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Abstract 

Plane-wave scattering by a holographic grating is presented. The grating layer can be considered as a perturbation 
imposed on the uniform medium. Based on the perturbation analysis, this perturbation becomes the source of a diffraction 
wave and the boundary-value problem can be translated into the equivalent transmission-line equations with distributed 
current source; therefore, the Green function technique is utilized here to calculate the fields in the grating layer. The 
numerical examples are carefully compared and found to agree quite well with exact results obtained by rigorous treatment. 

1. Introduction 

A dielectric grating can be roughly classified into 
two kinds; one is the grating with spatial variation, 
and the other is the grating with medium variation. 
The holographic grating which we will treat in this 
paper belongs to the latter one. A grating with 
spatial-variation can be represented by a Fourier 
series. On the other hand, a grating with medium 
variation can be regarded as a first-order approxima- 
tion of a spatial-variation grating. Our interest here is 
to exploit the basic feature for the method of small 

perturbation. 
The analysis of a dielectric grating has been 

presented by many authors. To mention a few, the 
rigorous formulation of the diffraction grating was 
presented in the past [l-3] and the exact analysis of 
a grating coupler has been presented in Refs. [4,5]. 
In addition, the approximate method of boundary 
grating diffraction coefficients was used to examine 
diffraction gratings [6]. 

For the research of perturbation analysis in grat- 
ings, there has been a continuing study for develop- 
ing a better approach. For example, an improved 
perturbation analysis of dielectric gratings is given 
by Handa et al. [7]. Also, Zhang et al. [S] reported a 
design of broadband grating couplers by using per- 
turbation analysis. In this paper, the characteristics of 
a diffraction grating instead of a grating coupler will 
be investigated. 

The scope of this paper is as follows. Section 2 
describes first the physical model and all the relevant 
parameters for the ensuing analysis. The mathemati- 
cal procedure is outlined in Section 3 and the overall 
diffraction phenomenon can be reduced to the prob- 
lem of an equivalent transmission-line equation with 
distributed current source. The numerical examples 
and conclusions are given in Section 4, with a partic- 
ular emphasis placed on the non-Bragg-regime oper- 
ation, and the diffraction efficiency of the 1st order 
is compared with that given by an exact formulation 
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2. Statement of the problem 

The perturbation method is presented for the anal- 
ysis of a plane-wave scattering by a holographic 
grating. The grating is periodic in the x direction 
with dielectric constant Q(X) and uniform in the y 
direction. The upper and lower half space will be 
referred as the substrate and air region with the 

dielectric constants l J and E,, respectively, as shown 
in Fig. 1, The thickness of the grating is designated 
as t, and the dielectric constant of the grating layer 
is given by: 

E*(X) =<+ EP( X), (1) 

where the periodic function Ed is regarded as the 
perturbation term, and can be written as: 

E,,(X) = 2S,cos(27rx/d), 
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Fig. I. Structure configuration of a grating. 

where 8, < and d are, respectively, the modulation 
index, the average dielectric constant, and the period 

of the grating. However, a dielectric grating with 
spatial variation can be represented by a Fourier 
series and the model of holographic grating with 

modulation medium can be regarded as its first-order 
approximation. 

3. Method of analysis 

In the previous section, the relevant parameters of 

the holographic grating have been defined clearly. In 
this section, the plane wave is incident from the air 
into the grating region. We assume that the electric 
field of the incident plane-wave is in the y direction. 
The electric and magnetic fields in the grating layer 
can be written as the decomposition of unperturbed 
and perturbed terms [7,8], corresponding to $(x), 
and are given by: 

E?( x,z) = E.;( X,Z) + E_;( X,Z>* (3) 

H,( X,Z) = H,“( %Z) + H,“( x,2>* (4) 

where (E,“(x, z>, H,“( x, z)) denote the unperturbed 

fields, and (E,F( x, z), H,” ( x, z)> refer to the per- 
turbed fields caused by the periodic perturbation 
l P( x). The unperturbed field quantities can be easily 
obtained by solving the boundary-value problem of 
multi-uniform layers. Therefore, the field quantities 

are assumed known and given by: 

E,( x,z) = V,(z) exp( --_jk,,axV) (5) 

H,,( X,Z) = I,,( z) exp( -jk,,0x)9 (6) 

where (V,(z), I,( z>> represent the unperturbed am- 
plitudes in the z-direction and k,, (= k sin Oi) is 
characterized by the propagation constant k of the 
incident wave and incident angle 8,. Because of 

periodicity, the perturbed fields in the grating layer 

can be written as: 

E,(x,z) = ? Vn(z)exp(-_ik,.,x)7 
*z--m 

(7) 

Hp( x,z) = c L(z) exp( -.ik,.,x), (8) 
n= -m 
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Fig. 2. Equivalent transmission line with distributed current source. 

where V,,(z) and Z,,(z) for n = f 1, + 2,... denote 
(voltage and current) amplitudes in the z-direction, 

and L is the propagation constant in the x-direc- 
tion, which is given by: 

k x.n = k.,., + 2nn/d. (9) 

The next step is to introduce Eqs. (5), (6), (7) and 
(8) into (3) and (4). Thus, we can obtain the equiva- 
lent transmission-line equations with distributed cur- 
rent source, as shown in Fig. 2, and described by: 

- av,( z)/dz =jkl’!,z;‘I”( z), ( ‘0) 

- a[,( z)/Jz = jky,)nYn(i’Vn( z) + Ji”‘, (‘1) 

where 2;) = t.o,+,/k(:‘),, Yii) = l/Z;) and k’,fL = 
(kiq .) - k* )I/* for ‘i = 1, 2 and 3, and the dis- 
tributkd cuznt source denoted by Jii) is written as: 

J,“’ = 0 for i = 1,3, ( l2a) 

J,“) = jwe,,< 6 V,( 2) for i = 2. ( l2b) 

The corresponding boundary conditions are given 
by: 

K( z)lz=o 
-jwpo JV,( z)/azl,=o 

= z(I) 

n ’ 
v,( z)L=‘a --jwpo av,( Z)/aZIZ=,* 

= z(J’ 

” . 

( ‘3a) 

(‘3b) 

After a substitution process, Eqs. (10) and (11) 
can be expressed as a second-order differential equa- 
tion, as shown in the following: 

(d*/dz* + (k$)*)V.( z) =jupOJ,(*)(z), ( 14) 

with boundary condition as the same as (13a), (13b). 
Therefore, the voltage wave can be obtained by the 
following formula: 

V,,(z) = jupopn( z’) G,,( z,z’) dz’, (‘5) 

where G&z. z’) is the Green function corresponding 
to (14) with delta current source and the mathemati- 
cal derivation is listed in the appendix. Fortunately, 
the analytical integral can be obtained and save 
much CPU-time for numerical computation. Eventu- 

ally, the diffraction power is proportional to 
V,(z)Z,* (z), which can be easily calculated. 

4. Numerical results and conclusions 

In this paper, the average dielectric constant 2, 
l g and E, are assumed to be 1.44, 1 and 1, respec- 
tively. The perturbation analysis is compared with 
the exact solution in the figures. In Fig. 3, the 
grating thickness is varied and the diffraction effi- 
ciency between exact and perturbation analysis al- 
most matches. Also, we can observe a fast-variation 
curve resulting from multiple-reflections. In the next 

I 
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Fig. 3. Comparison of perturbation and exact methods against 

various grating thicknesses. The modulation index (2 6) and the 

ratio of the grating period versus wavelength are 0.01 and 2, 

respectively. 
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Fig. 4. The diffraction efficiency of a normal incident wave is 
calculated for various modulation indexes. The grating thickness 
and the ratio of grating period versus wavelength are 5 pm and 2, 
respectively. 

example, the modulation index (2 8) varies from 
0.001 to 0.01 and the result is shown in Fig. 4, where 

it reveals less deviation between exact and perturba- 

-&- Exact Formulation 
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Fig. 5. The diffraction efficiency is plotted against various inci- 
dent angles. The grating thickness, modulation index and the ratio 
of grating period versus wavelength are 5 p,m, 0.001, and 2, 
respectively. 
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Fig. 6. The diffraction efficiency versus wavelength: modulation 
index (2 S) = 0.01, grating thickness tn = 5 km. 

tion solution. In Fig. 5, the incident angle is variable 
and the maximum diffraction efficiency occurs at 

14.5 degrees, which is the first-order Bragg condi- 
tion. In Fig. 6, the curve shows that the diffraction 

power vanishes when the wavelength is larger than 
2, and this is reasonable because the first-order 
diffracted wave is below cutoff as h/d 2 1. 

Using the concept of first-order perturbation the- 
ory, the diffraction efficiency of a holographic grat- 
ing is analyzed through an equivalent transmission- 
line network and Green function technique. Com- 
pared with exact solutions, the results af the approxi- 
mation method have excellent agreement. To sum 
up, this analysis is easy and provides us with a new 
view point to find the physical insight about the 
diffraction of a holographic grating. 
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Appendix A. Green’s function technique 

The Green function technique is applied to solve 
the differential equation (14) with boundary condi- 
tions (13a) and (13b), i.e., the problem is trans- 
formed into solving the following differential equa- 

tion, 

(d2/dz2+ (k!f;)2)Gn(z,z’) = Q-z’), (Al) 

with boundary conditions, 

Gn( ZJ’)LO 
--jwpo dG,,( z,z’)/~zl,=o 

= z(,’ 

n ’ 
G,( z.z’)lz-r, 

-J’wpo dG,( z,z’)/~zlt=r, 
= z’“’ 

’ ’ 

( A2a) 

(AW 

If a Green function is found, V,(z) will be obtained 
from the integral equation (15). We take advantage 

of the concepts of circuit theory [9] to find the Green 
function. Then, the Green function can be written as: 

G,( z,z’) = Vi( 2) = V+ exp( -jk$( z - z’)) 

(W 

where r,, defines the reflection coefficient between 

grating and substrate, and is represented by (Zi3’ - 
ZQ’>/( 2’3’ + 2’2’) n n ” . 

+ V- exp( jk(;T)n( 2 - z’)), 

(A34 
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