sets

Data sources

No. of entries

Descriptions

PB_Pos {S, T and Y} PhosphoBase 1083
SP_Pos {S, T and Y} Swiss-Prot 1607
Com_Pos {S, T and Y} PhosphoBase and Swiss-Prot 2460
PB_Neg {S, T and Y} PhosphoBase 33,711
SP_Neg {S, T and Y} Swiss-Prot 69,193
Com_Neg {S, T and Y} PhosphoBase and Swiss-Prot 95,782

Phosphorylation sites extracted from PhosphoBase
Phosphorylation sites extracted from Swiss-Prot

Merge the PB_Pos and SP_Pos to an non-redundant positive set
Non-phosphorylation sites extracted from PhosphoBase
Non-phosphorylation sites extracted from Swiss-Prot

Merge the PB_Neg and SP_Neg to an nonredundant negative set
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crossvalidation is constructed by the same strategy as the fivefold
crossvalidation.

Selecting the Trained Models

For each pair of the positive set and the negative set, we compare
the performance of the models trained by HMMER from different
data sources and with different grouping strategies, such as the raw
phosphorylation sites, the kinase-specific phosphorylation sites,
and MDD-clustered phosphorylation sites. For each positive set,
the model with highest accuracy is selected.
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Prediction by the Selected Models

For each kinase-specific positive set of the phosphorylated sites,
the best performed model is selected and used to identify the
phosphorylation sites within the input protein sequences by
HMMsearch.'? To search the hits of a model, HMMER returns
both a HMMER score and an expectation value (E-value). The
score is the base two logarithm of the ratio between the probability
that the query sequence is a significant match and the probability
that it is generated by a random model. The E-value represents the
expected number of sequences with a score greater than or equal to
the returned HMMER bit scores. Although decreasing the E-value
threshold favors finding true positives, increasing the E-value
threshold favors finding true negatives. We select the HMMER
score as the criteria to define a HMM match. A search of a model
with the HMMER score greater than the threshold ¢ is defined as
a positive prediction, that is, a HMM recognizes a phosphorylation
site. The threshold ¢ of each model is decided by maximizing the
accuracy measure during a variety of crossvalidations with the
HMM bit score value range from 0 to —10. For instance, Figure 6
depicts the optimization of the threshold of the HMM bit scores in
the S_PKA model. The threshold of the S_PKA model is set to
—4.5 to maximize the accuracy measure of the model.

The Interfaces

The users can submit their uncharacterizing protein sequences
to the query interface and make a choice for the appropriate
models to predict for kinase-nonspecific or kinase-specific
serine, threonine, or tyrosine. Our system provides the positions
of the candidate phosphorylation sites, as well as the catalytic
protein kinases involved. The Web service is freely available at
http://KinasePhos.mbc.NCTU.edu.tw/.

Results

The models perform well by incorporating kinase annotations. The
three phosphorylated residue types in PB_Pos and PB_Neg are

separately used to learn the models and then the models are
evaluated by crossvalidations. Similarly, the same experiment is
applied to SP_Pos and SP_Neg. The experimental results are given
in Table 4. For instance, the precision (Prec), sensitivity (Sn),
specificity (Sp), and accuracy (Acc) of the models trained from the
serine-phosphorylation sites in PhosphoBase are 0.70, 0.54, 0.77,
and 0.65, respectively. As to the consideration of kinase annota-
tions, several experiments are also done in the kinase-specific
groups in PB_Pos/PB_Neg and SP_Pos/SP_Neg data sets. As
given in Table 5, the Prec, Sn, Sp, and Acc of the model trained
from the S_PKA (kinase PKA catalytic serine) data set are 0.83,
0.81, 0.84, and 0.83, respectively. The averages of Prec, Sn, Sp,
and Acc for all serine kinase types in PB_Pos/PB_Neg are 0.87,
0.74, 0.89, and 0.81, respectively. By comparing the results given
in Tables 4 and 5, we find that the models trained from the
kinase-specific groups of the phosphorylation sites perform better
than the phosphorylated data sets without considering the protein
kinases. As to the combined data sets from Swiss-Prot and Phos-
phoBase, the results of the experiments in Com_Pos/Com_Neg
data sets are partially provided in Table S2 (see Supplementary
Material).

The models perform well in MDD-clustered data sets. Espe-
cially in larger data sets (greater then 100 sites), we apply the
MDD to group the sequences of the phosphorylated sites into
several subgroups, which are separately taken as training sets, and
HMM models for each subgroup are generated. Partial experiment
results are given in Table S3, Table S4, and Table S5 (see Sup-
plementary Material). Figures 7 and 8 show the model compari-
sons between the original data sets and the MDD-cluster data sets.
For the raw phosphorylation sets in PB_Pos, SP_Pos, and
Com_Pos, all the models trained from MDD-clustered data sets
have higher sensitivity than the ones trained from the data sets not
applied MDD, but the models lose a little specificity, as shown in
Figure 7. As for the kinase-specific groups of the phosphorylation
serine sites, applying MDD in S_PKA, S_PKC, and S_CKII
groups can increase the sensitivity of the trained models.

By comparing the results given in Figures 7 and 8, the accuracy
of the models trained from the combined data sets in the raw
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Table 4. The Model Evaluation of the Raw Data Sets Separately from PhosphoBase and Swiss-Prot.

PhosphoBase Swiss-Prot
Prec Sn Sp Acc Prec Sn Sp Acc
S (661 sites) 0.70 0.54 0.77 0.65 S (963 sites) 0.67 0.52 0.74 0.63
T (159 sites) 0.73 0.55 0.85 0.70 T (265 sites) 0.68 0.55 0.73 0.65
Y (205 sites) 0.70 0.57 0.75 0.66 Y (308 sites) 0.69 0.73 0.67 0.70

sequences set experiments and the kinase-specific group experi-
ments are better than the models trained from only PhosphoBase or
Swiss-Prot data sets. Except for S_PKA and S_PKC in PB_Pos
and SP_Pos, the sizes of the kinase-specific groups are relatively
small. To avoid the skew sampling of the data, for small data sets
like S_PKG, S_CaM-II, and S_CKII, it is necessary to merge the
kinase-specific groups of phosphorylation sites from two different
data sources into one group to increase size of the training set. All
the kinase-specific data sets are constructed for learning compu-
tational models, which are then evaluated. Alternatively, the MDD
can be applied to the data sets that are large enough. For each
kinase-specific group, the model with the highest accuracy is
selected, as given in Table 6. For instance, the Prec, Sn, Sp, and
Acc of the model trained from MDD-clustered S_PKA data set,
which are constructed by the combined PhosphoBase and Swiss-
Prot data sources, are 0.85, 0.91, 0.84, and 0.88, respectively. The
threshold of the score of the model is set to be —4.5. The average
Prec, Sn, Sp, and Acc of all the kinase-specific serine models are
0.88, 0.84, 0.88, and 0.86, respectively.

Assessment of Kinase Specificity

To assess the of the kinase-specific models, especially kinase-
specific serine models, we take a particular group as the positive
set and the other groups as the negative sets one by one. The higher
specificity the crossvalidation, the less incorrect prediction of the
phosphorylation sites in other groups. As given in Table 7, the
number in the parenthesis besides the kinase name indicates the
size of the positive set. For example, the first row gives that there
are 232 phosphorylated sites in kinase PKA catalytic serine set.
The sensitivity (Sn) of the PKA model is 0.89. The specificity are
given in the table; for instance, in the first column the specificity
(Sp) of PKC, PKG, and CaM-II sets corresponding to the PKA
model are 0.51, 0.07, and 0.35, respectively. In particular, consid-
ering the negative sets in basophilic group, the Sp values (in red
color) resulted from the models trained from the positive sets in the
same group are relatively lower than ones resulted from the neg-
ative sets in the other groups. We observe that the specificity
values corresponding to the kinase-specific data sets in the same

Table 5. The Model Evaluation of the Kinase-Specific Data Sets (HMM Bit Score Threshold 1 = —5).

PhosphoBase Swiss-Prot
Residues Kinases Prec Sn Sp Acc Kinases Prec Sn Sp Acc
Serine S_PKA (166) 0.83 0.81 0.84 0.83 S_PKA (96) 0.88 0.74 0.90 0.82
S_PKC (142) 0.87 0.72 0.90 0.81 S_PKC (66) 0.86 0.68 0.88 0.78
S_PKG (23) 1.00 0.83 1.00 0.91 S_PKG (6) 1.00 0.50 1.00 0.75
S_CaM-II (33) 0.69 0.61 0.73 0.67 S_CaM-II (13) 1.00 0.69 1.00 0.85
S_CKI (23) 0.81 0.57 0.87 0.72 S_CKI (9) 0.83 0.56 0.89 0.72
S_CKII (62) 0.97 0.76 0.98 0.87 S_CKII (48) 0.88 0.64 0.90 0.77
S_cdc2 (15) 1.00 0.51 1.00 0.76 S_cdc2 (30) 0.96 0.81 0.97 0.89
S_MAPK (7) 1.00 0.71 1.00 0.86 S_MAPK (21) 1.00 0.73 1.00 0.86
Average 0.87 0.74 0.89 0.81 Average 0.90 0.70 0.91 0.81
Threonine T_PKA (11) 1.00 0.82 1.00 0.91 T_PKA (9) 1.00 0.78 1.00 0.89
T_PKC (29) 0.95 0.66 0.97 0.81 T_PKC (14) 0.71 0.36 0.86 0.61
T_CKII (13) 1.00 0.62 1.00 0.81 T_CKII (10) 1.00 0.62 1.00 0.81
T_cdc2 (7) 1.00 0.57 1.00 0.79 T_cdc2 (17) 1.00 0.82 1.00 0.91
T_MAPK (1) N/A T_MAPK (15) 0.78 1.00 0.93 0.90
Average 0.98 0.67 0.98 0.82 Average 0.92 0.69 0.95 0.82
Tyrosine Y_EGFR (21) 0.85 0.81 0.86 0.83 Y_EGFR (10) 0.67 0.80 0.60 0.70
Y_INSR (13) 0.80 0.62 0.85 0.73 Y_INSR (11) 1.00 0.55 1.00 0.77
Y_Src (17) 0.93 0.82 0.94 0.88 Y_Src (13) 0.70 0.54 0.77 0.65
Average 0.87 0.76 0.88 0.82 Average 0.79 0.62 0.79 0.71




Markov Models for Identifying Protein Kinase-Specific Phosphorylation Sites

Residues Swiss-Prot PhosphoBase Swiss-Prot + PhosphoBase
WRyw [
: SmissPro 5903 m ; FPhesphoBase_SI661) Bhno : Bath_541750) -M"E;'D
043 0w g7 o
T -
Serine as
P . Su Sp At Prec Sn Sp Az
SwinsProl_TE65) PhophoBass_T(I59) BRaw Souh_T318) Spaw |
1 WD) - (Mo
081 1 L]
Threonine
Praz Sn Sp Ace Pz Sn Sp Ae
SeraPrct_¥08) :f;;n PhonpmBu_vioy DR
il
Tyrosine

Sp
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Table 6. The Selected Models with the Highest Accuracy.

Table 8. The Comparisons to NetPhos, DISPHOS, and rBPNN.

Threshold
Kinases Data sources (1) Prec Sn Sp Acc
S_PKA* (232) Combined —4.5 0.85 091 0.84 0.88
S_PKC* (176) Combined —4.5 0.87 0.77 0.88 0.82
S_PKG (23) PhosphoBase -9.5 094 096 093 0.95
S_CaM-II (37) Combined -8.0 0.84 076 0.86 0.81
S_CKI (30) Combined -7.0 0.82 0.65 0.86 0.76
S_CKII* (62) PhosphoBase —-3.5 095 079 096 0.87
S_cdc2 (43) Combined —-10 094 094 094 0.94
S_MAPK (27) Combined -6.0 097 077 097 0.87
Average 0.88 0.84 0.88 0.86
T_PKA (19) Combined -7.0 097 094 097 0.95
T_PKC (37) Combined -85 0.85 0.83 0.85 0.84
T_CKII (13) PhosphoBase -9.0 0.79 098 0.75 0.86
T_cdc2 (17) Swiss-Prot -9.5 1.00 095 1.00 0.97
T_MAPK (15) Combined -9.5 1.00 1.00 1.00 1.00
Average 091 092 091 091
Y_EGFR (30) Combined -55 0.89 0.83 0.89 0.86
Y_INSR (16) Combined -9.5 0.82 0.78 0.83 0.80
Y_Src (17) PhosphoBase -5.0 0.86 0.81 0.87 0.84
Average 0.86 0.81 097 0.84

“Means the data set is clustered by MDD.

group, such as basophilic, acidophilic and proline-directed group,
are relatively lower than the specificity values resulted correspond-
ing to the kinase-specific data sets in the other groups.

Discussion and Conclusion

The proposed method is compared to several previously developed
phosphorylation prediction tools such as NetPhos,> DISPHOS,’
and rBPNN." All the previous tools did not consider the catalytic
kinase annotations. Especially, in our investigation we construct
the kinase-specific models for phosphorylation sites. We only
compare our average accuracy from the best model selected in
each kinase-specific model. As given in Table 8, the average
accuracy of the models trained from serine, threonine, and tyrosine
sets are 0.86, 0.91, and 0.84, respectively. The average accuracy

Table 7. The Specificity of the Kinase-Specific Serine Models.

Residue types NetPhos*  DISPHOS®  rBPNN'  KinasePhos
Serine 0.69 0.75 No data 0.86
Threonine 0.72 0.80 No data 0.91
Tyrosine 0.61 0.82 No data 0.84
Total or average No data No data 0.87 0.87

for KinasePhos is 0.87. All the accuracies of the serine, threonine,
and tyrosine models are higer than NetPhos and DISPHOS. When
comparing to rBPNN, the average accuracy of KinasePhos is equal
to rBPNN.

Furthermore, we would like to test our trained models against
those putative phosphorylated sites in Swiss-Prot.* As given in
Table 1, the total number of putative phosphorylated sites anno-
tated as “by similarity,” “potential,” or “probable” are 6343. Es-
pecially, we construct the kinase-specific putative phosphorylated
sites as kinase-specific test sets, which are then predicted by the
trained kinase-specific models. For instance, in the experiment of
S_PKA models and putative PKA catalytic serine sets, the positive
rate is 0.87 as given in Table 9. However, the accuracy of the
model trained from experimentally validated phosphorylated sites
in Com_Pos is 0.88. We observed that the annotations of the
putative phosphorylation sites in Swiss-Prot seem to be as accurate
as the experimental validated kinase-specific phosphorylated sites
in Swiss-Prot and PhosphoBase.

Based on the concept of profile Hidden Markov Models, a
predictive tool for protein phosphorylation sites is designed and
implemented to facilitate the identification of the phosphorylation
sites and the catalytic kinases involved. After evaluating the
trained models, we select the best model in each kinase-specific
group and provide a Web-based prediction tool for accurately
identifying protein phosphorylation sites. Rather than only consid-
ering the three phosphorylated residues, the main contribution here
is that we successfully develop a kinase-specific phosphorylation
site prediction tool.

The prospective works to improve the accuracy of the predic-
tive models are addressed as follows. First, the species-specific
phosphorylation sites can be taken into consideration to assess the

Neg. set Basophilic group Acidophilic group Proline-directed group
Pos. set PKA (232) PKC (176) PKG (27) CaM-II (37) CKI (30) CKII (85) CDC2 (43) MAPK (27)
PKA (232) Sn = 0.89 0.51 0.07 0.35 0.83 0.97 0.97 0.98
PKC (176) 0.34 Sn = 0.88 0.33 0.43 0.85 0.96 0.87 0.93
PKG (27) 0.47 0.84 Sn = 0.91 0.49 0.97 0.98 1 1
CaM-II (37) 0.56 0.76 0.39 Sn = 0.98 0.93 0.95 0.98 0.93
CKI (30) 0.82 0.9 0.94 0.89 Sn = 091 0.55 0.94 0.96
CKII (85) 0.96 0.98 0.98 0.89 0.68 Sn = 0.97 1 0.98
CDC2 (43) 0.98 0.96 1 0.96 1 0.99 Sn = 0.98 0.37
MAPK (27) 0.98 0.98 0.98 0.99 0.98 0.98 0.56 Sn = 0.89
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Table 9. The Prediction Results of Putative Phosphorylation Sites Annotated as “by Similarity,” “Potential,”
and “Probable” in Swiss-Prot.

Residue Catalytic Threshold No. of sites No. of positive Positive
types kinases Accuracy (1) in the test set prediction rates
Serine S_PKA* (232) 0.88 —4.5 412 358 0.87
S_PKC* (176) 0.82 —4.5 164 123 0.75
S_PKG (23) 0.95 -9.5 14 9 0.64
S_CaM-II (37) 0.81 —-8.0 19 18 0.95
S_CKI (30) 0.76 -7.0 31 29 0.94
S_CKII* (62) 0.87 -35 144 91 0.63
S_cdc2 (43) 0.94 -10 44 41 0.93
S_MAPK (27) 0.87 —6.0 44 40 0.91
Threonine T_PKA (19) 0.95 -7.0 20 18 0.90
T_PKC (37) 0.84 —8.5 59 48 0.81
T_CKII (13) 0.86 -9.0 29 19 0.66
T_cdc2 (17) 0.97 -9.5 29 29 1.00
T_MAPK (15) 1.00 -9.5 31 31 1.00
Tyrosine Y_EGEFR (30) 0.86 =55 12 12 1.00
Y_INSR (16) 0.80 -9.5 39 39 1.00
Y_Src (17) 0.84 -5.0 6 2 0.33

“Means the data set is clustered by MDD.
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