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ABSTRACT

KinasePhos is a novelweb server for computationally
identifying catalytic kinase-specific phosphorylation
sites. The known phosphorylation sites from public
domain data sources are categorized by their annot-
ated protein kinases. Based on the profile hidden
Markov model, computational models are learned
from the kinase-specific groups of the phosphory-
lation sites. After evaluating the learned models, the
model with highest accuracy was selected from each
kinase-specific group, for use in a web-based predic-
tion tool for identifyingproteinphosphorylationsites.
Therefore, this work developed a kinase-specific
phosphorylation site prediction tool with both high
sensitivity andspecificity. Theprediction tool is freely
available at http://KinasePhos.mbc.nctu.edu.tw/.

INTRODUCTION

Protein phosphorylation, performed by a group of enzymes
known as kinases and phosphotransferases, is a post-
translational modification essential to correct functioning
within cells (1). The post-translational modification of proteins
by phosphorylation is the most abundant form of cellular regu-
lation, affecting many cellular signal pathways, including
metabolism, growth, differentiation and membrane transport
(2). The enzymes must be specific and act only on a defined
subset of cellular targets to ensure signal fidelity.

Because of owing to its importance in cellular control, a
computational scheme to quickly and efficiently identify phos-
phorylation sites in protein sequences and the catalytic kinases
involved in the phosphorylation is desirable. Such a tool would
improve the efficiency of characterization of new protein
sequences. Therefore, in this work, a prediction method was
designed and implemented to facilitate the identification of the
phosphorylation sites and the related catalytic kinases.

NetPhos (2), DIPHOS (3) and Berry et al. (1) presented
several prediction methods for identifying the phosphorylation
site prediction concentrating on only the substrate specificity.
NetPhosK (4) is an artificial neural network algorithm to
identify protein kinase A (PKA) phosphorylation sites with
100% sensitivity and 40% specificity in experiments. Scansite
2.0 (5) identified short protein motifs that are recognized by
phosphorylation protein serine/threonine or tyrosine kinases.
Each motif used in the Scansite was constructed from a set of
experimentally validated phosphorylation sites and was rep-
resented as a position-specific scoring matrix. Rather than
search a protein motif of phosphorylation substrate against
the target sequences based on the homolog to the motifs, the
KinasePhos web server developed here was based on the con-
cept of machine learning, the same as NetPhos and DIPHOS.
Computer models were trained for the detection of phos-
phorylation sites. By comparison of the prediction accuracy
between the predictive computer model methods and the motif
search tools, the predictive computer models contribute more
specificity for the detection of phosphorylation sites.

The proposed scheme considers the catalytic kinases of pro-
tein phosphorylation. The known phosphorylation sites from
data sources in public domain were categorized by their annot-
ated protein kinases. Based on the profile hidden Markov
model (HMM), computational models were determined from
the kinase-specific groups of the phosphorylation sites. A web-
based prediction application was implemented to facilitate the
identification of protein kinase-specific phosphorylation sites.

MATERIALS AND METHODS

The PhosphoBase (6) consists of 1883 experimentally verified
phosphorylation sites within 597 protein entries. The number
of serine, threonine and tyrosine sites is 984, 246 and 653,
respectively. Swiss-Prot (7) (release 45 of October 2004)
maintains 163 500 protein entries, of which 3614 have phos-
phorylation annotation. Among these entries, the number of
serine, threonine and tyrosine sites was 1005, 281 and 321,
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respectively. Generally, the serine, threonine and tyrosine,
which are not annotated as phosphorylation residues, within
the experimentally validated phosphorylated proteins, are
selected as negative sets, i.e. the non-phosphorylated sites.
Therefore, two negative (non-phosphorylated) datasets were
obtained from the PhosphoBase and Swiss-Prot based on the
phosphorylation annotation. Because of the absence of good
negative dataset exists for non-phosphorylated sites, the resi-
dues that had not been previously annotated as phosphorylated
in phosphorylation annotated proteins were chosen as a reflec-
tion of more general non-phosphorylated sites. Supplementary
Table S1 summarizes the statistics of kinase-specific phos-
phorylated sites used for learning models in the proposed
application. This work confirms the existence of two major
protein kinases phosphorylating either at serine/threonine
residues or at tyrosine residues.

Figure 1 depicts a flowchart of the proposed method.
Phosphorylated sites were first extracted as positive sets;
non-phosphorylated sites were extracted as negative sets,
and the catalytic kinase annotations were obtained from
PhosphoBase and Swiss-Prot. The positive sets were then
categorized by catalytic kinases. Alternatively, in larger pos-
itive groups, the sequences of the phosphorylated sites can
be clustered into subgroups by maximal dependence decom-
position (MDD) (8). The MDD was first applied in nucleo-
tides and is a recursive process to divide a sequence set into
tree-like subgroups based on the positional dependency of the
sequences. Here, we applied the MDD to group protein phos-
phorylation substrates into subgroups. As the example given
in Figure 1, 232 phosphorylation serine substrates are grouped
into subgroups. When applying MDD to cluster the sequences
of a positive set, a parameter, i.e. the minimum-cluster-size,
should be set. If the size of a subgroup is less than the

minimum-cluster-size, the subgroup is terminated to be
divided. The MDD process terminates until all the subgroup
sizes are less than the minimum-cluster-size.

Thereupon, the concept of the profile HMM was adopted
to learn computational models from positive sets of phos-
phorylation sites. To evaluate the learned models, k-fold
cross-validation and leave-one-out cross-validation were per-
formed on them. After evaluating the models, the model with
highest accuracy in each dataset was chosen.

For each kinase-specific positive set of the phosphorylated
sites, the best performed model is selected and used to identify
the phosphorylation sites within the input protein sequences
by HMMsearch (9). To search the hits of a model, HMMER
returns both a HMMER bit score and an expectation value
(E-value). The HMMER bit score is used as the criterion to
define a HMM match. We select the HMMER score as the
criterion to define a HMM match. A search of a model with
the HMMER score greater than the threshold t is defined as a
positive prediction, i.e. a HMM recognizes a phosphorylation
site. The threshold t of each model is decided by maximizing
the accuracymeasure during a variety of cross-validations with
the HMM bit score value range from 0 to �10. For example,
Supplementary Figure S1 depicts the optimization of the
threshold of theHMMbit scores in the S_PKAmodel. The thre-
shold of the S_PKA model is set to �4.5 to maximize
the accuracy measure of the model.

When considering a MDD-clustered dataset, for example,
MDD-clustered PKA catalytic serine (S_PKA), the HMMs
are trained separately from the subgroups of the phosphory-
lated sites resulted by MDD. Each model is used to search
in the given protein sequences for the phosphorylated sites.
A positive prediction of a model group is defined by at least
one of the models that makes a positive prediction, whereas

Figure 1. The flow of the proposed scheme.
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a negative prediction is defined as all the models that make
negative predictions.

USAGE

The predictive models for protein phosphorylation sites were
learned and evaluated using experimentally validating datasets
from Swiss-Prot (7) and PhosphoBase (6). The chosen models
were collected and provided for the web-based predicting
services. The web server can accurately and efficiently predict
the kinase-specific phosphorylation sites in the input protein
sequences. As depicted in Figure 2, users can submit their
uncharacterized protein sequences to the query interface and
choose the kinase-specific models to predict phosphorylated
serine, threonine or tyrosine. The web server locates the pre-
dictive phosphorylation sites and the involved catalytic protein
kinases. In order to reveal the characteristics of the phos-
phorylated sites, including the phosphorylated residues and
surrounding sequences, the training phosphorylation sites and
constructed sequence logos corresponding to each protein kin-
ase are also provided on the application interfaces on the web.

PREDICTION ACCURACY

The following measures of the predictive performance of
the models are then calculated: precision = TP/(TP+FP),
sensitivity = TP/(TP+FN), specificity = TN/(TN+FP) and the

accuracy = (sensitivity + specificity)/2, where TP, TN, FP and
FN are true positive, true negative, false positive and false
negative predictions, respectively. Especially, we make the
equal sizes of the positive samples and the negative samples
during the cross-validation processes. For each kinase-specific
group, the most accurate model was chosen and applied in
the web application, as presented in Table 1. For example, the
precision, sensitivity, specificity and accuracy of the model
learned from the MDD-clustered S_PKA dataset, which was
constructed by the combined PhosphoBase and Swiss-Prot
data sources, were 0.85, 0.91, 0.84 and 0.88, respectively.
The average precision, sensitivity, specificity and accuracy
of all the kinase-specific serine models were 0.88, 0.84, 0.88
and 0.86, respectively.

The prediction accuracy of the proposed web application
was compared with several previously developed phosphory-
lation prediction tools, such as NetPhos (2), DISPHOS (3) and
rBPNN (1). Previous tools did not consider the catalytic kinase
annotations. In particular, this work constructed the kinase-
specific models for phosphorylation sites. Only the average
accuracy from the best model was chosen in each kinase-
specific model. As presented in Table 2, the average accuracy
of the models learned from the serine, threonine and tyrosine
sets was 0.86, 0.91 and 0.84, respectively. The average accur-
acy for KinasePhos was 0.87. All the accuracies of the serine,
threonine and tyrosine models were higher than those from
NetPhos and DISPHOS.

Figure 2. The KinasePhos web interface.
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FUTURE DEVELOPMENT

Prospective works to enhance the accuracy of predictive
schemes are addressed as follows. First, the species-specific
phosphorylation sites can be considered to evaluate protein
phosphorylation-related mechanisms in different organisms,
possibly improving the accuracy of the models learned
from a species-specific dataset. Second, protein structural
properties, such as solvent accessibility, of the phosphorylated
sites can be considered to reduce the number of false positive
predictions of phosphorylated sites located in buried regions.
For proteins with known structures, the solvent accessibility of
a phosphorylated site can be calculated trivially. However, as
to the proteins without structures, the solvent accessibility of a
residue should be computationally determined.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

The authorswould like to thank theNational ScienceCouncil of
the Republic of China for financially supporting this research

under Contract No. NSC 93-2213-E-008-024 and Contract
No. NSC-93-2213-E-009-075. Funding to pay the Open
Access publication charges for this article was provided by
National Science Council of the Republic of China.

Conflict of interest statement. None declared.

REFERENCES

1. Berry,E.A., Dalby,A.R. and Yang,Z.R. (2004) Reduced bio basis function
neural network for identification of protein phosphorylation sites:
comparison with pattern recognition algorithms. Comput. Biol. Chem.,
28, 75–85.

2. Blom,N., Gammeltoft,S. and Brunak,S. (1999) Sequence and
structure-based prediction of eukaryotic protein phosphorylation sites.
J. Mol. Biol., 294, 1351–1362.

3. Iakoucheva,L.M., Radivojac,P., Brown,C.J., O’Connor,T.R.,
Sikes,J.G., Obradovic,Z. and Dunker,A.K. (2004) The importance of
intrinsic disorder for protein phosphorylation. Nucleic Acids Res.,
32, 1037–1049.

4. Hjerrild,M., Stensballe,A., Rasmussen,T.E., Kofoed,C.B., Blom,N.,
Sicheritz-Ponten,T., Larsen,M.R., Brunak,S., Jensen,O.N. and
Gammeltoft,S. (2004) Identification of phosphorylation sites in protein
kinaseAsubstrates usingartificial neural networks andmass spectrometry.
J. Proteome Res., 3, 426–433.

5. Obenauer,J.C., Cantley,L.C. and Yaffe,M.B. (2003) Scansite 2.0:
Proteome-wide prediction of cell signaling interactions using short
sequence motifs. Nucleic Acids Res., 31, 3635–3641.

6. Blom,N., Kreegipuu,A. and Brunak,S. (1998) PhosphoBase: a database of
phosphorylation sites. Nucleic Acids Res., 26, 382–386.

7. Boeckmann,B., Bairoch,A., Apweiler,R., Blatter,M.C., Estreicher,A.,
Gasteiger,E., Martin,M.J., Michoud,K., O’Donovan,C., Phan,I. et al.
(2003) The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Res., 31, 365–370.

8. Burge,C. and Karlin,S. (1997) Prediction of complete gene structures
in human genomic DNA. J. Mol. Biol., 268, 78–94.

9. Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics,
14, 755–763.

Table 1. The selected models learned and used in the web server

Residues Protein kinases Score threshold Precision Sensitivity Specificity Accuracy

Serine S_PKAa (232) �4.5 0.85 0.91 0.84 0.88
S_PKCa (176) �4.5 0.87 0.77 0.88 0.82
S_PKG (27) �9.5 0.94 0.96 0.93 0.95
S_PKB (37) �6.5 0.88 0.76 0.89 0.82
S_CaM-II (37) �8.0 0.84 0.76 0.86 0.81
S_CKI (30) �7.0 0.82 0.65 0.86 0.76
S_CKIIa (85) �3.5 0.95 0.79 0.96 0.87
S_cdc2 (43) �10 0.94 0.94 0.94 0.94
S_MAPK (27) �6.0 0.97 0.77 0.97 0.87
S_CDKa (71) �6.5 0.83 0.87 0.82 0.85
S_ATM (38) �8.0 0.92 0.87 0.92 0.90
S_IKK (32) �8.0 0.75 0.75 0.75 0.75
Average 0.88 0.84 0.88 0.86

Threonine T_PKA (19) �7.0 0.97 0.94 0.97 0.95
T_PKC (37) �8.5 0.85 0.83 0.85 0.84
T_CKII (17) �9.0 0.79 0.98 0.75 0.86
T_cdc2 (23) �9.5 1.00 0.95 1.00 0.97
T_MAPK (15) �9.5 1.00 1.00 1.00 1.00
T_CDK (35) �6.5 0.94 0.86 0.94 0.90
Average 0.91 0.92 0.91 0.91

Tyrosine Y_EGFR (30) �5.5 0.89 0.83 0.89 0.86
Y_INSR (16) �9.5 0.82 0.78 0.83 0.80
Y_Src (28) �5.0 0.86 0.81 0.87 0.84
Y_Abl (27) �2.0 0.93 0.48 0.96 0.72
Y_Syk (22) �8.5 0.83 0.91 0.82 0.86
Y_Jaka (42) �3.5 0.91 0.66 0.93 0.80
Average 0.86 0.81 0.87 0.84

aThe dataset is clustered by MDD.

Table 2. The prediction accuracy comparison between NetPhos, DISPHOS,

rBPNN and KinasePhos

Residue types NetPhos DISPHOS rBPNN KinasePhos

Serine 0.69 0.75 No data 0.86
Threonine 0.72 0.80 No data 0.91
Tyrosine 0.61 0.82 No data 0.84
Total or average 0.67 0.79 0.87 0.87

Nucleic Acids Research, 2005, Vol. 33, Web Server issue W229


