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Time-resolved spin filtering in semiconductor symmetric resonant
barrier structures
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Spin-dependent tunneling in semiconductor symmetric double barrier structures is studied
theoretically. Our calculation is based on the effective one-band Hamiltonian and Dresselhaus
spin-orbit coupling. We demonstrate that the ratio of the tunneling times of electrons with opposite
spin orientations can vary over a few orders in magnitude. The large and tunable ratio of the
tunneling times can serve as the basis in the development of all-semiconductor dynamic spin
filters. © 2005 American Institute of Physics. �DOI: 10.1063/1.1994945�

I. INTRODUCTION

Since the spin-dependent electronic device was proposed
by Datta and Das,1 the utilization of the spin-orbit coupling
has been one of the key topics of semiconductor spintronics.
However, a most elementary issue, an efficient means to ob-
tain spin-polarized currents in semiconductor structures, has
not been resolved yet. The conductivity mismatch between
metals and semiconductors impedes the electron transport
and makes the injection of spin-polarized electronic currents
from strongly magnetized metals inefficient, as Schmidt
et al.2 pointed out. The reported experimental results on the
polarization efficiency in metal-semiconductor junctions are
less than 1%.3 On the other hand, the spin-orbit interaction in
semiconductors lifts the spin degeneracy of electrons’ energy
and results in spin-dependent transport through semiconduc-
tor junctions.

The spin-orbit interaction of electrons in III-V semicon-
ductor materials is usually described by two contributions to
the effective one-band spin-dependent Hamiltonian. One, of-
ten referred to as the Rashba term, is induced by the inver-
sion asymmetry of the macroscopic potential,4 which can be
controlled by external electric-field or material growth tech-
niques. The other, referred to as the Dresselhaus term,5 is due
to the inversion asymmetry of the zinc-blende lattice. The
interplay between these two terms has been studied by de
Andrada e Silva,6 showing that for narrow-gap semiconduc-
tors, the contribution from the Rashba term to the spin-orbit
interaction dominates over that from the Dresselhaus term.
Hence the Dresselhaus term is often neglected. Calculations
based on the Rashba spin-orbit interaction in III-V semicon-
ductor heterostructures have been performed,7–12 showing
the all-semiconductor tunneling structures can be a feasible
means to obtain electronic spin-polarized currents. However,
it was suggested recently11,13,14 that even through a single
symmetric barrier, where the contribution from the Rashba
term cancels out due to macroscopic symmetry,7 electrons
can tunnel highly spin-polarized because of the Dresselhaus
term.

In this paper we elaborate on this idea and evaluate the

spin-dependent tunneling �delay� time in a symmetric reso-
nant tunneling structure. The tunneling time is an important
quantity in a tunneling process that determines the dynamic
working range of tunneling devices. In this work we take the
“stationary phase approach” to define the tunneling time, as
taken by Bohm15 and Voskoboynikov et al.16 Our following
discussion will reveal that when the spin-orbit interaction
effect comes into play, the ratio of the tunneling time be-
tween differently spin-polarized electrons can gain a few or-
ders of magnitude. This provides the theoretical basis for
time-resolved spin filtering. We also suggest that one can
manipulate the tunneling time to a great variety by changing
the barrier width. The relation between the delay time and
the width is simple and can be used as a rule to select work-
ing frequencies.

This paper is organized as follows. In Sec. II we detail
our calculation of the electron spin-dependent transmission
amplitude, of polarization efficiency, and of tunneling
time. In Sec. III, the results of calculations for
InGaAs/ InAlAs/ InGaAs double barrier tunnel structure are
presented. In Sec. IV we summarize the results.

II. POLARIZATION EFFICIENCY AND TUNNELING
TIME

We consider the spin-dependent tunneling process
through a symmetric double barrier structure grown along
the z � �001� direction, as shown in Fig. 1�a�. Taking the sta-
tionary phase approach the tunneling time is described to be
the phase delay time, which is the energy derivative of the
phase � of the transmission amplitude16

�� = �
���

�Ez
, �1�

where �±=arg�t±�, Ez denotes the longitudinal component of
the electron’s energy �corresponding to a motion parallel to
the heterostructure growth direction�, and �= ±1 refers to the
spin polarization.

Our calculation is performed on the basis of the effective
electronic one-band Hamiltonian, energy- and position-
dependent electron effective mass approximation, and the
Ben Daniel–Duke boundary conditions.17 The layers of the
structure are perpendicular to the z axis and the in-planea�Electronic mail: leoyu.ee89@nctu.edu.tw
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electron’s wave vector is k. With the above assumptions the
electronic wave function in the jth region can be presented as

���x,y,z� = � j��z�exp�i�kxx + kyy�� , �2�

where k=�kx
2+ky

2 and � j��z� satisfies the z component of the
Schrödinger equation

Ĥj�� j��z� = E� j��z� , �3�

with the spin-dependent Hamiltonian in each region,13

Ĥj� = Ĥj0 + ĤjSO. �4�

In Eq. �4� Hj0 is the Hamiltonian of the system without spin-
orbit interaction,

Ĥj0 = −
�2

2mj�E�
� d2

dz2 − k2	 + Ejc,

and

1

mj�E�
=

2P2

3�2
 2

E − Ejc + Ejg
+

1

E − Ejc + Ejg + 	 j
� �5�

presents the energy- and position-dependent reciprocal effec-
tive mass. Ejc, Ejg, and 	 j stand for the position-dependent
conduction-band edge, band gap, and the spin-orbit splitting
in the valence band. P is the momentum matrix element.17 In

Eq. �4� ĤjSO is the spin-dependent part of the Hamiltonian
which originates from the Dresselhaus term �in the sym-
metrical structure the Rashba spin-orbit coupling vanishes7�.
When the kinetic energy of electrons is substantially smaller

than the barrier’s height we can present this term as the
following:13

ĤjSO = 
 j��̂xkx − �̂yky�
d2

dz2 , �6�

where �̂x and �̂y are the corresponding x and y components
of the vector of the Pauli matrices �̂= ��̂x , �̂y , �̂z and 
 j is a
material constant of the jth region.

The boundary conditions for the solution � j��z� at the
interface between the j and j+1 regions have been intro-
duced in Ref. 17,

1

mj�E�
 d

dz
� j��z��

z=zj

=
1

mj+1�E�
 d

dz
� j+1��z��

z=zj

,

� j��zj� = � j+1��zj� . �7�

To diagonalize the Hamiltonian one can put the in-plane
wave vector k along the x direction �ky =0� and take the
electronic wave functions to be

� j±�z� = � j±�z�� 1

�1
	 ,

which are eigenfunctions of �̂x.
The general solution of Eq. �3� in a given jth region has

the form

� j��z� = aj�� j�
+ �z� + bj�� j�

− �z� ,

where � j�
± �z� is a pair of linearly independent solutions of

Eq. �3� within that region. In the regions j=1,3 ,5 the solu-
tions are the following plane wave sets:

� j�
± �z� = exp�±ikjz� ,

where

kj�Ez,k�

=
 j�

�
�2mj�Ez,k��Ez + E1c − Ejc� − �2
1 −

mj�Ez,k�
m1�Ez,k��k2,

 j� =�1 + �
2
 jmj�Ez,k�

�2 k ,

and Ez is the longitudinal component of the total energy in
the first region,

E = E1c + Ez +
�2k2

2m1�Ez,k�
.

We use this expression, along with Eq. �5�, to find the de-
pendence of mj�Ez ,k� on E�Ez ,k��j=1–5�. In the regions j
=2,4 the solutions are chosen to be

� j�
± �z� = exp�±qjz� ,

where

FIG. 1. �a� Sketch of electron tunneling with the wave vector �k ,kz�, where
k is the in-plane wave vector and z � �001� the direction of the structure
growth. The variation of the band parameters forms a symmetric double
barrier tunneling heterostructure. �b� A schematic illustration of a possible
spin-filter implementation.

023716-2 L. Yu and O. Voskoboynikov J. Appl. Phys. 98, 023716 �2005�

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

140.113.38.11 On: Thu, 01 May 2014 02:56:39



qj�Ez,k�

=
 j�

�
�2mj�Ez,k��Ejc − E1c − Ez� + �2
1 −

m2�Ez,k�
m1�Ez,k��k2.

The coefficients �aj� ,bj� are to be determined from the
boundary conditions in Eq. �7�. The sets of coefficients in
neighboring regions are related by the transfer matrix M:18

�aj�

bj�
	 = M�

j �aj+1�

bj+1�
	 .

According to the boundary conditions in Eq. �7� the matrix
M�

j is written as7

M�
j =

1

	 j
� � j+

− � j+
+

− � j−
− − � j−

− 	 ,

with

	 j = 	 j
+ − 	 j

−, 	 j
± = � d

dz
ln�� j�

± �z���
z=zj

� j+
± = � mj

mj+1
	 j

± − 	 j
+	� j+1�

� �zj�
� j�

+ �zj�
,

� j−
± = � mj

mj+1
	 j

± − 	 j
−	� j+1�

� �zj�
� j�

+ �zj�
.

The double barrier tunneling structure consists of four inter-
faces, so the total transfer matrix is written as

M� = � j=1
4 M�

j .

Electrons are injected from the region of j=1. The transmit-
ted waves will appear in the region of j=5. With this as-
sumption the transmission amplitude is given by

t� =
1

�M��11
,

and the spin-dependent delay time is written as

���Ez,k� = − �
� arg��M��11�

�Ez
.

The polarization efficiency of the structure was defined in
Ref. 7 to be

P =
�t+�2 − �t−�2

�t+�2 + �t−�2
.

III. CALCULATION RESULTS

In Fig. 2 we demonstrate the numerical results of the
polarization efficiency P of an electron’s tunneling through a
resonant symmetric structure made of In0.53Ga0.47As/
In0.52Al0.48As heterojunctions. All calculations are performed
within a region on the �Ez ,k� plane where the total energy of
electrons is substantially smaller than the barrier’s height
�see Eq. �6��. The numerical values of 
 in different materials
are obtained for InAs and GaAs from Ref. 13, for AlAs from
Ref. 21, and for alloys with the Vegard’s superposition law in
Ref. 22. One can see that the polarization efficiency shows

typical resonant behaviors as a function of the longitudinal
energy and in-plane wave number. The peaks correspond to
the spin-split lowest resonant levels on the �Ez ,k� plane. The
splitting of the resonant levels results in an abrupt change of
the sign of the polarization efficiency.

The delay time of tunneling electrons with two opposite
spin polarizations is presented in Fig. 3. The position of the
peak corresponds to the resonant tunneling level, at which
the tunneling electron is “trapped” in the quasibound states
of the well. Although the positions of the peak for the two
opposite spin polarizations do not seem to have the same
functional dependence on �Ez ,k�, the distance between them
in Ez is proportional to k, in accordance to the linear depen-
dence on k of the Dresselhaus spin spliting of the levels in
the well.

Since the positions of the peaks depend sharply on Ez

and k, we present in a logarithmic scale the ratio of the delay
time between oppositely spin-polarized electrons �see Fig.
4�. This ratio increases with the length of k and can gain a
few orders in magnitude.

The ratio of the delay times can be tuned by means of
structural design. For this reason we present in Fig. 5 the
dependence of the maximal delay time on the barrier thick-
ness c and the well width d. The delay time increases with
increasing c and d, but has different functional dependencies
on each of them. From the calculation results presented in
Fig. 5 for �+, one can approximate the dependencies as the
following formula:

�+ � d2 exp��c� ,

where � is a constant; for �− of the same structure, one can
recalculate it from the logarithmic ratio. For our symmetric
InGaAs/ InAlAs/ InGaAs double barrier structure ��0.074
when d=18 nm. Applying this formula one can determine

FIG. 2. Polarization efficiency P calculated for an
In0.53Ga0.47As/ In0.52Al0.48As/ In0.53Ga0.47As DBT structure �see Fig. 1�. The
structure parameters are obtained in Ref. 20: E1g=0.418 eV, E2g=1.52 eV,
	1=0.38 eV, 	2=0.341 eV, m1�0�=0.044m0, m2�0�=0.084m0 �m0 is the
free-electron mass�, 
1=0.076 9 eV nm3 �Ref. 13�, 
2=0.073 4 eV nm3

�Ref. 21�, c=6 nm, and d=12 nm.
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the actual region of frequencies where the structure is appli-
cable to spin-dependent electronic devices.

The large and tunable ratio of spin-dependent delay
times in symmetric structures provides a new method to per-
form spin filtering. Once we have clear spin-distinguishable
times of the tunneling processes, the cutoff frequencies of
electrons differently spin polarized will also split. By select-
ing an appropriate region of frequency, the current contribu-
tion from electrons with a lower cutoff frequency can be

greatly suppressed. In this sense we achieved time-resolved
spin filtering. This dynamic regime is more efficient than the
conventional static regime. Indeed, in the static regime the
means to spin filtering is a large spin splitting of resonant
levels in the well,9 which requires a large transversal dc bias
�or built-in electric field�. In symmetrical structures instead
one can perform the dynamic spin filtering even when only a
weak time-dependent signal is applied. We mention by pass
that the spin-relaxation processes can also be suppressed by
the same means.

An important point that tends to be missed is the fact
that the spin filtering based on the spin-orbit coupling re-
quires a control of the electrons’ in-plane momentum.9,11,12

Figure 1�b� illustrates schematically the basic concept of a
dynamic spin filter fabricated in a split multicollector con-
figuration. The in-plane momentum control of electrons and
the dynamic spin filtering are achieved by sending a series of
high-frequency voltage pulses to different leads of the mul-
ticollector. Another method to control the electrons’ in-plane
momentum was demonstrated recently with side-gated reso-
nant devices in a dc regime.12

IV. CONCLUSIONS

Based on the stationary phase concept and the effective
one-band Hamiltonian with the Dresselhaus spin-orbit cou-
pling, we present the numerical results of the tunneling time
through a realistic InGaAs/ InAlAs/ InGaAs resonant sym-
metric structure. It is shown that the polarization efficiency
of the structure has a well-defined resonance behavior, which
leads to a considerable spin polarization of electrons tunnel-
ing through. In the lower-energy region, the ratio between
the tunneling times of electrons with opposite spin orienta-
tions can vary over a few orders in magnitude. The results
indicate that the Dresselhaus spin-orbit coupling separates
the time-dependent response of differently spin-polarized
tunneling electrons. Furthermore, the large and tunable ratio
of the tunneling times provides a possible way to construct a
dynamic spin filter. The characteristic time of such devices
also has been estimated and presented, showing simple func-
tional dependencies on the barrier thickness and the well
width. The dependencies can be exploited to design spin-
tronic devices working in the desired frequencies.

FIG. 3. The delay time for the structure in Fig. 2. �a� Delay time for elec-
trons with spin “up.” �b� Delay time for electrons with spin “down.”

FIG. 4. Ratio between the delay time for different polarizations of the elec-
tron spin. The structure is the same as in Fig. 2.

FIG. 5. The variation of the maximum delay time with respect to �a� the
barrier thickness and �b� the well width. The constant �0=10−12 s is defined
for normalization. The structure is the same as in Fig. 2.
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