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When an acoustic pulse propagates in a randomly fluctuating ocean with a deterministic
sound-speed profile, it is distorted since every frequency component experiences different extents of
scattering from the random inhomogeneity and echo numbers. Here, the split-step method is used to
simulate an acoustic pulse with a 3-kHz carrier propagating through a turbulent ocean with
range-independent/-dependent sound-speed profiles. It is found (ihathe ocean is a
frequency-selective fading channéB) the received pulse profile is dependent on the received
depth, sound-speed distribution, fluctuation strength, and scale length of turbulence in 8eans;

the rms pulsewidth is broadened by several times its initial value as a consequence of pulse echoes
and pulse wandering of every pulse realization of the enserlé&ie rms pulsewidth is increased

when the fluctuation strength increases or the scale length decreasés); thedstatistical properties

of the propagating pulse are similar for both the range-independent and -dependent cases in the
mean square sense. €996 Acoustical Society of America.

PACS numbers: 43.30.Bp, 43.30.Cq

INTRODUCTION this coherence function. The temporal moment metiveas

Recently, acoustic pulse propagation in the ocean haigltroduced to avoid this difficulty. In this method, the tem-
attracted much attention because of its praCtiCaporal moments can be evaluated without an explicit expres-

importancet—3 The pulse is distorted due to the existence ofSIon for the two-frequency mutual coherence funcfion.

the sound-speed profile and turbulence. Multiple-path propa'l'hese temporal moments represent important statistical pa-

gation of acoustic waves can occur in the ocean because Gmeters of the randomly distorted pulse. However, the tem-
the vertical sound-speed profile. In addition, the sound spedgeral moment method can only deal with the case of range-
has random temporal and spatial variations due to internd'dependent sound-speed profile and with the propagation
waves and the fine structure of temperature in the oé&an. fange to be sufficiently short that the ray trajectory does not
Because of these stochastic fluctuations, each frequend}@Ss the propagation g)&%.Wlth such limitations, efforts
component of the pulse will be scattered to a different extentWill resort to the numerical methods.

Distortion and broadening of the pulse after propagation is ~ Calculation of the propagation of acoustic energy in a
expected. realistic ocean where velocity is a function of both range and

The broadening and distortion of a pulse when it isdepth is of continuous intereStRecent developments in the
propagating through a random medium has been studied bo@alysis of weakly range-dependent guiding channels, using
theoretically and experimentaffy"” The stochastic proper- the spectral approach, have led to the development of a glo-
ties of the pulsewidth provides the information about thebal spectral Green’s function for range-dependent
broadening. Physically, there exist two possible causes fovaveguides. Kamel and Felségeneralized the method of
this broadening. It may be due to the fact that the pulse igharacteristic Green’s function for a two-dimensional ocean
spread in time as a consequence of scattering from each raaveguide to accommodate weak range dependence. Lu and
alization of the ensemble. It may also come about because &elsert® developed approximate adiabatic transforms that ac-
the wandering of the pulse, that is, the arrival time of thecomplish for weakly range-dependent oceanic waveguides
pulse differs from one member of the acoustic ensemble tahat the rigorous transform does exactly for the range-
another. However, when there exists a deterministic inhomoindependent case. However, both approaches only deal with
geneity, there are pulse echoes due to multipath propagatidhe deterministic cases, research in WPRNave propaga-
and this may be coupled with the random fluctuation of thetion in random medinhas scarcely been reported. An alter-
inhomogeneity to change both the arrival time of echo andate way is to use the numerical approach.
number of the echoes. Hence, the acoustic pulse propagation Many numerical methods have been proposed for the
in a turbulent ocean is affected both by the deterministicsolutions of wave propagation problems. Among these are
sound-speed profile and random fluctuation of sound-speetie  Fourier split-step? implicit  finite  difference
profile. Exploration of the coupling effect between turbu- (Crank—Nicholsoi*> and method of lines based on the
lence and sound-speed profile on acoustic propagation bédam—Bashforth formuld® Here, the split-step method is
comes an interesting and important issue. used to calculate the temporal behavior of stochastic waves.

Basically, the evaluation of the average intensity of thelt is unconditionally stable and computationally efficient.
pulse depends on that of the two-frequency mutual coherThe algorithm does, however, require periodic boundary con-
ence functiorf. However, it is usually difficult to compute ditions inz because of its use of the finite Fourier transform.
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/ p(r,z)=y(r,2)H5Y (kor), (2)

reasoning that the primary radial dependence of the field in

;f%\ terms of an outward propagating radial wave is represented
20 a NIBe  TTe by the Hankel functiorH{"(kr). If the receiver is assumed
r=0 r:&NZf to be many wavelengths away from the sourkgr &1), and
with the paraxial approximation assumption,
; || <|2ikoi|, then the Leontovich—Folk parabolic
equation
2iKo iy + 7+ KG[NP(r,2) — 1]9=0 ()

FIG. 1. Geometry of acoustic pulse propagation in the ocean. The bilinea] . . . .
sound-speed profile with minimum sound speed at the depth is shown. for the transmltteq f|?|d IS Obtamed from E€). The ap-
The point source approximated by a Gaussian beam with the center at tHagroximation was first introduced in underwater acoustics by

depthz is launched horizontally in the plare=0. Multipath propagation Tappert and Hardit® The application of the parabolic ap-
gzgfhezns In this situation. The receiving point located at the rapgad 1 imation in ocean acoustics rests on two requirements:
f - .. . . .
(1) that local variations of the acoustic refractive index are

. . . . . i . small, and(2) that effective pr ion paths are limi
This requirement is handled by introducing an artificial hor|—S all, and(2) that effective propagation paths are limited to
a narrow aperture centered about the forward scattered

zontal bottom boundary below the physical bottom, and as-,. .. "~ 5
suming that the field satisfies a zero boundar conditiondlrecnon'
there 9 y In a turbulent ocean, the sound speed can be expressed

In our research, an acoustic pulse propagates through%\S
turbulent deep ocean with range-dependent sound-speed pro- ¢(r,z)=co[1+U(2) +u(r,2)], (4)
file is explored. This means that the deterministic profile is . ) . )
dependent on both the ocean depth and range distance. TH&ereU(z) is a dimensionless function of the depttrep-
geometry of the problem is illustrated in Fig. 1. A point 'esenting the deterministic sound-speed profile, anis a
source and a point receiver are placedzatz; and z=z;, random, zero-mean function of position representing the
respectively. The split-step method is employed to simulatéelative fluctuation caused by medium fluctuations such as
ments are computed to estimate the average arrival time arfaffected by the time dependenceobecausgu has only
width spreading of an acoustic pulse. According to the spacomponents with very low frequency. Substituting E4).in
tial autocorrelation function of the turbulence, we generate=d- (3) and neglecting/,, and the second and higher-order
the multiple phase-scrediMPS) to represent both the con- terms.ofU and u, the standard parabolic equation is derived
tributons  of the  deterministc and  random and given by
inhomogeneitied’ Results show that the effects of random . 2
. . . - 2ikoth, + i, ,— 2kg(U + =0.
scattering on the arrival time are negligibly small. However, o+ Yz 2kg(U+ p)9h=0 ®
random scattering will significantly broaden the pulse espe-  For pulse propagation, the distortions of a pulse in a
cially when the range is long. Dependence of the arrival imgandom medium are attributed to the different scattering
and pulse .Width on the variance and scale size of turbulencgharacter of the frequency components of the pulse. The
are also given. pulse after propagation can be formulated by the equation
The rest of this paper is organized as follows, in Sec. |
the time-harmonic wave equation and the pulse propagation _ f‘” :
) . r,t)y= F r,w)exp|—i[wt—k(w)r]id
are formulated. The split-step method and generation of p(r.t) —w (@)g(r.o)exp —ifw ()r]ide
phase screen are introduced in Sec. Il. In Sec. lll nhumerical

examples and discussion are demonstrated. Finally, the re- te.C. ®

sults are summarized and a conclusion is drawn. Here, the pulsep(r,t) propagating along the direction,
which is designated as the propagation axis, has been Fourier

I. WAVE EQUATION AND FORMULATION decomposed. The notati¢f( ), as a function of the angular

In an ocean cylindrically symmetric about an axis con-r€duencyw, stands for the spectrum of the pulsgw) is

taining a point time-harmonic source, the acoustic pressurg:e wavellnudmber alor(ljg thgbprophaga’;lfon aX|fs; an(;j the com-
p(r,z) satisfied the reduced wave or Helmholtz equation P/€X amplitudey(r, ) describes the effects of random scat-
tering of a single frequency wave with the initial condition

rHrpy)r+ P, kgn?(r,2)p=0, (1) 0,0)=1. Here, we assume an initial Gaussian pulse which
wherek,=27f/c,, f is the frequency of the source, and the 'S 9\V€N by
index of refraction,n(r,z), is given byn(r,z)=cy/c(r,z), p(O,t)=exp(—t2/T§)cos{wct), )
where the constant, is a reference sound speed, ard,z)
is the sound speed at the poimtZ). where (@) is the carrier frequency anfy/v2 is the pulse-

In the parabolic equation method for solving the reducedvidth. After a Fourier transform, the frequency spectrum is
wave equation, the solutiop(r,z) is written in the form given by
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F(w)=(To\/;/2){exr[—T(2)(w—wc)2/4] whereB, is the correlation function of accumulated phases
at depthsz; andz,. In simplifying Eq. (11), it is assumed
+exf — TH(w+ wo)%/4]}. (8)  thatA,>I, wherel, is the scale length of the irregularities in
r direction. The functionA, is the integrated correlation
Jgnction of the sound-speed fluctuations and may be ex-
pressed in terms of the spatial spectrum of irregularities
®, (k) as

From Eq.(5), we can calculate/(r,w) for propagation of
each frequency component by using the split-step metho
By substitutingy(r,w) andf(w) into Eq.(6), the real pulse
shapep(r,t) is computed.

AM(Z)=2wa D, (ke dk,. (12

ll. SPLIT-STEP METHOD Therefore, the relationship between the phase spectrum of
A. Split-step method each screen and refractive index spectrum is

To solve Eq.(5), the split-step method is proposed. This dy4(ky= ZwkgA,CI)M(kZ). (13
method is of exponential accuracy mand second-order ]
accuracy i 221 A phase screen is inserted to represent the>- Phase-screen generation
phase change due to the existence of random and determin- The goal here is to generate a discretized and stationary
istic inhomogeneities, in an infinitesimal incremeft in random functiond(nAz) which represents the phase rth
range. This effect has been separated with the diffractiogrid point of each phase screen in the transversal direction
effect. Hence, the evolution of complex amplitude in a rangewith sampling spacing z of two neighboring points. In con-

A, is given by tinuous notation, the phase may be written as the Fourier

W(r+A, z)=e A KUty 7y, 9) transformation by
v_vhereA:(1/Z<0)z_9ZZ is an operator represent.ing the diffrac- 0(z)= fx K (ke dk, . (14)
tion effect. By using the Fourier transformation, —w
(r+A, ’Z):F—l[e—ikar/(2k0)F[e—iko(U+M)Ar¢(r'Z)]], In the discrete case, E(¢l4) becomes

(10 N-1
— i(27/N

whereF{-} denotes the Fourier transformation franspace G(nAz)—mE:O Ky(mAky)e'2mNmt Ak, , (19

to k, spaceF ~{-} denotes the inverse Fourier transforma-
tion. wheren=0,...,N—1. It can be showt that
Notice that when the spatial parametedoes the dis- K ,(mAK,) =r [P ,(mAk,) YA L/27] "2, (16)

crete Fourier transformatio(DFT) to the spatial frequency .
k,, the sampling interval\, is chosen to avoid aliasing in where ® ,(mAk,) represents discrete values of the known

spatial frequency, i.e.A,) ~*=2(K,) max, Where K,) max '€p- desired phase spectral density dnés the vertical length of

resents the maximum spatial frequency of the field distribufn€ Phase screen grid. The complex numkgrns given as
tion on the transverse axis Here,A,= 1/2(K,) nax, and the the sum of two independent Gaussian random variables with

spatial frequency interval is equal to 2r/NA,, whereN ~ 2€f0 mean and variances of unity, i.ey=An+iBy. The
is the total number of spatial sampling points, M~ 1 values ofA,, andB,, can be generated numerically by sam-

spatial intervals are considered. The procedures are repeat AR ) o
P P P aussian distributio? Since the phase of an individual

for all screens until the observing plane is reached. It has . . X .
hase screen is real, we may choose either the real or imagi-

been observed that this method is the discrete version of th% . . .
path integral method of wave scattering analysis for infini- 'Y part of6(nAz) from Eq.(15). Since the real and imagi-

tesimal rangeA, and, therefore, is an exact solution to the nary parts are independent, they are used to represent the

parabolic equation under the restrictions imposed by the ﬁ[andom phases of two independent screens, respectively.

nite screen size and sampling interval.

To specify the statistics of each phase screen, the calcui. NUMERICAL EXAMPLES AND DISCUSSIONS
lation of the correlation function and spatial spectrum of
phase variations are needed. In the simulation, the fluctuation
in each slab is assumed not to change the amplitude of tH
field . However, the phase fluctuation causes the amplitud
to fluctuate during propagation through maky, because of
the diffraction effect.

Ignoring the diffraction and deterministic refraction e
fects, the phase correlation function is defined by

%Iang from a pseudorandom sequence of numbers with a

Here, numerical examples of acoustic pulse propagation

turbulent oceans considering range-independent or range-

ependent sound-speed profile are illustrated. In our compu-
tation, a bilinear sound-speed profile is assumedld(w) is
given by U(z)=Db,z, z<0, andU(z)=b,z, z=0. Mean-

. while, the following parameters are chose=—75 m,
b;=—b,=—1.1x10 °(m~°), C,=1500m/s), the propaga-
tion distancex;=10 (km), To=1.5 ms and the carrier fre-
quency of the pulse signal 3 kHz. In subsections A and B a
Gaussian correlation function ofu) is assumed, i.e.,

, B,(r.2)=(u?)exp(— (r?+2%)/1?), where(u? and| are the

=koArAL(Z1—2,), 11 mean square fluctuation and scale lengthwofn subsection

L [Ar (A
Be(zl_zz)zkofo fo (m(r,zy)p(r',zz))dr dr’
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FIG. 2. The curves of received amplitude as a function of input frequency |

and Il are shown foz;= — 25 m andz;=50 m with (uz?=0. FIG. 3. The curves of received amplitude as a function of input frequency |

and Il are shown foku?=10"° and(u?)=10"7, respectively, fol =74 m
andz;=50 m.

C, both the temperature fine structure and the power law

spectra are considered for the case of range independence?aths arrive at the deptly=50 m, which give slower but

In the creation of the random phase screen, the Comp|egeeper fadlng In the case of random fluctuation of sound-
random numbeA,,+iB, is simulated by calling the subrou- speed profile, the received amplitude of frequency response
tine drnnoain IMSL (International Mathematical Statistic averaging over 80 realizations is shown in Fig. 3 with curves
Library). Here,N=4096, 100 slabs are assumed in employ-l and I for (u*=10"° and 10/, respectively. Herel=74
ing the split-step method, i.e\, =100(m) andA,~0.76/m). m. By comparing the both curves with the curve Il in Fig. 2,
The notationsAr and AZ represent the space sampling dis- it shows that the random fluctuating of the ocean can in-
tance in the range and depth directions, respectively. Térease the number of the micromultiple paths, hence, it leads
avoid the effect of spatial aliasing, a spatial Gaussian distrifo a faster fading when the fluctuating strength is increased.
bution along thez direction is used to replace the point BY giving the initial spectral density function of the pulse,
source, i.e.(0.2) = (i 7% w)exp[— (z— 2,) %/ »?]. The ini-  1-€., EQ.(8) is used, the received pulse can be calculated. In
tial beamwidthw is chosen to equal 4/to avoid the spatial the case with no turbulence the received pulse profile is
sampling aliasing and to be sure that the span of the spatighown in Fig. 4 and at depth=—25, 50, and 75 m, respec-
frequency ink, domain is wide enough to keep necessarytively. Owing to the multipath propagation, echoes are re-
information during the inverse descrete Fourier transformaceived. Number of the received echo is changed with the
tion. depth.

Here, 60, 80, 120, 140, 160, and 200 trial runs are indi- When there is random fluctuations, two individual real-
vidually executed for several cases and the statistical firsgations of pulse delay profile are illustrated separately by
and second moments of the propagating pulse are evaluated
for each trial run. By comparing the moments of each trial
run, it is found that 80 trial runs already give a stable result.
Therefore, 80 trial runs are chosen to simulate the pulse
propagating through the fluctuating ocean and the average
pulse profile and rmgroot mean squajeof the received

pulse are evaluated by the 80 realizations.
A. Range-independent sound-speed profile

In Fig. 2, the received amplitude as a function of input
frequency is illustrated by curve | and Il at receiving depths
—25 and 50 m, respectively, whetg?)=0, i.e., the sound-
speed profile is deterministic. It shows that the ocean is a
frequency-selective fading and the fading depth varies with
the ocean depth. It is obvious that the fading is caused by the
multipath interference. The fading oscillates faster but
weaker atz;=—25 m than that az;=50 m. It is because
that at the depth-25 m weak but numerous micromultiple

plxrzrit)

0.2r

0.15-

0.1r

0.05

6.65

Arrival Time (Sec.)

8.87 6.675

paths arrive, therefore, to yield a fast but shallow-depth 'fadFIG. 4. The received pulse profiles I, Il, and Ill are shownZps — 25, 50,
ing. On the other hand, only strong but few macromultipleand 75 m with(u?=0.
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0.01[ 0.005
: ' . y &65 5555 5575
69645 6.865 8.67 8.675 6.68 6.685 6.69 . . X
Arrival Time (Sec.) Arrival Time (Sec.)
Vi .
FIG. 5. Two realizations of the received pulse profile =50 m, ~ F!G: 7. The average pulse profiles | and Ii are showrl fed0 m and =10
(u¥)=10"5 =74 m m, respectively, fou2=10".

pulse wandering of every pulse realization of the ensembile,
éjue to scattering form random inhomogeneity. In Fig. 7, the

By comparing these two figures, it reveals that the pulse i verage pulse profile is shown by curves | and Il for the scale
wandering and the magnitude and number of echoes are vg ngth 1=40 and 10 m, respectively, wherg?—10",

ied which leads to the pulse broadening. However, the pulsee

itself is spread only slightly in time. After averaging over 80 fojsfsrg' Aftirtc_atl:glatlgniéhe ms pulf_ew||dt:1t eﬂuals t1h6t8
realizations, the average pulse profiles I, Il, 1ll, and IV are@nd +-0v Ms fof=4y an M, FESpEctively. 1t Snows tha
shown in Fig. 6 for(u®=10"° 10"/, 108 and 10, re- whenl| decreases, the rms pulsewidth increases. It is because

that a decrease in the scale length leads to an increase in the
decorrelation among multiple paths, thus, the rms of pulse-
width increases. It is found that the change of mean arrival

that of the limiting caséu?)=0. The root mean square pulse- gmethof tge S"’}”?p'er‘j' pulsg,\sl tls very s'mtall tW h‘fr? ttk? N rece||tv.|ng
width of the first three profiles is calculated from the 80 epth.(u”) or | is changed. It is consistent wi € resuitin

realizations and given by 1.69, 1.46, and 1.41 ms, in théqef' 10.

corresponding order. It shows that the larger fluctuation of

sound-speed distribution gives larger broadening of the reB. Range-dependent sound-speed profile
ceving pulsewidth. The rms _pulseW|dth a_tft_e_r propagation |, yhig case, the sound channel axis is assumed to in-
increases from 1.33 to 1.59 times of the initial rms pulse-

crease in depth by 50 m uniformly over 10-km range dis-
width which is equal to 1.06 ms. The broadening is a consex, P y y g

. : . tance, hence, the parabolic approximation is still applicable.
quence of echo arrivals, due to multipath propagation, ang . roceived pulse profile at depth5, 50, and 75 m is

illustrated as curves I, Il, and Ill, respectively, in Fig. 8. The

. : ‘ : pulse delay profile as well as the acoustic energy distribution

014t 1 along the depth are different from those in the range inde-
".: pendent. Most of the received acoustic energy is concen-

0azr 1 trated above the channel axis because of the downtilted axis.
P In Fig. 9, the average pulse profile is shown {pf)=10"°

and 107, by curves | and Il, respectively. Here, the received

depthz;=50 m andl=74 m. The increase of fluctuation

: : strength can change the arrival times and shapes of echoes,

008t : thus rms pulsewidth is increased as well.

curves | and Il in Fig. 5 foku?=10"5, | =74, andz;=50 m.

spectively, where;=50 m andl =74 m. By comparing the
curve IV in Fig. 6 with the curve Il in Fig. 4, it shows that
when (4?)=10"1° the average pulse profile is approaching

0.081

Plxp.zri0)

0.04 .
C. Temperature fine structure and power-law spectra

0.021

To be more realistic, the sound-speed fluctuation due to
. . NN B the temperature fine structure is considered and its correla-
6.655 6.66 6685 8.67 6.675 tion function of u, ie., B,(r,z), is given by
Arival Time (Sec) (uyexp(— |z|5/zo)exp(— r_2/ 12) with typical value ofzy=2 m _
andl =74 m? Its numerical example of average pulse profile
FIG. 6. The average pulse profiles I, II, Ill, and IV are shown for IS illustrated in Fig. 10 at ertthS, 5;01 andg 75 m for
(u?)=1075 1077, 1078 and 105, respectively, fot =74 m, andz;=50 m. curves |, I, and Ill, respectively. Heréu“)=10"". The re-
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FIG. 8. The 'receéved pulse profiles 1, I, and Ill are shownZpr —25,50, £, 10. The average pulse profiles I, Il, and Il are drawn at depths
and 75 m with{u°)=0.

z;=—25, 50, and 75 m, respectively, for the case of temperature fine struc-
ture with (u?)=10"°, z,=2 m andl=74 m.

spective rms pulsewidths are 6.2, 4.1, and 2.9 ms. The tem-

perature fine structure causes larger pulse broadening whigBred by the random inhomogeneity and turns into many mi-
is due to the small scale Iength in the vertical direction. |ncrostationary paths_ Hence, the interferences among these
Fig. 11, the average pulse profiles | and Il are drawn for thenacrostationary paths are smoothed. It is found ¢hathe

case of the power law spectrum witﬁﬁ=10‘7. and  ocean is a frequency-selective fading channel because of the
C?=10"°, respectively, forz;=50 m. The respective rms multipath propagation and turbulence scatteri();the re-
pulseWidth are 3.7 and 1.8 ms. A Iarger fluctuation Strength:eived pu|5e prof”e is dependent on the received depth, de-
yields a larger rms pulsewidth. Here, the Kolmogorov specterministic sound-speed distribution, fluctuation strength, and
trum is used as an example and its spectrum is given b¥cale length of turbulence in oceari8) the rms pulsewidth

P, (k,)=0.03%7k; '3 can be broadened several times the initial pulsewidththe
increase in fluctuation strength or decrease in the scale length
increases the rms pulsewidth; af) the statistical proper-

. - , ties of the pulse are similar for both the range-independent
In this research! the statistical properties of an.acoustlgnd dependent sound-speed profiles but the acoustic energy
pulse after propagating through a turbulent ocean with rangesigyrinytions are different from each other owing to the vary-
mdepen'dent/dependent'sound-speed profiles are mvestlga}t%qg of sound-channel axis. To predict acoustic pulse propa-
The split-step method is used to evaluate the pr0pa‘gm'ngation in an ocean, a complicated propagation environment,
effect on every frequency component of the_ pulse. The layep;merical approaches are necessary. The split-step method
structure of the ocean forms the macrostationary paths SC3tzn handle the problems that satisfy the forward scattering

IV. CONCLUSION
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FIG. 9. The average pulse profiles | and Il are shown{jeh=10° and

(u?)=10"7, respectively, fol =74 m, andz;=50 m.
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approximation very efficiently. In the near future, a broad-*'L. E. Estes and G. Fain, “Numerical technique for computing the wide-

band signa| and a 3-D geometry prob|em will be exp|ored. angle acoustic field in an ocean with range-dependent velocity profiles,” J.
Acoust. Soc. Am62, 38—43(1977).
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