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A Fault-Tolerant Multistage Combining Network
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In this paper, we propose a solution to both fault tolerance
and hot-spot contention problems in multiprocessor systems
with multistage interconnection networks. Combining net-
works are known to be effective in handling hot-spot traffic.
However, the fault tolerance capability of unique-path combin-
ing network is insufficient and must be enhanced. Thus, we
use the chaining scheme, which provides alternate routing paths
by connecting intrastage switching elements with a chain, to
enhance the fault tolerance capability of combining network.
As a result, we propose a chained combining network. Because
of the bidirectionality of combining networks, we also develop
routing procedures for the chained combining network. With
slight modifications, these routing procedures can also be used
in other multipath fault-tolerant combining networks. o199
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1. INTRODUCTION

Multistage interconnection networks (MINs) (as illus-
trated in Fig. 1) are cost-effective choices within the spec-
trum of interconnection networks. At a cost of O(N log
N), where N denotes the size of the interconnected nodes,
a MIN provides performance close to that of a crossbar
network under moderate traffic. However, a basic MIN
has two fundamental constraints: First, only a single path
exists between each source—destination pair; and second,
many source—destination pairs share common links. Two
features must therefore be considered in designing a
MIN—fault tolerance and traffic contention resolution.
Since a failure in any single component in the network
disconnects some number of source—destination pairs,
fault tolerance capability must be incorporated to provide
reliable communications. In a multiprocessor system, a
MIN may be used to connect processor elements (PEs)
and memory modules (MMs), and traffic load tends to be
unevenly distributed within the MIN. For example, under
hot-spot traffic conditions, which result from concurrent
accesses to the same memory location, traffic contention
is particularly serious. Schemes for providing smooth mem-
ory accesses under any traffic pattern have to be developed.

In this paper, we consider both fault tolerance and hot-
spot contention problems in MINs of multiprocessor sys-
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tems, and propose a highly reliable, high-performance
multistage interconnection network. Various traffic control
schemes have been proposed to handle hot-spot traffic
[4-7, 17, 19, 24]. Among these schemes, the combining
network [5, 6, 17], which can combine requests within a
switching element accessing the same memory location, is
an effective scheme for handling hot-spot traffic. It not
only reduces network traffic, but also provides a fast syn-
chronization rate if some synchronization primitives, such
as Fetch&Add [6], are supported. However, a combining
network is still a unique-path MIN; it lacks fault tolerance
capability. To provide this capability, we use a chaining
scheme [23] to enhance the combining network. Hence we
propose a chained combining network.

This paper is organized as follows: Section 2 gives an
overview of fault tolerance and hot-spot contention prob-
lems in MINs. To cope with possible faults in the MIN, in
Section 3, we present our fault tolerance scheme—
chaining, which provides alternate routing paths by con-
necting intrastage switching elements. In Section 4, through
simulations, we examine the behavior of chained networks
with various congestion control schemes under hot-spot
contention. In Section 5, we propose a fault-tolerant com-
bining network that is augmented via chaining, and derive
routing procedures for this network. In Section 6, we exam-
ine the overhead of the chained combining network and
consider the other fault tolerance schemes for combining
networks. In Section 7, we summarize the results of this re-
search.

2. RELATED RESEARCHES

2.1. Fault-Tolerant Multistage Interconnection
Networks

In unique-path MINSs, any single failure at a switching
element or a link may render some outputs unreachable
from certain inputs. To overcome this problem, many
schemes have been introduced to improve fault tolerance
capability. These schemes require some kind of redun-
dancy to be built into a network, where the redundancy
could be in the form of information [14], time [20], or
hardware [1, 15, 18, 23]. Among these schemes, incorporat-
ing redundant hardware to provide multiple paths between
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FIG. 1. An example of a multistage interconnection network.
(Shaded lines show a fan-in tree.)

every source—destination pair is most widely used in de-
signing fault-tolerant MINs. Of course, all of these schemes
can be combined to provide several levels of fault toler-
ance capability.

To provide the fault tolerance capability in unique-path
MINSs, several multipath MINs have been proposed. In
setting up a connection, multipath MINs allow an alternate
path to be chosen, not only if faults have occurred in the
network, but also if conflicts with other connections arise.
Thus, multipath MINs provide both higher reliability and
better performance than unique-path ones. On the other
hand, multipath MINs have higher hardware and opera-
tional costs than unique-path MINs in terms of the number
of stages, the number of switches per stage, or the size of
the switching elements. Fault-tolerant MINs have been
studied extensively for a long time. A comprehensive sur-
vey of fault-tolerant MINs can be found in [2].

2.2. Hot-Spot Contention and Tree Saturation

In a shared-memory multiprocessor, many processors
may request the same memory location at the same time.
This kind of shared-memory contention due to concurrent
requests to a location is called hot-spot contention [17].
In practice, there are many potential sources of hot-spot
contention, including synchronization instructions, sched-
uling or shared queue accesses in operating systems, and
programs based on machine models that allow concurrent
memory accesses. For instance, the fest-and-set instruction
is often used to preserve exclusive data accesses. If many
processors need access to the resources controlled by a
lock at about the same time, the highly repetitive accesses
to the lock caused by the busy-waiting can result in con-
tention for this memory location.

A hot-spot traffic model for studying the hot-spot con-
tention problem has been proposed by Pfister and Norton
[17]. Assume N is the number of processors in the system,

and there are also N memory modules in a shared memory
system. Each processor issues r requests to the shared
memory per network cycle (0 < r = 1). Among these
requests, a proportion of / are hot-spot requests that access
the same memory location (hence the same memory mod-
ule). Thus, in each network cycle, there are Nrh hot-spot
requests and r(1 — h) normal requests directed to the
“hot” memory module, for a total of Nrh + r(1 — h)
requests. If each memory module can accept one request
per network cycle (i.e., the maximum memory access rate),
the maximum network throughput per processor is

1
H_1+MN—D @
and the total effective memory bandwidth for the shared
memory system is

N
B_1+MN—D. @)
Fig. 2 shows the total effective memory bandwidth B as
a function of the number of processors N for various hot-
spot rates h. It can be seen that in a system with 1000
processors, hot-spot traffic of only 1% can limit the total
memory bandwidth B to less than 10% of its peak value.
Moreover, this fact is independent of network topology,
the number of redundant paths, or the operation mode of
the network.

If the hot-spot memory module is seen as a root and
the processor elements are seen as leaves, then a fan-in
tree is formed in the multistage interconnection network.
Such a case is indicated in Fig. 1, where node 0 on the
right represents the hot memory module and the nodes on
the left represent processor elements. Due to the limited
memory service rate, when the rate of total requests di-
rected to the memory module in which the hot spot is
allocated approaches or exceeds the maximum memory
service rate, the queue at the memory module becomes
full. The two queues feeding it can thus no longer send
requests to it. They too will become full and stop the four
queues feeding them from sending requests. Eventually,
the entire fan-in tree will consist of full queues. Tree satura-
tion has then occurred.

When tree saturation occurs, memory requests are se-
verely blocked. Not only are hot-spot requests delayed,
but normal requests are also affected. Moreover, if the
system grows larger, its network performance degrades
even more sharply.

2.3. Solutions to Hot-Spot Contention

There have been many approaches proposed to solving
hot-spot contentions. Examples include the various switch
buffer mechanisms [24], network congestion control
schemes [4, 7, 19], software combining [21, 25], combining
network [5, 6, 17], etc. Better switch buffer mechanisms
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FIG. 2. Bandwidth degradation under hot-spot contention.

and network congestion control schemes can alleviate un-
necessary memory access delays caused by the hot-spot
contention. However, because of the limited memory ser-
vice rate, combining several hot-spot requests into one
whenever appropriate to reduce traffic is the most effective
solution to handling hot-spot traffic. Combining can be
done by software or hardware. To alleviate memory con-
tention due to the hot-spot accesses, a software tree may
be used to do the combining. The software scheme is used
to distribute the hot-spot accesses to several memory mod-
ules so that hot-spot contention is reduced. Detailed
schemes for software combining can be seen in [21, 25].
In this paper, we consider the design of the combining
network in solving hot-spot contention. Combining net-
works, which have been studied in the NYU Ultracomputer
[6] and IBM RP3 [16], are multistage interconnection net-
works composed of combining switches. The combining
network is bidirectional; the forward paths transmit infor-
mation from processors to memory modules, and the re-
turn paths from memory modules to processors [17]. A
combining switch has two queues for each direction (see
Fig. 3). Queues on the forward paths are called forward
queues (or combining queues). Combining works as fol-
lows: When several combinable requests that access the
same memory location meet at a forward queue in a switch,
they are combined into a single request and forwarded
towards the shared memory. A record of this process is
kept at the wait buffer of the switch where combining takes
place. When the response returns, the switch satisfies all
the combined requests, one at a time, and the record is
eventually removed from the wait buffer. On the return
path, there are return queues (or normal queues) in each

switch to pass responses from memory modules to proces-
sor elements.

The implementation of a combining queue in the NYU
Ultracomputer is as follows [5, 6]. Three sets of shift regis-
ters, called the IN set, the OUT set, and the CHUTE set,
are associated with each combining queue of a switch.
These sets of shift registers are connected as shown in Fig.
4. Packets arrive in the IN set and shift up one position in
each cycle. Similarly, packets shift down one position in
the OUT set in each cycle. If a packet in the IN set is
adjacent to a slot in the OUT set that is empty, then it
shifts to that slot. In addition, this scheme detects whether
any packet in the IN queue is going to the same address
as another packet already in the OUT queue. If such a
packet exists, the packet in the IN queue is then placed in

—>D combining [
queue
forward \
(requests)
combining
—{] | ] queve |-
PEs MMs
- normal D<—
queue V insert
return wait look
(replies) buffer |« Ookup
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- queue D‘_
FIG. 3. A 2 X 2 combining switching element [17].



A FAULT-TOLERANT COMBINING NETWORK 17

COMPARATOR

COMPARATOR

COMPARATOR

COMPARATOR

CHUTE IN OouT
1 Combining
Logic
wait buffer out

FIG. 4. An implementation of a combining queue [6].

the CHUTE set. The two matched packets then move
synchronously and arrive at the combining logic simultane-
ously. The combining logic detects the possibility of com-
bining the two packets and combines them so that only
one packet is sent to the next stage of the network.

Combining networks are effective in handling hot-spot
traffic, and they also can achieve a high synchronization
rate, if some synchronization primitives, such as Fetch&
Add, are supported [6]. Unfortunately, since the combining
network is still a single-path MIN, any failure will discon-
nect it. Thus, a fault-tolerant combining network still needs
to be developed.

2.4. Fault-Tolerant Combining Networks

In the literature, fault-tolerant combining networks have
seldom been considered. Banerjee and Dugar have pro-
posed a fault-tolerant combining network that supports
the Fetch&Add primitive [3]. In their design, an omega
network composed of 4 X 4 switches and augmented by
an extra stage is used (as illustrated in Fig. 5). There are
four disjoint paths between every source—destination pair.
For each memory request, four copies of a packet are
transmitted through the multipath combining network.
Each of the four packets is combined individually with
other packets if possible. By a special scheduling discipline
in the switch, four copies of each packet are sent through
the network simultaneously no matter whether they are
combined or not, and the messages are voted upon at the
memory-network interface or processor-network inter-
face, thereby providing single-error correction and double-
error detection. If a single fault occurs, at least three copies
of each packet still arrive simultaneously at the network
interface, and the voting is then carried out. Details of the

FIG. 5.
stage [3].

The multipath omega network augmented by an extra

network design and scheduling discipline are described
in [3].

The fault tolerance scheme of this network comprises
information redundancy and hardware redundancy. How-
ever, this network is only single-fault tolerant, and there
is an extremely high redundancy in the network design.
The multipath omega network is costly, and transmitting
four copies of packets through the network limits the effec-
tive network bandwidth to 25%. A cost-effective fault-
tolerant combining network has to be developed. In follow-
ing sections, we present a design for this purpose.

3. CHAINING—A FAULT-TOLERANT
NETWORK SCHEME

As shown in Fig. 1, a fan-in tree can be formed in the
MIN from each output (as the root of the tree) to all the
inputs (as the leaves of the tree). By revealing the tree
structure, Tzeng et al. have proposed a chaining scheme
to improve the fault tolerance capability of the MIN [23].
A chained network is a network that chains together all
the switching elements in the same level of the fan-in tree
by using extra links between the switching elements, and
hence allows each input node to have more than one path
to the root. Figure 6 shows one way of connecting the
switching elements in each stage to create redundant paths.
To allow switching elements to be chained together, each
switching element is augmented by a chain-in link and a
chain-out link. In a chained network, 3 * 3 switching ele-
ments are needed. Such a network can tolerate a single
link fault. To tolerate switch faults, specific chaining
schemes can be used. Kumar and Reedy have proposed
augmented shuffle-exchange networks (ASENs) for this
purpose [9]. In these networks, switching elements within
a stage are chained based on certain conjugate properties.
Dual I/0 links and reconfiguration of the last stage make
ASEN:Ss single switch-fault tolerant. Figure 7 illustrates an
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FIG. 6. A chained omega network for N = 8.

ASEN with a maximum loop size. (A chain in [23] is called
a loop in [9].)

Chained networks exploit all inherent paths embedded
in the tree structure of MINs so that they provide high
terminal reliability. Moreover, chained networks have dis-
tributed control, dynamic rerouting, and on-line diagnosis

LU AND CHUNG

capabilities [9, 22, 23]. The chained network is chosen as the
base network for our design of a fault-tolerant combining
network because of these properties. Chained networks
have multiple source-to-destination paths to provide fault
tolerance capability. Multipath networks can also provide
better performance under nonuniform traffic [10]. In the
next section, we examine the behavior of chained networks
under hot-spot traffic conditions.

4. CHAINED NETWORKS UNDER HOT-SPOT TRAFFIC

4.1. Chaining Scheme

In this section, we examine the behavior of original MINs
and chained networks under hot-spot traffic when different
network congestion control schemes are used. The naming
scheme for these networks is as follows. The stages are
labeled in a sequence from 0 to (log,N — 1), with 0 being
the leftmost source-side stage. In each stage, a switching
element is identified with ¢ = (log,N — 1) binary bits pyp;
... pi-1, which constitute the binary representation of its
location in the stage. Each input/output link is labeled with
t + 1 bits pyp; ... p;, of which the left-most ¢ bits are the
binary representation of the switching element. The last
bit p, is 0 if the link is the upper link; and p, is 1 if the link
is the lower link. Figure 1 shows the naming scheme used
for switching elements and links of an 8 X 8 omega net-
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FIG. 7. A 16-input augmented shuffle-exchange network with maximum-size loops [9].
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work. To devise a chaining scheme, we state the following
definitions in an omega network:

DEermNiTION 1. All the switching elements in stage i,
0 < i <log N, belong to the same partition if p,_; ... p,1
in the binary representation of their name, pop; ... pi-1,
are the same. All switching elements in stage 0 constitute
a partition.

DEFINITION 2. Any number of switching elements in
the same partition can form a chain by connecting the
chain-in link of a switching element to the chain-out link
of itself or another switching element within the same
partition. A complete chain is a chain formed by connecting
together all the switching elements within the same par-
tition.

In our simulations, chained omega networks are used,
in which interstage switches are connected in the conven-
tional way. According to Definitions 1 and 2, switches
within a stage are chained based on the formula

chain_to(SE_ID, stage) = (SE_ID + 25%¢) modulo 2",

where SE_ID is the name of a switching element within
a stage and n = log N. For example, in stage 0 (1), the
chain-out link of switch 0 is connected to the chain-in link
of switch 1 (2). An example of a chained omega network
is illustrated in Fig. 6.

4.2. Simulation Models

In our simulations, original omega networks and chained
omega networks are used. In a chained network, 3 X 3
switching elements are needed. A 3 X 3 switching element
is augmented from a 2 X 2 switching element with chain
in/out links. The buffer mechanisms for these two types
of switching elements are shown in Fig. 8. Output queues
and input latches are used in the switching elements. The
size of output queues is 4. If the destination output queues
are not full, all packets in the input latches will be routed
to the destination output queues, in a network cycle. If
the destination output queues are full, the packets have

(a) 2 * 2 switch

to wait in the input latches. Various congestion control
schemes are used in the 2 X 2 and 3 X 3 switching elements:

(1) Blocking switch. 1f the associated output queue is
full, then in a 2 X 2 switching element, a newly arrived
input packet remains at the input latch, and further trans-
mission of packets through the switch is blocked. Ina 3 X
3 switching element, the blocked input packet may be
thrown into other switching elements within the same stage
by the chain in/out links.

(2) Discarding switch. In a 2 X 2 switching element,
if the packets in the latches cannot be queued, they are
discarded immediately. When a packet is discarded, the
issuing processor will be notified to retransmit the packet
again. In a 3 X 3 switching element, an attempt is first
made to send overflow packets to other switching elements
within a stage by the chain in/out links. If this attempt
fails, then the packets are discarded.

(3) Diverting switch. In a2 X 2 switching element, when
the associated queue is full, packets may be diverted to
another queue. Because they are diverted, the packets will
go to incorrect destinations, and retransmissions from the
wrong intermediate destinations are needed. Similarly,
3 X 3 switching elements also provide chain in/out routing
before diverting.

In all of these congestion control schemes, the packets
in chain-in latches have the highest priority to enter their
destination queues. To prevent packets from circulating
forever within a chain, packets in chain-in latches are for-
bidden to be routed to chain-out latches.

In the simulations, we made the following assumptions:

* Each request is a single packet.

* The networks are synchronous. Only at the network
cycle times, ¢., 2t., ..., are the packets transmitted. For
simplicity, assume ¢, equals 1.

* The networks are pipelined. That is, processors can
issue other requests even before previous requests are re-
turned.

* The service time of a request in a switching element
is the same as the network cycle time, so the waiting time

S s
K

(b) 3 * 3 switch

FIG. 8. Buffer mechanisms of switches.
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of a request at a switching element equals the number of
requests ahead of it in the queue.

* Each processor has an infinite queue for requests. If
arequest is blocked from entering the network, it is placed
on the processor queue, and the processor may continue
to issue requests.

In the simulations, we also adopt the hot-spot traffic
model of Pfister and Norton described in Section 2. In this
model, there are two types of requests: the noncombina-
bles, which access each memory module with equal proba-
bility as in the uniform model, and the combinables, which
access the same shared variable (and hence the same mem-
ory module). In our simulations, only combinables are can-
didates for combining.

4.3. Simulation Results

Figure 9 illustrates the behaviors of various networks
with different congestion control schemes under uniform
traffic conditions. Because of sufficient queue size in each
output link, all of these networks have similar performance
behavior under light traffic conditions. As the request rate
increases, the limited buffer sizes force the networks to
make congestion control decisions—that is discarding or
diverting packets. Because it incurs no unnecessary routing
overhead, the blocking switch performs more favorably
than discarding and diverting switches under uniform traf-
fic conditions. Yet under heavy traffic conditions, better
congestion control schemes, such as discarding and divert-
ing, have lower memory access delays.

If hot-spot traffic occurs, due to the limited memory
service rate, tree saturation occurs in all networks (as illus-
trated in Fig. 10). A request rate of r = 60% and a hot
spot rate of A = 2% exceeds the amount of traffic the
network can handle. By Eq. (1), when hot-spot traffic oc-
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curs, the network throughput per processor is limited to
1/(1 + h(N — 1)). So a network size of N = 64 and a
hot spot rate &~ = 2% limits the network throughput per
processor to 0.44. However, if a combining network is
used, the congestion due to hot-spot traffic can be relieved.
Figure 11 shows the simulation results.

On hot-spot contention, blocking switches that block the
packets from using the buffer resource of the network have
the worst performance. Tree saturation occurs quickly.
Blocking affects not only the combinable requests but also
the noncombinable requests. Discarding switches that dis-
card the overflow packets to resolve conflicts have better
performance than blocking switches. They reserve free
buffers for further routing at any time by discarding
blocked packets. Diverting is another strategy for keeping
the network operational under any traffic condition. To
summarize, discarding, diverting, or other congestion con-
trol schemes shortens memory access delays due to tree
saturation. However, due to the limited memory service
rate, the network is still unstable and tree saturation still
may occur. The simulation results also show that the
multipath chained network performs better than the
unique-path MIN, regardless of the congestion control
scheme used. Needless to say, if hot-spot traffic continues
unabated, the chain-in and chain-out links can do little to
improve performance.

4.4. Discussion

Intuitively, the hot-spot traffic model we adopted does
not seem realistic. In reality, hot-spot memory accesses are
not likely to persist continuously; rather, they occur in
short bursts. An example is when synchronization is
needed among processors. Kumar and Pfister have ob-
served that a relatively short period of hot-spot contention

network size: N = 64

hot spot rate: = 0%
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FIG. 9. Performance of chained networks under uniform traffic.
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FIG. 10. Tree saturation in the chained networks.
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will still cause tree saturation [8]. Furthermore, it takes a
long time for the network to return to its normal state
even after processors stop issuing hot-spot requests. Better
congestion control schemes have better performance: the
delay increases more slowly, the onset time is longer, and
the recovery time is shorter. Multipath MINs also have
better performance under such conditions.

Lang and Kurisaki noticed that the chained omega net-
work can handle nonuniform traffic spots [10]. However,
in our simulations, this type of network does not handle
hot-spot traffic well. This discrepancy occurs because with
nonuniform traffic spots, contention occurs in the switching

elements, whereas under hot-spot traffic, contention occurs
in the memory modules. When contention occurs in the
switching elements, the traffic can be redirected to other
switches through the chain in/out links. On the other hand,
when contention occurs in the memory modules, alternate
paths are of no use in traffic control, because memory
modules are the sole contended resources.

Hot-spot contentions can be roughly divided into two
categories: network contention and memory contention.
Yet they are related, not independent. In the literature,
various congestion control schemes have been proposed
to handle hot-spot traffic [4, 7, 19, 24]. Typically, these
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FIG. 11. Performance of chained networks under hot-spot traffic.
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schemes are based on contention prevention. For instance,
a discarding switch makes a network more operative by
discarding packets. Prevention-based schemes reduce the
unnecessary memory access delays caused by hot-spot ac-
cesses and improve network performance to a certain ex-
tent. However, because of limited memory service rates,
prevention-based schemes still fail to handle hot-spot traf-
fic well. On the other hand, combining networks that can
reduce the number of hot-spot requests are the solution.

5. CHAINED COMBINING NETWORK

5.1. Architecture of the Chained Combining Network

A chained network is fault tolerable. A combining net-
work reduces hot-spot traffic. Hence, we use the chaining
scheme to build a fault-tolerant combining network. Our
base network is the omega network. The naming scheme
of the network is the same as that described in Section 4.
According to Definition 2, there may be various chaining
schemes in the network. The chaining scheme we used is
based on the following formulas:

Forward Chaining.  f.chain_to(SE_ID, stage) = (SE_ID
+ 2%48¢) modulo 271

Return Chaining. r—_chain_to(SE_ID, stage) = (SE_ID

— 2¢5¢) modulo 27!,

where SE_ID is the name of the switching element within
a stage and n = log N. The formula f_chain_to specifies
the chaining function in the forward path (PEs to MMs),
and the formula r_chain_to specifies the chaining function
in the return path (MMs back to PEs).

According to the chaining formulas, an 8 X 8 completely
chained omega network is as in Fig. 6. (Arrows indicate
the forward chaining, and the return chaining is just the
reverse of the forward chaining.) In the chained combining
network, 3 X 3 combining switching elements are needed.
A 3 X 3 combining switching element is illustrated in Fig.
12. For a clear illustration, the switching element is de-
picted in two separate parts: a forward part (PEs to MMs)
and a return part (MMs back to PEs). In this fault-tolerant
combining network, we consider only the link-faults. Chain
in/out links are used when the associated output link to
which the packets are routed fails. The link-faults are as-
sumed symmetric: when the forward link fails, the corre-
sponding return link also fails. And if a link is good, then
the forward part and the return part are both in working
status.

5.2. Routing in the Chained Combining Network

Routing in a unique-path combining network is simple.
The routing of combined packets are the same as those
that are not combined, and the original routing algorithms
are valid. For example, destination-tag routing is used in
the omega network [11]. Assume that a packet has a source
tag sos1 ... S,-1 and a destination tag dyd, ... d,-1. Then, in
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|_L| wait
buffer
1 \
4——| normal queue —a— - D<__
PEs ’7;;;9) MMs

<__| normal queue —a—!

¥

(b) return part (MMs return to PEs)

FIG. 12. The 3 X 3 combining switching element.

stage i, if d; = 0 (1), this packet is routed to an upper link
(lower link). When requests are issued from processors to
memory modules, the IDs of the memory modules are
examined. When requests are returned from memory mod-
ules to processors, the IDs of the processor elements are
examined. On the other hand, in the chained combining
network, alternate paths are provided. Once a packet has
been routed through the network from PE to MM, because
of the possibility of combining, the packet must traverse the
original PE-to-MM path on its return routing. Otherwise,
some combined packets may be pending in the wait buffers
of switches forever, and wait buffers may thus be blocked,
causing the combining network to be out of operation.
Hence, a new routing scheme which can keep track of the
forward routing path among alternate paths in the chained
combining network must be developed. To devise such a
scheme, we add a chain-out record to each packet and
modify the PE ID of each packet to route packets back
and forth correctly.

In this paper, we consider only the routing of a combin-
ing network under link-faults, because of our chaining
scheme. Nevertheless, our discussion is easily extensible
to a routing scheme for networks that can tolerate
switch-faults.

5.2.1. Routing in the Absence of Faults

In the absence of faults, the routing of the chained com-
bining network is the same as in the original omega net-
work [11]. Destination-tag routing is used. Assume that a
packet has source tag: s¢s; ... 5,-1; destination tag: dyd; ...
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d,-1. In stage i, if d; = 0, then the packet is routed to the
upper link (link 0); if d; = 1, then it is routed to the lower
link (link 1). When requests are issued from processor
elements to memory modules (destinations are memory
modules), the IDs of the memory modules are examined.
When requests are returned from memory modules to
processor elements (destinations are processor elements),
the IDs of the processor elements are examined.

5.2.2. Routing under Link Faults

In this case, when requests are issued from processor
elements to memory modules, the modified destination-
tag routing algorithm in [23] can send the requests to the
destination memory modules even after the packets have
been chained out. In their routing algorithm, if a packet
has been chained out to another switch within stage i, the
ith destination tag bit d; is also examined in routing (if
d; = 0/1, then the packet is routed to the upper/lower
link). If a fault-free link is found in a switch, then the
packet is routed to the next stage. In this way, their routing
algorithm routes the packet to the destination. When pack-
ets are not combined on the forward routing, different
paths or networks can be used on the return routing. How-
ever, the combining network has to be bidirectional. When
the memory requests are returned, the packets must tra-
verse its previous path to guarantee that all the original
combined packets will be decombined properly.

To solve this problem, we add a chain-out record to
each packet, and modify the processor element ID of each
packet to maintain the correctness of routing when packets
are chained out. The format of the chain-out record is
as follows:

(1) Chain-out indicator: C = cycy ... Cp-2

C,'Zl,

Ci:07

if the packet has been chained out in stage i,

otherwise.

(2) Partial switching element ID of the first chain-out

location in stage i;
L[ = l() ln*2*i (l = O, R (e 2)

According to Definition 1, a chain can be formed only
if the switching elements are in the same partition. In stage
i, the switching elements are in the same partition if
the binary representations of their names, p,_; ... p,—1 (t =
log, N — 1), have the same value. So, in stage i, to specify
a switching element within a chain, only ¢ — i bits py ...
P:i-1 have to be recorded.

In an N X N completely chained network, the size of
chain-out record is calculated as follows. First, the chain-
out indicator requires (log N — 1) bits. Second, in stage i
there are N/2*! associated possible locations of the first
chain-out switching element within a chain, thus L; of (log
N — i — 1) bits must be appended. Therefore, other than

the data bits, source tag, destination tag, and some special
control or check bits, there are

log N(log N — 1)
2

logN —1+

additional detour bits needed in each packet. For N = 64,
20 detour bits are needed. The number of detour bits is
of order O((log N)?). Furthermore, if all the chains of the
network are of size 2, then the switching element IDs of
the first chain-out location within a chain (L;, i = 0, ...,
n — 2) can be eliminated. Only the chain-out indicator,
which is (log N — 1) bits long, is required, and the number
of detour bits is of order O(log N).

5.2.3. The Routing Procedures

Figure 13 illustrates the routing procedures for the
chained combining network. In the forward routing (PE
to MM), when a packet is routed to a switching element
SE of stage i, if the links of SE are fault-free, the destina-
tion-tag routing is used, i.e., d; of the memory module ID
is examined. When a packet finds the first link fault, before
the packet is chained out, the chain-out record must be
updated: bit ¢; of chain-out indicator is set and the partial
SE ID s;4q ... 5,-1 1s recorded in L; to specify SE within a
chain. Then the packet is chained into switching element
SE’. In addition, based on the ID of SE’, the PE ID must
be modified properly for correct routing:

In stage i, according to the routing of omega network,
a packet will be routed to the switching element

SE: Sit1 eee Sn*ld(] di*l-

If a packet finds the first link fault at switching element
SE, then through the chain in/out links, the packet will be
routed to

SE': Sl',+1 S;—ldO di—l

to find a fault-free link to proceed to the next stage. To
let the packet return to the switching element SE’, the
processor element ID of the packet must be modified to

’ ’
S0 ee SiSit1 oee Sp—1-

If the packet finds further link faults within stage i, then
the packet is thrown to the next switching element SE” via
chain in/out links, and the processor element ID of the
packet must be modified as described above. When a
packet is chained into switching element SE, if ¢; = 1
and L; = (ID of SE), this indicated that the network is
disconnected. Routing is hence impossible.

In the return routing (MM back to PE), when a packet
is routed to a switching element SE of stage i, if bit i of
the chain-out indicator is zero (¢; = 0), the destination-tag
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type packet = record /* the data structure of packets */
S: S0S1...Sn-1 /* source tag--PE ID tag */
D: dyd,...d, /* destination tag--MM ID tag */
C: coCy...Cn2 /* chain-out indicator */
L[0.n-2] /* first chain-out locations within stage i */
end

procedure forward_routing(P : packet); /* from PE to MM */

begin

fori=0ton-1 *n=log N*
/* routing decision: examine the MM ID tag */
switch (d;)

case d; = 0: go to upper link;
case d; = 1: go to lower link;

endswitch;
/* current switching element ID: s;41...5,.1do...d;.1 */
while (the associated output link is at fault)

if ¢; = 0 then /* the fault is the first one found in stage i */
/* in order to specify the switching element within a chain,

record the partial switching element ID: s;41...5,.1 in L; ¥/

L= 5i41--8n-15
c;=1;
endif;
route the packet P to SE” s, ...
to find a fault-free link d;,
by the forward chain in/out links;

if L; = S;p-8, pandci =1 then
/* the packet has been routed through all switch elements
within a chain and no fault-free output link found */
the network is disconnected;
exit;
endif;

’

do...d;.y,

§ 1= 80-.8i 8, 8, /* modify the PE ID tag */
switch (d;) /* reexamine the MM ID tag */
case d; = 0: go to upper link;
case d; = 1: go to lower link;
endswitch;

endwhile;

endfor;

endproc;

procedure return_routing(P : packet); /* MM return to PE */

begin

for i=n- 1 downto 0;
/* In stage i, examine chain-out indicator ¢; */

ifCl'=

else

endif;

endfor;

endproc;

routing is used (bit i of the processor element ID s; is
examined). If ¢; = 1, then through the return chain in/out
links, the packet is routed to switching element L;, and

FIG. 13.

0 then /* fault-free in this stage */
switch (s;)  /* routing decision: examine the PE ID tag */
case s; = 0: go to upper link;
case s; = 1: go to lower link;
endswitch;
/* fault occurred in this stage */
repeat

route the packet P by the return chain in/out links within the chain;

until the packet P is sent to switching element L; within the chain;
/* modify the PE ID tag S back based on the L; */
S = 50...8; g dyion;
/* original path is found and route packet P to next stage */
switch (s;)  /* routing decision: examine the PE ID tag */

case s; = 0: go to upper link;

case s; = 1: go to lower link;
endswitch;

The routing procedures for the chained combining network.

the processor element ID is modified back accordingly. sor element.

Then the packet is routed to the next stage according to
bit i of processor element ID s;, and the routing process
proceeds until the packet is sent back to the issuing proces-
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TueoREM 1.  The routing procedure stated in Fig. 13 can
route a packet from a processor to its destination memory
module if a fault-free path is found, and the packet can be
routed back to the issuing processor element through the
original forward routing path.

Proof. Assume that the processor element whose 1D
iS $oS1 ... S,—-1 issues a packet to the memory module whose
tag is dod; ... d,—,. If the chained network is fault-free,
according to the routing of an omega network, in stage i,
the packet will be routed to switch s;;q ... s,-1dp ... di1,
and the packet will be put in the output buffer of link s;,;
w Sy_1dy ... di1d;. If a link fault is found, the chain-out
record will be updated, the packet will be sent by the chain
in/out link to a fault-free switching element SE's/,; ...
Sp-1dy ... d;—1, and the processor element ID of the packet
will be modified according to the ID of SE’. Then routing
will proceed in subsequent stages until the packet is routed
to the destination memory module.

In general, in an omega network, modification of a pro-
cessor element ID will cause a packet to return to an
erroneous source—the source designated by the modified
processor element ID. By the return routing procedure,
however, because of the setting of ¢; (bit i of the chain-
out indicator), the packet will be chained out by the return
chaining links. While the return chain-out routing within
a stage is being performed, if the first chain-out location
of the packet L; matches the ID of the switching element,
the packet has found the original forward path through
which it was previously routed, and the packet is then
routed back to the issuing processor element accordingly
(see Fig. 14). Q.ED.

Figure 15 depicts a routing example of the chained com-
bining network. Assume that processor element 0 wants to
access memory module 0, and the output link 0 of switching
element 0 of stage 0 is faulty. By the forward routing
procedure, a packet will be sent to switching element 0 of
stage 1 through output link 0. However, the output link is
at fault, so the packet has to be rerouted to switching
element 1 of stage 0 and then forwarded to memory module
0. To record the rerouting path, bit 0 of the chain-out
indicator ¢; has to be set, the partial switching element ID
of the first chain-out location 00 has to be recorded in L,
and the processor element ID S has to be modified to
S’ = 001. In the return routing, according to S’, the packet
will be sent back to switching element 1 of stage 0. Because
bit 0 of ¢; is set and L, is recorded, in stage 0, the packet
is rerouted back to switching element 0 via return chain
in/out link. Then the packer returns to processor element 0.

5.3. Performance Evaluation

In a chained combining network, the combining capabil-
ity can relieve hot-spot traffic, and the chaining scheme
offers alternate paths to provide fault tolerance capability.
The multipath feature also improves network performance

stage i
§ o SEs .5, dy.d
PEs ><
\
faulty links

| "'
X

SE* s/, s, 1d g

o

e forward interstage link * forward chaining link

return interstage link % return chaining link

FIG. 14. Routing of the chained combining network under link faults.

under heavy traffic conditions. To evaluate the perfor-
mance of chained combining network, we conduct a set
of simulations.

In this set of simulations, we also adopt the hot-spot
traffic model of Pfister and Norton [17] as described in

¢ =100
Lo =00
S§'=001
PEs . MMs
0 — ¢ 0
00| -
1 AN 1
2 2
01 [N
3 —\ —
4 " / 4
5 ! = -
6 — 6
11
7 7
I — i

stage

FIG. 15. A routing example for the chained combining network.
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network size: N = 64
hot spotrate: 1 =2 %
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FIG. 16. Performance of fault-free chained combining network.

Section 2. The original omega network and the completely
chained omega network are used, and their network sizes
are N = 64. We assume the use of 2 X 2 switching elements
and 3 X 3 switching elements in the omega network and
the completely chained omega network, respectively. The
configuration of a switching element is as follows. The
degrees of combining, meaning the largest numbers of
requests that can be combined simultaneously, are 2 or 3;
the forward queue sizes are 4; and the wait buffer and
return queue sizes are assumed to be infinite. In a chained
combining network, if the forward queue is full, a packet
may be rerouted to the next SE within a chain. To prevent
packets from running forever within a chain, we constrain

the chain-out routing in our simulations: each packet can be
chained out at most once in each stage, because unlimited
chain-out routing may incur live lock in the system.
Figures 16 and 17 illustrate the performance of chained
combining network under fault-free and faulty conditions,
respectively. When the network is fault-free, alternate
paths provide routing choices to improve performance (see
Fig. 16). Moreover, if the degree of combining is higher,
there is still some performance improvement when traffic
is heavy [12, 13]. When a link fault occurs in the chained
combining network, the traffic associated with the faulty
output link must be directed to other switches within the
stage by chain in/out links. To observe behavior of the

21
—®— [ink faults network size: N = 64
20 - at stage O hot spot rate: h =2%
2-way combining
19 —t link faults
at stage 1

z
g 18 *—— link faults
2 at stage 2
8 17 A
< .
= ——O— link faults
% 16 A at stage 3
=1
a A link faults

15 A at stage 4

o A
14 W
T ZAY
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13 e | | | | | |
0 10 20 30 40 50 60
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request rate

FIG. 17. Performance of chained combining network under link faults.
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network under link faults, we define a set of fault patterns:
Both output links of the switching element 0 at stage i
(0 =i = n — 2) are faulty. (These fault patterns do not
disconnect the network.) Assume that the maximum re-
quest rate a fault-free network can handle is 100%. As a
result, when a fault occurs, the traffic at the switch to
which the extra traffic is directed is then doubled, and the
maximum request rate that the network can sustain is at
most 50%. Figure 17 shows the simulation result of chained
combining network under link faults. In general, when
faults occur near the processors (except at stage 0), the
memory access delay is increased because of the severe
contention caused by link faults and hot-spot accesses.
When faults occur at stage 0, the request rate that can be
sustained is only about 30% because all the requests of
PE 0 and PE 32 are severely congested at the chain-out
link between SE 0 and SE 1 of stage 0.

6. DISCUSSION

In a combining network, to correctly decombine the
packets waiting in the wait buffers of switches, the com-
bined packets, on their return routing, must traverse their
forward route. In unique-path MINSs, this is a trivial prob-
lem, because only a unique path exists between any source—
destination pair in the network. However, in multipath
MINSs, which provide fault tolerance, forward routing path
needs to be recorded to help in the return routing. Thus,
in the chained combining network, chain-out records are
used to identify the forward paths taken. For example, a
completely chained network provides 2(n*-m)i2 paths (not
all disjoint) between any source—destination pairs, where
n = log N. So an O((log N)?)-bit chain-out record is re-
quired. (If the chain size is limited to 2, the chain-out
record size can be reduced to O(log N) because only 2(*~D
alternate paths exist.)

In the chained combining network, the packet size over-
head—the chain-out record—is high: it is O((log N)?) for
a completely chained network. This increases both the
packet size and the transmission time. To reduce the chain-
out record size, a rerouting buffer may be introduced into
the switching elements. A rerouting buffer can be similar
to the wait buffer of a combining switch. While the wait
buffer is used to combine packets, the rerouting buffer is
used to reroute packets. Obviously, when a rerouting
buffer is used, it should have enough space to accommo-
date rerouted packets, or else the performance of the net-
work may suffer. In addition, because of high network
delay, switching elements closer to processors need more
rerouting buffer space.

Because of the chaining scheme, our fault-tolerant com-
bining network can tolerate only link faults. However, if
the network is carefully augmented by a special chaining
formula, such as that in the augmented shuffle-exchange
networks (ASENS) [9], switch faults can also be tolerated.
With a slight modification, our routing procedures can also
be used to handle switch faults: the chain-out record in

each packet is modified according to the associated chain-
ing schemes.

Chaining is not the only scheme that can be used to
enhance the fault tolerance capability of a combining net-
work; other fault tolerance schemes, such as the extra-
stage cube network [1], the gamma network [15], and the
INDRA network [18], may also be applied to combining
networks. Furthermore, because these schemes offer only
limited number of alternate paths, the routing procedures
in these schemes are easier. For example, in the extra-
stage cube network [1], there are two paths between each
source-destination pair. To record the specific path in the
forward routing, one bit is sufficient.

7. CONCLUSIONS

It is known that tree structures are embedded in the
MIN. When the tree structures are enhanced, the fault
tolerance capability of the MIN can be increased, and the
traffic contention may be relieved. For providing fault tol-
erance capability in a MIN, we use a chaining scheme to
enhance the connectivity of the tree structures. The
chained networks allowing alternate paths not only provide
fault tolerance capability, but also improve performance
when the network traffic is congested. However, because
of limited memory service rate, the alternate paths cannot
handle the hot-spot traffic well. The combining capability
can be implemented in the MIN to relieve hot-spot traffic.
Thus, we propose the chained combining network with its
routing procedures, as the solution to both fault tolerance
and hot-spot contention problems in MINs.

The network performance often sharply degrades when
faults occur. In the chained combining network, when
faults occur, alternate paths are taken to redirect traffic to
other switching elements. Because of traffic redirection
and the limited service rate of the switching elements,
contention is more likely to arise in the directed switching
elements. In this situation, alternate paths can again be
used to share the traffic load. Moreover, certain complex
congestion control schemes, such as, diverting [10], may
also improve network performance and alleviate perfor-
mance degradation further when faults occur. Due to the
bidirectionality of combining networks, congestion control
schemes must be carefully developed. In a word, if a com-
bining network supports any kind of congestion control
schemes, the routing procedures must keep track of the
forward routing path for the sake of decombining packets
properly on their return routing.
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