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When an acoustic pulse propagates in a randomly fluctuating ocean with a deterministic
sound-speed profile, it is distorted since every frequency component experiences different extents of
scattering from the random inhomogeneity and echo numbers. Here, the split-step method is used to
simulate an acoustic pulse with a 3-kHz carrier propagating through a turbulent ocean with
range-independent/-dependent sound-speed profiles. It is found that~1! the ocean is a
frequency-selective fading channel;~2! the received pulse profile is dependent on the received
depth, sound-speed distribution, fluctuation strength, and scale length of turbulence in oceans;~3!
the rms pulsewidth is broadened by several times its initial value as a consequence of pulse echoes
and pulse wandering of every pulse realization of the ensemble;~4! the rms pulsewidth is increased
when the fluctuation strength increases or the scale length decreases; and~5! the statistical properties
of the propagating pulse are similar for both the range-independent and -dependent cases in the
mean square sense. ©1996 Acoustical Society of America.

PACS numbers: 43.30.Bp, 43.30.Cq

INTRODUCTION

Recently, acoustic pulse propagation in the ocean has
attracted much attention because of its practical
importance.1–3 The pulse is distorted due to the existence of
the sound-speed profile and turbulence. Multiple-path propa-
gation of acoustic waves can occur in the ocean because of
the vertical sound-speed profile. In addition, the sound speed
has random temporal and spatial variations due to internal
waves and the fine structure of temperature in the ocean.4,5

Because of these stochastic fluctuations, each frequency
component of the pulse will be scattered to a different extent.
Distortion and broadening of the pulse after propagation is
expected.

The broadening and distortion of a pulse when it is
propagating through a random medium has been studied both
theoretically and experimentally.3,6,7 The stochastic proper-
ties of the pulsewidth provides the information about the
broadening. Physically, there exist two possible causes for
this broadening. It may be due to the fact that the pulse is
spread in time as a consequence of scattering from each re-
alization of the ensemble. It may also come about because of
the wandering of the pulse, that is, the arrival time of the
pulse differs from one member of the acoustic ensemble to
another. However, when there exists a deterministic inhomo-
geneity, there are pulse echoes due to multipath propagation
and this may be coupled with the random fluctuation of the
inhomogeneity to change both the arrival time of echo and
number of the echoes. Hence, the acoustic pulse propagation
in a turbulent ocean is affected both by the deterministic
sound-speed profile and random fluctuation of sound-speed
profile. Exploration of the coupling effect between turbu-
lence and sound-speed profile on acoustic propagation be-
comes an interesting and important issue.

Basically, the evaluation of the average intensity of the
pulse depends on that of the two-frequency mutual coher-
ence function.8 However, it is usually difficult to compute

this coherence function. The temporal moment method9 was
introduced to avoid this difficulty. In this method, the tem-
poral moments can be evaluated without an explicit expres-
sion for the two-frequency mutual coherence function.9

These temporal moments represent important statistical pa-
rameters of the randomly distorted pulse. However, the tem-
poral moment method can only deal with the case of range-
independent sound-speed profile and with the propagation
range to be sufficiently short that the ray trajectory does not
pass the propagation axis.10 With such limitations, efforts
will resort to the numerical methods.

Calculation of the propagation of acoustic energy in a
realistic ocean where velocity is a function of both range and
depth is of continuous interest.11 Recent developments in the
analysis of weakly range-dependent guiding channels, using
the spectral approach, have led to the development of a glo-
bal spectral Green’s function for range-dependent
waveguides. Kamel and Felsen12 generalized the method of
characteristic Green’s function for a two-dimensional ocean
waveguide to accommodate weak range dependence. Lu and
Felsen13 developed approximate adiabatic transforms that ac-
complish for weakly range-dependent oceanic waveguides
what the rigorous transform does exactly for the range-
independent case. However, both approaches only deal with
the deterministic cases, research in WPRM~wave propaga-
tion in random media! has scarcely been reported. An alter-
nate way is to use the numerical approach.

Many numerical methods have been proposed for the
solutions of wave propagation problems. Among these are
the Fourier split-step,14 implicit finite difference
~Crank–Nicholson!,15 and method of lines based on the
Adam–Bashforth formula.16 Here, the split-step method is
used to calculate the temporal behavior of stochastic waves.
It is unconditionally stable and computationally efficient.
The algorithm does, however, require periodic boundary con-
ditions inz because of its use of the finite Fourier transform.
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This requirement is handled by introducing an artificial hori-
zontal bottom boundary below the physical bottom, and as-
suming that the field satisfies a zero boundary condition
there.

In our research, an acoustic pulse propagates through a
turbulent deep ocean with range-dependent sound-speed pro-
file is explored. This means that the deterministic profile is
dependent on both the ocean depth and range distance. The
geometry of the problem is illustrated in Fig. 1. A point
source and a point receiver are placed atz5zi and z5zf ,
respectively. The split-step method is employed to simulate
the propagation of a cw acoustic wave and temporal mo-
ments are computed to estimate the average arrival time and
width spreading of an acoustic pulse. According to the spa-
tial autocorrelation function of the turbulence, we generate
the multiple phase-screen~MPS! to represent both the con-
tributions of the deterministic and random
inhomogeneities.17 Results show that the effects of random
scattering on the arrival time are negligibly small. However,
random scattering will significantly broaden the pulse espe-
cially when the range is long. Dependence of the arrival time
and pulse width on the variance and scale size of turbulence
are also given.

The rest of this paper is organized as follows, in Sec. I
the time-harmonic wave equation and the pulse propagation
are formulated. The split-step method and generation of
phase screen are introduced in Sec. II. In Sec. III numerical
examples and discussion are demonstrated. Finally, the re-
sults are summarized and a conclusion is drawn.

I. WAVE EQUATION AND FORMULATION

In an ocean cylindrically symmetric about an axis con-
taining a point time-harmonic source, the acoustic pressure
p(r ,z) satisfied the reduced wave or Helmholtz equation

r21~rpr !r1pzz1k0
2n2~r ,z!p50, ~1!

wherek052p f /c0 , f is the frequency of the source, and the
index of refraction,n(r ,z), is given byn(r ,z)5c0/c(r ,z),
where the constantc0 is a reference sound speed, andc(r ,z)
is the sound speed at the point (r ,z).

In the parabolic equation method for solving the reduced
wave equation, the solutionp(r ,z) is written in the form

p~r ,z!5c~r ,z!H0
~1!~k0r !, ~2!

reasoning that the primary radial dependence of the field in
terms of an outward propagating radial wave is represented
by the Hankel functionH0

(1)(kr). If the receiver is assumed
to be many wavelengths away from the source (k0r@1), and
with the paraxial approximation assumption,
uc rr u!u2ik0c r u, then the Leontovich–Fock18 parabolic
equation

2ik0c r1czz1k0
2@n2~r ,z!21#c50 ~3!

for the transmitted field is obtained from Eq.~1!. The ap-
proximation was first introduced in underwater acoustics by
Tappert and Hardin.19 The application of the parabolic ap-
proximation in ocean acoustics rests on two requirements:
~1! that local variations of the acoustic refractive index are
small, and~2! that effective propagation paths are limited to
a narrow aperture centered about the forward scattered
direction.20

In a turbulent ocean, the sound speed can be expressed
as

c~r ,z!5c0@11U~z!1m~r ,z!#, ~4!

whereU(z) is a dimensionless function of the depthz rep-
resenting the deterministic sound-speed profile, andm is a
random, zero-mean function of position representing the
relative fluctuation caused by medium fluctuations such as
the internal wave. The wave equation for an acoustic wave is
unaffected by the time dependence ofm becausem has only
components with very low frequency. Substituting Eq.~4! in
Eq. ~3! and neglectingc rr and the second and higher-order
terms ofU andm, the standard parabolic equation is derived
and given by

2ik0c r1czz22k0
2~U1m!c50. ~5!

For pulse propagation, the distortions of a pulse in a
random medium are attributed to the different scattering
character of the frequency components of the pulse. The
pulse after propagation can be formulated by the equation

p~r ,t !5E
2`

`

F~v!c~r ,v!exp$2 i @vt2k~v!r #%dv

1c.c. ~6!

Here, the pulsep(r ,t) propagating along ther direction,
which is designated as the propagation axis, has been Fourier
decomposed. The notationF(v), as a function of the angular
frequencyv, stands for the spectrum of the pulse;k(v) is
the wave number along the propagation axis; and the com-
plex amplitudec(r ,v) describes the effects of random scat-
tering of a single frequency wave with the initial condition
c~0,v!51. Here, we assume an initial Gaussian pulse which
is given by

p~0,t !5exp~2t2/T0
2!cos~vct !, ~7!

where (vc) is the carrier frequency andT0/& is the pulse-
width. After a Fourier transform, the frequency spectrum is
given by

FIG. 1. Geometry of acoustic pulse propagation in the ocean. The bilinear
sound-speed profile with minimum sound speed at the depthz50 is shown.
The point source approximated by a Gaussian beam with the center at the
depthzi is launched horizontally in the planer50. Multipath propagation
happens in this situation. The receiving point located at the ranger f and
depthzf .

2049 2049J. Acoust. Soc. Am., Vol. 99, No. 4, Pt. 1, April 1996 W. R. Chang and J. H. Tarng: Pulse propagation in an ocean

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  140.113.38.11 On: Wed, 30 Apr 2014 08:05:38



F~v!5~T0Ap/2!$exp@2T0
2~v2vc!

2/4#

1exp@2T0
2~v1vc!

2/4#%. ~8!

From Eq. ~5!, we can calculatec(r ,v) for propagation of
each frequency component by using the split-step method.
By substitutingc(r ,v) and f (v) into Eq. ~6!, the real pulse
shapep(r ,t) is computed.

II. SPLIT-STEP METHOD

A. Split-step method

To solve Eq.~5!, the split-step method is proposed. This
method is of exponential accuracy inz and second-order
accuracy inr .14,21A phase screen is inserted to represent the
phase change due to the existence of random and determin-
istic inhomogeneities, in an infinitesimal incrementD r in
range. This effect has been separated with the diffraction
effect. Hence, the evolution of complex amplitude in a range
D r is given by

c~r1D r ,z!5eiDr @A2k0~U1m!#c~r ,z!, ~9!

whereA5(1/2k0)]zz is an operator representing the diffrac-
tion effect. By using the Fourier transformation,

c~r1D r ,z!5F21
†e2 ikz

2Dr /~2k0!F@e2 ik0~U1m!Drc~r ,z!#‡,
~10!

whereF$•% denotes the Fourier transformation fromz space
to kz space,F

21$•% denotes the inverse Fourier transforma-
tion.

Notice that when the spatial parameterz does the dis-
crete Fourier transformation~DFT! to the spatial frequency
kz , the sampling intervalDz is chosen to avoid aliasing in
spatial frequency, i.e., (Dz)

21>2(kz)max, where (kz)max rep-
resents the maximum spatial frequency of the field distribu-
tion on the transverse axisz. Here,Dz51/2(kz)max, and the
spatial frequency intervalDkz

is equal to 2p/NDz , whereN
is the total number of spatial sampling points, i.e.,N21
spatial intervals are considered. The procedures are repeated
for all screens until the observing plane is reached. It has
been observed that this method is the discrete version of the
path integral method of wave scattering analysis for infini-
tesimal rangeD r and, therefore, is an exact solution to the
parabolic equation under the restrictions imposed by the fi-
nite screen size and sampling interval.

To specify the statistics of each phase screen, the calcu-
lation of the correlation function and spatial spectrum of
phase variations are needed. In the simulation, the fluctuation
in each slab is assumed not to change the amplitude of the
field c. However, the phase fluctuation causes the amplitude
to fluctuate during propagation through manyD r , because of
the diffraction effect.

Ignoring the diffraction and deterministic refraction ef-
fects, the phase correlation function is defined by

Bu~z12z2!5k0
2E

0

DrE
0

Dr

^m~r ,z1!m~r 8,z2!&dr dr8

5k0
2D rAm~z12z2!, ~11!

whereBu is the correlation function of accumulated phases
at depthsz1 and z2 . In simplifying Eq. ~11!, it is assumed
thatD r. l r wherel r is the scale length of the irregularities in
r direction. The functionAm is the integrated correlation
function of the sound-speed fluctuations and may be ex-
pressed in terms of the spatial spectrum of irregularities
Fm(kz) as

Am~z!52pE
2`

`

Fm~kz!e
ikzz dkz . ~12!

Therefore, the relationship between the phase spectrum of
each screen and refractive index spectrum is

Fu~kz!52pk0
2D rFm~kz!. ~13!

B. Phase-screen generation

The goal here is to generate a discretized and stationary
random functionu(nDz) which represents the phase ofnth
grid point of each phase screen in the transversal direction
with sampling spacingDz of two neighboring points. In con-
tinuous notation, the phase may be written as the Fourier
transformation by

u~z!5E
2`

`

Ku~kz!e
ikzz dkz . ~14!

In the discrete case, Eq.~14! becomes

u~nDz!5 (
m50

N21

Ku~mDkz!e
i ~2p/N!mn Dkz , ~15!

wheren50,...,N21. It can be shown21 that

Ku~mDkz!5rm@Fu~mDkz!#
1/2@L/2p#1/2, ~16!

whereFu(mDkz) represents discrete values of the known
desired phase spectral density andL is the vertical length of
the phase screen grid. The complex numberrm is given as
the sum of two independent Gaussian random variables with
zero mean and variances of unity, i.e.,rm5Am1 iBm . The
values ofAm andBm can be generated numerically by sam-
pling from a pseudorandom sequence of numbers with a
Gaussian distribution.22 Since the phase of an individual
phase screen is real, we may choose either the real or imagi-
nary part ofu(nDz) from Eq.~15!. Since the real and imagi-
nary parts are independent, they are used to represent the
random phases of two independent screens, respectively.

III. NUMERICAL EXAMPLES AND DISCUSSIONS

Here, numerical examples of acoustic pulse propagation
in turbulent oceans considering range-independent or range-
dependent sound-speed profile are illustrated. In our compu-
tation, a bilinear sound-speed profile is assumed andU(z) is
given by U(z)5b1z, z,0, andU(z)5b2z, z>0. Mean-
while, the following parameters are chosen:zi5275 m,
b152b2521.131025~m25!, C051500~m/s!, the propaga-
tion distancexf510 ~km!, T051.5 ms and the carrier fre-
quency of the pulse signal 3 kHz. In subsections A and B a
Gaussian correlation function of̂m& is assumed, i.e.,
Bm(r ,z)5^m2&exp„2(r 21z2)/ l 2…, where^m2& and l are the
mean square fluctuation and scale length ofm. In subsection
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C, both the temperature fine structure and the power law
spectra are considered for the case of range independence.

In the creation of the random phase screen, the complex
random numberAm1 iBm is simulated by calling the subrou-
tine drnnoa in IMSL ~International Mathematical Statistic
Library!. Here,N54096, 100 slabs are assumed in employ-
ing the split-step method, i.e.,D r5100~m! andDz'0.76~m!.
The notationsD r andDz represent the space sampling dis-
tance in the range and depth directions, respectively. To
avoid the effect of spatial aliasing, a spatial Gaussian distri-
bution along thez direction is used to replace the point
source, i.e.,c(0,z)5( ip1/2/v)exp[2(z2z0)

2/v2]. The ini-
tial beamwidthv is chosen to equal 4/p to avoid the spatial
sampling aliasing and to be sure that the span of the spatial
frequency inkz domain is wide enough to keep necessary
information during the inverse descrete Fourier transforma-
tion.

Here, 60, 80, 120, 140, 160, and 200 trial runs are indi-
vidually executed for several cases and the statistical first
and second moments of the propagating pulse are evaluated
for each trial run. By comparing the moments of each trial
run, it is found that 80 trial runs already give a stable result.
Therefore, 80 trial runs are chosen to simulate the pulse
propagating through the fluctuating ocean and the average
pulse profile and rms~root mean square! of the received
pulse are evaluated by the 80 realizations.

A. Range-independent sound-speed profile

In Fig. 2, the received amplitude as a function of input
frequency is illustrated by curve I and II at receiving depths
225 and 50 m, respectively, where^m2&50, i.e., the sound-
speed profile is deterministic. It shows that the ocean is a
frequency-selective fading and the fading depth varies with
the ocean depth. It is obvious that the fading is caused by the
multipath interference. The fading oscillates faster but
weaker atzf5225 m than that atzf550 m. It is because
that at the depth225 m weak but numerous micromultiple
paths arrive, therefore, to yield a fast but shallow-depth fad-
ing. On the other hand, only strong but few macromultiple

paths arrive at the depthzf550 m, which give slower but
deeper fading. In the case of random fluctuation of sound-
speed profile, the received amplitude of frequency response
averaging over 80 realizations is shown in Fig. 3 with curves
I and II for ^m2&51026 and 1027, respectively. Here,l574
m. By comparing the both curves with the curve II in Fig. 2,
it shows that the random fluctuating of the ocean can in-
crease the number of the micromultiple paths, hence, it leads
to a faster fading when the fluctuating strength is increased.
By giving the initial spectral density function of the pulse,
i.e., Eq.~8! is used, the received pulse can be calculated. In
the case with no turbulence the received pulse profile is
shown in Fig. 4 and at depthzf5225, 50, and 75 m, respec-
tively. Owing to the multipath propagation, echoes are re-
ceived. Number of the received echo is changed with the
depth.

When there is random fluctuations, two individual real-
izations of pulse delay profile are illustrated separately by

FIG. 2. The curves of received amplitude as a function of input frequency I
and II are shown forzf5225 m andzf550 m with ^m2&50. FIG. 3. The curves of received amplitude as a function of input frequency I

and II are shown for̂m2&51026 and ^m2&51027, respectively, forl574 m
andzf550 m.

FIG. 4. The received pulse profiles I, II, and III are shown forzf5225, 50,
and 75 m with^m2&50.
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curves I and II in Fig. 5 for̂m2&51026, l574, andzf550 m.
By comparing these two figures, it reveals that the pulse is
wandering and the magnitude and number of echoes are var-
ied which leads to the pulse broadening. However, the pulse
itself is spread only slightly in time. After averaging over 80
realizations, the average pulse profiles I, II, III, and IV are
shown in Fig. 6 for^m2&51026, 1027, 1028, and 10215, re-
spectively, wherezf550 m andl574 m. By comparing the
curve IV in Fig. 6 with the curve II in Fig. 4, it shows that
when ^m2&510215 the average pulse profile is approaching
that of the limiting casêm2&50. The root mean square pulse-
width of the first three profiles is calculated from the 80
realizations and given by 1.69, 1.46, and 1.41 ms, in the
corresponding order. It shows that the larger fluctuation of
sound-speed distribution gives larger broadening of the re-
ceiving pulsewidth. The rms pulsewidth after propagation
increases from 1.33 to 1.59 times of the initial rms pulse-
width which is equal to 1.06 ms. The broadening is a conse-
quence of echo arrivals, due to multipath propagation, and

pulse wandering of every pulse realization of the ensemble,
due to scattering form random inhomogeneity. In Fig. 7, the
average pulse profile is shown by curves I and II for the scale
length l540 and 10 m, respectively, wherêm2&51027,
zf550 m. After calculation, the rms pulsewidth equals 1.68
and 1.80 ms forl540 and 10 m, respectively. It shows that
whenl decreases, the rms pulsewidth increases. It is because
that a decrease in the scale length leads to an increase in the
decorrelation among multiple paths, thus, the rms of pulse-
width increases. It is found that the change of mean arrival
time of the sampled pulses is very small when the receiving
depth,^m2& or l is changed. It is consistent with the result in
Ref. 10.

B. Range-dependent sound-speed profile

In this case, the sound channel axis is assumed to in-
crease in depth by 50 m uniformly over 10-km range dis-
tance, hence, the parabolic approximation is still applicable.
The received pulse profile at depths225, 50, and 75 m is
illustrated as curves I, II, and III, respectively, in Fig. 8. The
pulse delay profile as well as the acoustic energy distribution
along the depth are different from those in the range inde-
pendent. Most of the received acoustic energy is concen-
trated above the channel axis because of the downtilted axis.
In Fig. 9, the average pulse profile is shown for^m2&51026

and 1027, by curves I and II, respectively. Here, the received
depth zf550 m and l574 m. The increase of fluctuation
strength can change the arrival times and shapes of echoes,
thus rms pulsewidth is increased as well.

C. Temperature fine structure and power-law spectra

To be more realistic, the sound-speed fluctuation due to
the temperature fine structure is considered and its correla-
tion function of m, i.e., Bm(r ,z), is given by
^m2&exp(2uzu/z0)exp(2r 2/ l 2) with typical value ofz052 m
andl574 m.5 Its numerical example of average pulse profile
is illustrated in Fig. 10 at depths225, 50, and 75 m for
curves I, II, and III, respectively. Here,^m2&51029. The re-

FIG. 5. Two realizations of the received pulse profile forzf550 m,
^m2&51026, l574 m.

FIG. 6. The average pulse profiles I, II, III, and IV are shown for
^m2&51026, 1027, 1028, and 10215, respectively, forl574 m, andzf550 m.

FIG. 7. The average pulse profiles I and II are shown forl540 m andl510
m, respectively, for̂m2&51027.
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spective rms pulsewidths are 6.2, 4.1, and 2.9 ms. The tem-
perature fine structure causes larger pulse broadening which
is due to the small scale length in the vertical direction. In
Fig. 11, the average pulse profiles I and II are drawn for the
case of the power law spectrum withCn

251027 and
Cn
251029, respectively, forzf550 m. The respective rms

pulsewidth are 3.7 and 1.8 ms. A larger fluctuation strength
yields a larger rms pulsewidth. Here, the Kolmogorov spec-
trum is used as an example and its spectrum is given by
Fm(kz)50.033Cn

2kz
211.3

IV. CONCLUSION

In this research, the statistical properties of an acoustic
pulse after propagating through a turbulent ocean with range-
independent/dependent sound-speed profiles are investigated.
The split-step method is used to evaluate the propagating
effect on every frequency component of the pulse. The layer
structure of the ocean forms the macrostationary paths scat-

tered by the random inhomogeneity and turns into many mi-
crostationary paths. Hence, the interferences among these
macrostationary paths are smoothed. It is found that~1! the
ocean is a frequency-selective fading channel because of the
multipath propagation and turbulence scattering;~2! the re-
ceived pulse profile is dependent on the received depth, de-
terministic sound-speed distribution, fluctuation strength, and
scale length of turbulence in oceans;~3! the rms pulsewidth
can be broadened several times the initial pulsewidth;~4! the
increase in fluctuation strength or decrease in the scale length
increases the rms pulsewidth; and~5! the statistical proper-
ties of the pulse are similar for both the range-independent
and dependent sound-speed profiles but the acoustic energy
distributions are different from each other owing to the vary-
ing of sound-channel axis. To predict acoustic pulse propa-
gation in an ocean, a complicated propagation environment,
numerical approaches are necessary. The split-step method
can handle the problems that satisfy the forward scattering

FIG. 8. The received pulse profiles I, II, and III are shown forzf5225, 50,
and 75 m with^m2&50.

FIG. 9. The average pulse profiles I and II are shown for^m2&51026 and
^m2&51027, respectively, forl574 m, andzf550 m.

FIG. 10. The average pulse profiles I, II, and III are drawn at depths
zf5225, 50, and 75 m, respectively, for the case of temperature fine struc-
ture with ^m2&51029, z052 m andl574 m.

FIG. 11. The average pulse profiles I and II are drawn for the case of power
law spectrum withCn

251027 andCn
251029, respectively, forzf550 m.
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approximation very efficiently. In the near future, a broad-
band signal and a 3-D geometry problem will be explored.
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