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Yield is an important indicator of productivity in semiconductor manufacturing.
In the complex manufacturing process, the particles on wafers inevitably cause
defects, which may result in chip failure and thus reduce yield. Semiconductor
manufacturers initially use wafer testing to control the machine for the number of
particles. This machinery control procedure aims to detect any unusual condition
of machines, reduce defects in actual wafer production and thus improve yield.
In practice, the distribution of particles does not usually follow a Poisson dis-
tribution, which causes an overly high rate of false alarms in applying the c-chart.
Consequently, the semiconductor machinery cannot be appropriately controlled
by the number of particles on machines. This paper primarily combines data
transformation with the control chart based on a Neyman type-A distribution
to develop a machinery control procedure applicable to semiconductor machin-
ery. The proposed approach monitors the number of particles on the testing wafer
of machines. A semiconductor company in Taiwan in the Hsinchu Science Based
Industrial Park demonstrated the feasibility of the proposed method through the
implementation of several machines. The implementation results indicated that
the occurrence of false alarms declined extensively from 20% to 4%.

Keywords: Machinery control; Semiconductor manufacturing; Control chart;
Particle counts

1. Introduction

The electronics industry has grown rapidly in recent years. The major semiconductor
manufacturers worldwide have committed themselves to improving production cap-
ability under fierce competition, where the yield of wafers is an important indicator
of productivity. Therefore, how to control wafers and increase yield has become
quite important. The yield of a wafer is defined as the number of functional dies
over the total number of tested dies per wafer. Wafer processing typically consists
of metal preparation, oxidation, photolithography, etch, diffusion and deposition.
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The fabrication needs multiple steps through the same process at various stages
(Limanond et al. 1998). In such a complicated wafer-manufacturing process, the
particles on wafers will inevitably cause defects, which may result in chip failure
and thus reduce yield. Therefore, the number of particles is a critical determinant of
the yield of wafers.

Yield can be increased in two ways: process control and machinery control.
Process control is realized by monitoring the defects on wafers. However, this
research focuses on machinery control. Semiconductor manufacturers use a testing
wafer (also called a dummy wafer) to collect the particles on a machine and control
the machine for the number of particles. This preparatory operation is implemented
before wafers are actually put into production. The unusual conditions of a machine
such as a machine out of adjustment or an unusual operator may decrease wafer
yield. This study aims to detect any assignable causes of machines by the number of
particles and reduce defects in actual wafer production. When the process is
improved, we can have few defects in each sample and thus a high-yield process
can be achieved.

The c-chart, a statistical process control (SPC) instrument, can be applied to
particle control. The Poisson assumption implies that the occurrence of a defect in
any location is independent, i.e. defects are uniformly scattered over a sample (Albin
and Friedman 1991). In most cases, the distribution of particles, however, does not
follow a Poisson distribution, which causes an overly high rate of false alarms. As a
result, the operating staff cannot appropriately control the machine for the number
of particles.

In recent years, the size of wafers has grown from 2, 4, 6 and 8 to 1200, which
makes clustered defects on wafers increasingly noticeable. It has been widely
reported that defects generated in an IC fabrication tend to cluster (Stapper et al.
1983, Stapper 1985). The continuous use of traditional c-chart may send out many
incorrect ‘out-of-control’ signals that are false alarms. Albin and Friedman (1989)
adopted the Neyman type-A distribution for monitoring clustered defects in IC
fabrication. Albin and Friedman (1991) developed a monitoring procedure based
on Neyman distribution to discriminate between data from an in-control process
that yields clustered defects and data from an out-of-control process. Su and Tong
(1997) applied neural technique (e.g. a fuzzy ART network) and a Neyman-based
control chart to monitor the clustered defects in semiconductor manufacturing.

The traditional c-chart does not permit any data inconsistent with Poisson
distribution. When defects do not follow a Poisson distribution, the traditional
process control causes many false alarms. From the literature mentioned above,
the application of a Neyman type-A distribution is based on the assumption that
clustering exists. Some previous papers (e.g. Albin and Friedman 1991, Su and Tong
1997) have taken clustering phenomena into consideration, but for the study of
defects in wafer production not the number of particles on machines. There is a
problem for applying a control chart on the final wafer production data. When an
assignable cause is detected, it is necessary to make more effort to find out which
machine is out of control (i.e. the assignable machine).

This study aims to develop a machinery control procedure to monitor the
number of particles on the testing wafer of machines. The proposed approach has
no need of recording the coordinates of particle locations. Consequently, the inspec-
tion time is excessively reduced. Without the need of much available data, this study
combines data transformation with the particle chart based on a Neyman type-A
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distribution. The developed machinery control procedure monitors the number of
particles on testing the wafer of a machine so that operators can monitor the
conditions of machines promptly.

The developed procedure monitors the number of particles on a testing
wafer, which exhibits the same properties of the number of defects on a wafer.
The following assumptions are made:

. Particles on a testing wafer can be detected.

. All particles provide the same explanation or indication about the condition
and reliability of machines. The larger the number of particles, the worse the
machine’s condition.

. Every particle on a testing wafer is considered a defect regardless of the size
of the particle.

2. Process control methods

SPC tries to detect the occurrence of any abnormality in the process before more
defective products are manufactured and make the necessary correction to improve
yield and product quality. To control the number of defects, c-charts can be devel-
oped to control either the total number of defects in a unit or the average number of
defects per unit. These two types of c-charts assume that when the sample size is fixed,
the probability of a defect occurrence in each sample exhibits a Poisson
distribution. Consequently, they must satisfy the following assumptions:

. Location of a defect occurrence on the product is randomly distributed,
i.e. the probability for the defect falling anywhere on the product is the
same.

. Defects are independent of each other, i.e. the occurrence of a defect on the
product is irrelevant to any other defects.

2.1 Standard c-chart

When the number of defects of a product exhibits a Poisson distribution, the
probability distribution function is:

Prob ðN ¼ nÞ ¼
e�ccn

n!
ð1Þ

where n is the number of defects and c is the parameter of Poisson distribution,
which is the average number of defects. Based on the properties of Poisson distribu-
tion, the upper and lower limits for defect control can be obtained by the following
equations assuming that a standard value for c is available (Montgomery 2000):

UCL ¼ cþ 3
ffiffiffi
c

p
; ð2aÞ

CL ¼ c; ð2bÞ

LCL ¼ c� 3
ffiffiffi
c

p
ð2cÞ

where c is the average number of defects, UCL, CL and LCL are the upper control,
central and lower control limits, respectively. If LCL<0, then assume LCL¼ 0.

2761Data transformation in SPC for semiconductor machinery control

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
56

 2
6 

A
pr

il 
20

14
 



In addition, if c is unknown, then the average number of defects, �cc, in a preliminary
sample of inspection units can be used to estimate c.

2.2 Particle control chart based on the Neyman distribution

The attribute data are commonly encountered in the semiconductor manufacturing.
Many authors have made an effort to develop a control chart for attribute data.
Glushkovsky (1994) developed a G-control chart for attribute data. Lu et al. (1998)
dealt with multivariate attribute processes and developed a multivariate np chart
(MNP) chart. Shore (2000) recommended a general framework for constructing
Shewhart-like control charts for attributes based on fitting a quartile function.
Xie et al. (2001) considered the excessive number of zero count data and used a
zero-inflated Poisson model in statistical process control. Somerville et al. (2002)
developed a filtering and smoothing method that uses an exponentially weighted
moving average (EWMA) and Poisson probabilities for mixed particle count distri-
butions. Related literatures can be found in Hansen and Thyregod (2000) and
Tannock (2003). Recently, advanced process control has been used in semiconductor
manufacturing (Box and Luceño 1997, Del Castillo 2002, Su and Hsu 2004). This
approach applies a run-to-run controller actively to feedback the process disturbance
by adjusting the manipulated variables.

The above-mentioned literature did not take the clustering attribute data into
consideration. Albin and Friedman (1991) proposed a control procedure based on
a Neyman type-A distribution to monitor processes with clustering defects. For
detailed discussions of clustering distributions, see Jackson (1972) and Johnson
et al. (1992). A Neyman type-A distribution is a compound Poisson distribution
that assumes that the number of defect clusters exhibits a Poisson distribution and
the defects in every cluster adhere to another Poisson distribution. The fundamental
assumptions include the following:

. Number of defect clusters follows a Poisson distribution with an expectation
of �.

. Number of defects in individual clusters follows a Poisson distribution with a
mean of �.

The density function for the Neyman type-A distribution is as follows:

Pnð�,�Þ ¼ Pr ðN ¼ nÞ ¼
X1

j¼1

e�� �
j

j!
e�j� ð j�Þ

n

n!
, n ¼ 1, 2, 3, . . . ;

P0ð�,�Þ ¼ Pr ðN ¼ 0Þ ¼ e��ð1�e��
Þ, n ¼ 0:

ð3Þ

The mean and variance of a Neyman type-A distribution can be expressed as:

EðxÞ ¼ ��; ð4aÞ

VðxÞ ¼ ��ð1þ �Þ: ð4bÞ

Since the ratio between the variance and the mean is ð1þ �Þ, the particle charts
derived from a Neyman type-A distribution loose up the control limits of the tradi-
tional c-charts, which thus effectively reduce the occurrence of false alarms. The
parameters � and � can be estimated by using the maximum likelihood estimate
(MLE) method, which can be found in Johnson et al. (1992). In practice, the
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method of moments estimates tends to be used due to their closed form format and
easy computation:

�̂� ¼
S2

� �XX

�XX
; ð5aÞ

�̂� ¼
�XX2

S2 � �XX
ð5bÞ

where �XX is the sample mean and S2 is the sample variance. The control limits based
on a Neyman type-A distribution can be derived from the following equations:

XUCL

n¼0

p ðN ¼ nÞ ¼ 1� 0:0013 and
XLCL

n¼0

p ðN ¼ nÞ ¼ 0:0013 ð6Þ

where p ðN ¼ nÞ is given in equation (3). And when the process is in-control, the
probability a sample point is outside the control limits is 0.0027. The related statis-
tical theory of the Neyman distribution (e.g. type I and II errors) can be found in
Johnson et al. (1992).

When the parameter (�) is large and the mean (��) does not approach zero, the
Neyman distribution approximates to the normal distribution (Johnson et al. 1992).
Therefore, the control limits can be simply obtained by the following equations:

UCL ¼ ��þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1þ �ð Þ

p
; ð7aÞ

LCL ¼ ��� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1þ �ð Þ

p
: ð7bÞ

3. Proposed machinery control procedure

This study proposes an approach to control the number of particles on machines and
thus control any abnormal conditions on machines. To deal with the problem of
overly high occurrence of false alarms caused by particle distribution inconsistent
with a Poisson distribution on the testing wafer of semiconductor machinery, the
developed approach primarily combines a Neyman type-A distribution and the data
transformation method. The proposed approach is illustrated in figure 1 and the
detailed steps are explained as below.

Step 1: Obtain the data of particles by wafer inspection system.
In this study, the number of particles on a testing wafer is used for

machinery control. Consequently, the number of particles on the machines’
testing wafer is collected.

Step 2: Test whether the particle distribution exhibits a Poisson distribution.
Whether the particle distribution exhibits a Poisson distribution is deter-

mined by the non-parametric Kolmogorov–Smirnov (K–S) test. If yes,
c-charts will be used to determine control limits. Otherwise, further outlier
analysis as presented in Step 3 will be conducted.

Step 3: Conduct outlier analysis.
When the data do not satisfy a Poisson distribution, it may indicate that

the machinery is already out of control. To avoid any impact of outliers on
c-chart construction, outlier analysis can be used to study their causes.
F-Spread (Fourth Spread) developed by Hoaglin et al. (1986) is adopted

2763Data transformation in SPC for semiconductor machinery control
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herein to identify outliers. If these causes are assignable, then the corre-
sponding samples will be eliminated. If these causes are not assignable,
then these samples will remain. After outliers are eliminated, the procedure
returns to Step 2. If the Poisson distribution is satisfied, then c-charts will
be used to establish control limits. If the Poisson distribution is still not
satisfied, then the procedure moves on to Step 4.

Step 4: Perform data transformation.
Based on the data obtained from Step 3, the mean and variance of a

number of particles are calculated, and the particle data are transformed
by square-root transformation (Johnson and Wichern 1988). If the distribu-
tion of defects can be converted to a normal distribution, control charts for
individual units will be developed by the following steps (Montgomery
2000):

. Calculate the average, �XX ¼ ð
Pm

i¼1 Xi=mÞ, where Xi is the i-th transformed
data point and m is the number of transformed data points.

Obtain data of particles

Test Poisson
distribution satisfied

Construct X-chart to
transformation data

Perform online machinery
control

Perform data
transformation

Eliminate outliers

Construct Neyman-based
particle chart

Construct standard c-chart

Check outlier

Test normal
distribution satisfied

YES

YES

YES

NO

NO

NO

Figure 1. Flow chart of the proposed machinery control approach.
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. Calculate the moving range, MRi ¼ jXi � Xi�1j, i > 1.

. Calculate the moving-average, MR ¼ ð
Pm

i¼2 MRi=m� 1Þ.
. Establish the X-chart for individual units as below:

UCLx ¼ �XX þ 3�x ¼ �XX þ 2:66MR; ð8aÞ

CLx ¼ �XX; ð8bÞ

LCLx ¼ �XX � 3�x ¼ �XX � 2:66MR: ð8cÞ

If a normal distribution cannot be realized through data transformation,
then go to Step 5.

The SPC tools are usually built on the assumption of a normal distribu-
tion. The data not normally distributed will be transformed to do so. In
general, square-root transformation is most appropriate for attributes data
(Johnson and Wichern 1988). The number of particles reflects an aspect of
attributes; therefore, square-root transformation can convert particle data
to a normal distribution. Levinson and Polny (1999) and Levinson et al.
(2001) found the similarity between a Gamma distribution and a Poisson
distribution when the average number of particles is fairly large. Hence, the
number of particles that do not exhibit a Poisson distribution may satisfy a
Gamma distribution (Levinson and Polny 1999):

f ðxÞ ¼
r�

�ð�Þ
x��1e�rx

ð9Þ

where � is the shape parameter and � is the scale parameter. Let
y ¼ 2rx, then

g ðyÞ ¼
1

2��ð�Þ
y��1e�2=y: ð10Þ

Since v ¼ 2�, gðyÞ ¼ 1=2v=2� v=2ð Þ
� �

yðv=2Þ�1e�y=2 is the Chi-square distri-
bution with degrees of freedom v. Subsequently,

ffiffiffiffiffiffiffi
2rx

p
should follow

approximately a normal distribution (Johnson and Kotz 1970) with mean
ð

ffiffiffi
2

p
=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v� 1

p
and variance of 0.5. Therefore, the Chi-square distribution

can be converted to a normal distribution by a square-root transformation.
Finally, the individual control chart based on a normal distribution can be
applied.

Step 5: Build Neyman-based particle control charts.
If the data do not satisfy a Poisson distribution and cannot be converted

to a normal distribution through square-root transformation, it indicates
that particles may not be independent of each other or clustering exists. In
such cases, the particle control charts built on a Neyman type-A distribution
can be applied. In this study, the sensitizing rule is one or more points
outside of the control limits.

Step 6: Perform online machinery control.
If all the observations occur randomly within certain control limits, then

the control limits will be defined as the limits of the control chart. If there
are one or two outliers, the causes should be researched and overcome.
Control limits will be re-computed after the outliers are eliminated.

2765Data transformation in SPC for semiconductor machinery control
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4. Case study

4.1 Case description

The feasibility of the proposed machinery control method was demonstrated
through the actual data provided by a semiconductor company of Taiwan in
Hsinchu Science Based Industrial Park. In the past, the semiconductor company
applied standard c-charts to particle control. However, the operators could not
correctly determine the condition of machines by c-charts due to excessive false
alarms. This situation may result from the particle distribution not being consistent
with Poisson distribution.

The company usually takes steps to test machines before production. To protect
the confidentiality of data, the Quality Manager specifies randomly to a sample of
nine machines from more than 200 machines on the shop floor. The nine machines
under study are mainly placed at the phase of wafer manufacturing. Table 1
describes the process and location of machines.

When particle distribution on machines does not exhibit a Poisson distribution,
the use of c-charts to control the number of particles will result in an overly high
occurrence of false alarms. Figure 2 shows the c-chart for machine K1, where 33 of
100 raw data points for particle counts fall out of control limits. However, the actual
number of out-of-controls is not as many as shown. Therefore, when particle
distribution does not exhibit a Poisson distribution, the resulting c-chart shows an
overly high occurrence rate of false alarms. The following section is intended to
explain how the control procedure proposed in this study can solve this problem
and realize the goal of semiconductor machinery control.

4.2 Implementation results

The nine machines mentioned above are used in this case study. We demonstrate the
control procedure developed in Section 3 and solve the problems associated with
the case when collected data do not fit the assumption of Poisson distribution. The
implementation is illustrated as follows:

Step 1: Obtain the data of particles by wafer inspection system.
Operators collected data concerning the number of particles on a testing

wafer by using inspection equipment. The data were collected during the last
four months in 2002.

Table 1. Description of machines.

Machine Area Description

K1 Diffusion Diffusion furnace SiN deposition
K2 Diffusion Diffusion furnace SiN deposition
A1 Photolithography Photoresist/exposure/developer (Scanner)
A2 Photolithography Photoresist/exposure/developer (Stepper)
P1 Etch Polyetcher (Chamber C)
M1 Diffusion Diffusion implanter
C1 Thin film Film TEOS/TEOSPGS polish (Chamber A)
C2 Thin film Film TEOS/TEOSPGS polish (Chamber B)
S1 Thin film Film TESO/TEOSPSG deposition

2766 M.-C. Chen et al.
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Step 2: Test whether particle distribution exhibits a Poisson distribution.
The non-parametric K–S test is employed to determine if particle distri-

bution satisfies a Poisson distribution. If yes, c-charts can be immediately
constructed to control the number of particles on machines. In the nine
machines under study, A1, A2 and S1 are qualified for a Poisson distribu-
tion. The c-charts based on a Poisson distribution are thus developed to
control the number of particles on these machines. Figure 3 shows machine
A1’s c-chart as an example. The c-chart is used to control the number of
particles on machine A1. Similar c-charts can also be developed for
machines A2 and S1. The other six machines that do not qualify for a
Poisson distribution will move on to the next step.

Step 3: Conduct outlier analysis.
If the data distribution that is inconsistent with a Poisson distribution

is attributable to an out-of-control process, this status can be fixed by
identifying the outliers through outlier analysis and finding the causes. If
these causes are assignable (e.g. operational negligence), the correspond-
ing samples will be eliminated. If not assignable, the samples will remain.
After outliers are taken out, return to Step 2. If a Poisson distribution is
satisfied, c-charts will be constructed to determine control limits.
Otherwise, go to the next step. For the outliers detected by the outlier
analysis, we discussed the elimination criterion with the manufacturing
engineers. The detected outliers were eliminated from the sample
set provided that their numbers of particles exceed twice as many of

Histogram of c
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c-chart; variable:  K1 (Sigma= 3.105)
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Figure 2. Standard c-chart of machine K1.
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specification. After outliers are eliminated, the K–S test is performed
again to determine if a Poisson distribution is satisfied. However, six
machines such as K1, K2, P1, M1, C1 and C2 still do not exhibit a
Poisson distribution. Hence, Step 4 is pursued.

Step 4: Perform data transformation.
Square-root transformation is conducted on the number of particles after

outliers are eliminated. Then the transformed particle data are tested for the
existence of a normal distribution by K–S tests. If a normal distribution is
satisfied, control charts for individual units based on a normal distribution
are constructed. If not, go to Step 5. Among the six machines under study,
three show a normal distribution after data transformation: K1, K2
and P1. Figure 4 shows machine P1’s normal distribution plot after data
transformation.

In figure 4, the transformed particle data and probabilities show a linear
relationship, which reflects normal distribution. The level of confidence
interval used in this study is 95%. The resulting p-value from the K–S
test>0.1, indicating that the hypothesis of a normal distribution cannot
be rejected. Next, the X-charts for individual units are constructed based
on transformed data. Figure 5 (a) shows machine P1’s X-chart, which can be
used to control machine P1’s number of particles. By comparing machine
P1’s post-transformation individual control chart to the standard c-chart
(figure 5 (b)), the control procedure proposed in this paper has substantially
reduced false alarms. Similarly, the false alarms on machines K1 and K2
have also been significantly decreased.
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Figure 3. Standard c-chart of machine A1.
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Step 5: Build Neyman-based particle control charts.
The remaining three machines that cannot be converted to a normal

distribution are M1, C1, and C2. We use the original particle data to
build the particle control charts based on a Neyman type-A distribution.
First, the parameters of a Neyman type-A distribution are computed by
equations (5a) and (5b). Take machine C1, for example; the average
number of particles is �XX ¼ 5.52, sample variance is S2

¼ (5.61)2. Hence,
the estimated parameters of a Neyman type-A distribution are:

�̂� ¼
5:52ð Þ

2

5:61ð Þ
2
�5:52

¼ 1:174; �̂� ¼
5:61ð Þ

2
�5:52

5:52
¼ 4:7:

Taking the above-estimated parameters into equations (7a) and (b), the
corresponding upper and lower limits are computed as: UCL¼ 5.52þ
16.83¼ 22.35; LCL¼ 0. Figure 6 (a) shows machine C1’s Neyman-based
particle control chart. Compared with the standard c-chart as shown in
figure 6 (b), the Neyman-based particle control chart demonstrates better
control effects.

Step 6: Perform online machinery control.
The final step is to control the number of particles on machines using

the control charts developed from the previous steps. When particles fall out
of the control limits (i.e. the number of particles is out of control), the
machine is assumed to be under abnormal conditions such as machine
deterioration and an unskilled operator. The manufacturing engineers
must understand the situation and confirm whether the machine is truly
functioning abnormally. If it is, the cause must be identified so that the
machine can be adjusted appropriately.

From our implementation results, the Neyman-based control limits are
wider than the Poisson-based control limits. Therefore, the proposed

W-test for Normality
R: 0.9970
P-Value (approx): > 0.1000

Average:3.55423
StDev:1.27898
N: 185

76543210
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P
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P1 tran

Normal probability plot

Figure 4. Normal probability plot of machine P1—after data transformation.
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machinery control procedure can reduce the occurrence of false alarms.

The Poisson-based control chart is incorrect when defects tend to cluster.

The points outside of the control limits may not actually represent the

existence of assignable causes in the process. By using the proposed proce-

dure, we can differentiate two types of processes: defect clustering and actual

out-of-control.
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Figure 5. (a) X-chart of machine P1—after data transformation. (b) Standard c-chart of
machine P1.
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4.2 Performance confirmation

The method developed in this study was implemented in the semiconductor
company for four months. During this period, the occurrence rate of false alarms
had declined from 20 to 4% (figure 7). Therefore, the method developed in
this research can effectively reduce the overly high rate of false alarms resulting

Histogram of c(a)

(b)

0
20

40
60

80
100

120
140

-5

0

5

10

15

20

25

30

35

Neyman c-chart; variable:C1

50 100 150 200

0.0000

5.5277

22.350

Histogram of c

0
20

40
60

80
100

120
140

-5

0

5

10

15

20

25

30

35

c-chart; variable: C1 (Sigma:2.351)

50 100 150 200

0.0000

5.5277

12.581

Figure 6. (a) The Neyman based particle control chart of Machine C1. (b) The standard
c-chart of Machine C1.
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from the number of particles inconsistent with Poisson distribution. The machinery
control method developed in this study can promptly and accurately
control machines, reduce defects in wafer production, and thus improve yield and
productivity.

5. Conclusions

As the size and complexity of semiconductor wafers as well as the precision
of processes increase, semiconductor process has reached a degree of 0.1 mm or
even smaller. Consequently, the control of the number of particles has become
increasingly important. The number of particles on the testing wafer of machines
may not satisfy the assumption of a Poisson distribution due to clustering or some
other reasons when implementing the c-chart control. Continuous use of c-charts
will result in an overly high rate of false alarms. In this study, a machinery control
procedure is developed by primarily combining data transformation and a
Neyman type-A distribution. The proposed machinery control procedure can
promptly and accurately control the number of particles on the testing wafer
of machines. The proposed procedure has the following advantages:

. It is convenient and fast. The parameter estimation of the particle charts
based on data transformation and a Neyman type-A distribution does not
require complicated formulas. The operating staff can usually calculate the
control limits that meet the actual needs of the semiconductor industry easily
and quickly.

. Based on the implementation results of an industry empirical case, the occur-
rence of false alarms has declined from an original 20% to 4%. This implies
that the machinery control procedure can effectively resolve the problem of
an overly high rate of false alarms and thus accurately monitor the conditions
of the machines on semiconductor production line.

. The particle inspection machine has been in existence in the semiconductor
industry. Therefore, if the proposed machinery control procedure can be
written in computer code and integrated with a particle inspection system,
the conditions of the particles on machines along a semiconductor produc-
tion line can be monitored even more promptly and effectively. An abnor-
mally large number of particles can be recognized and analysed in a timely
fashion once it occurs, and the machine can be adjusted accordingly. In this

Implementing month
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Figure 7. Trend of false alarms rate.

2772 M.-C. Chen et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
56

 2
6 

A
pr

il 
20

14
 



way, the defects in actual wafer production can be reduced and thus yield can
be improved.
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