
A P2P Blog System with OpenID Integration

Chen-Pu Lin1, Yung-Wei Kao1, Shyan-Ming Yuan1,2
1 Department of Computer Science and Engineering

National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
 2 Department of Computer Science

Asia University, Lioufeng Rd., Wufeng , Taichung County, Taiwan
chenpu.w.lin@gmail.com, ywkao@cs.nctu.edu.tw, smyuan@cs.nctu.edu.tw

Abstract

Blog services become popular in recently years.
Web users can post their articles through the services.
On the other hand, the users do not have full control of
the articles after posted while the services are built
with client/server model. Therefore, we propose to use
peer-to-peer (P2P) technology to establish blog
services. However, the anonymous feature disables the
P2P technology to conduct user identification. The
OpenID provides secure and unified authentication
mechanism to improve the anonymity. In addition, the
OpenID has the single sign on procedure to reduce
redundant, multiple accounts and passwords. The
paper presents a blog service platform which
integrates the P2P networks and the OpenID
authentication mechanism together. Therefore, users
can establish their own blogs easily with full control.
The platform can be utilized for other Internet
applications as well.

1. Introduction

The Internet is becoming more indispensable for
human activities in recent years. The global network
infrastructures have been established intensively and
increasingly popular in our daily lives. There are many
services over the Internet, i.e., blogs, auctions, web
photo albums. Especially, the blog services become
popular in the recent decade. A blog is a website which
a person or people can write articles on it. The articles
in the blog are commonly displayed in reverse
chronological order. Most web users own their blogs
provided by the blog service providers (BSPs). Blog
services provided by BSPs are generally built with
client/server architecture, and the article data are
generally stored on the centralized server. However,
users do not have full control of the articles; they may

suffer from the lost of data while BSPs change their
policies. In addition, less people have professional
knowledge or time to establish the blog service by
them self bypassing BSPs. Therefore, we intend to
build a blog system on peer-to-peer (P2P) architecture
to solve these problems.

On the other hand, according to the anonymous
characteristic of the Internet, it is difficult to enforce
the true users’ identities. Nevertheless, in general, most
of the web sites require the membership registration to
conduct authentications. User Account and Password
are the most essential information needed for
registration. Occasionally, the web sites may demand
users’ demographic data, i.e., name, gender, address,
birthday, etc. Such data may not need to be modified or
updated frequently. Moreover, the information may be
required by other web sites as well. Thus, the users
need to fill out the data repeatedly for every request
from different web sites; users must remember
different accounts and passwords for all web sites.
Furthermore, the anonymous feature disables the P2P
technology to conduct user identification; it isn’t easy
to handle account problems on the P2P network.
However, OpenID, a web authentication standard,
becomes strong and popular recently. It is a general
solution for multiple usernames across different
websites. Therefore, we intend to adopt the OpenID
technology to solve the anonymity problem of the P2P
network.

The paper presents a new type of architecture to
have a blog system by a platform which combines the
P2P technology and the OpenID standard.

In the following sections of the paper, we first
describe the background of this paper. In Section 3, we
introduce the system architecture. The comparisons
between the P2P blog system we proposed with
relevant related works are discussed in section 4.

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.75

1056

Third 2008 International Conference on Convergence and Hybrid Information Technology

978-0-7695-3407-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ICCIT.2008.75

1064

Name Latest Version P2P Language Pub/Sub System

JXTA JXSE 2.5 (2007/11/7) unstructured Java propagation

Open Chord 1.0.5 (2008/4/11)
structured

(Chord)
C Not supported

FreePastry 2.0_03 (2007/11/2)
structured

(Pastry)
Java Scribe

Table 1. Three P2P Pub/Sub implementations

Finally, the paper conclusion is drawn in section 5 and
the future works are listed in section 6.

2. Background

2.1. Peer-to-Peer Publish/Subscribe

There are lots of P2P implementations, but less of
them have great maintenance and enough scale. Table
1 includes three representative implementations in
common usage: JXTA [1], Open Chord [2], and
FreePastry [3].

JXTA has a message-passing mechanism called
JXTA wire. Its capability is similar to Pub/Sub system,
but its operation is related to non-pure P2P network (it
needs super peer). The difference between JXTA and
general Pub/Sub system is that JXTA uses the
one-to-many message-passing mechanism, not the
many-to-many message-passing mechanism of the
general Pub/Sub system. In addition, performance of
JXTA is poor because of its propagation method. Open
Chord is based on Chord. Although Chord has related
functions for Pub/Sub systems, Open Chord has none
of them. By contrast, the Scribe in FreePastry is a
simple topic-based Pub/Sub system which meets our
need. So we adopt FreePastry to implement the P2P
blog system.

2.2. OpenID

OpenID is an open, decentralized, free framework
for user-centric digital identity [4]. It provides a free
and easy way that users can use a single digital identify
across the Internet. It also eliminates the need for
multiple usernames across different websites, and
simplifies the users’ online operation, and enhances the
users’ online experience.

The terms used in the OpenID protocol are
described as followings [5]:

(1) Identifier: The URL or XRI are chosen by the End
Users as their OpenID identifier.

(2) End User: The person who wants to assert his or
her identity to a site.

(3) Relying Party: The site which wants to verify the
end user's identifier. Sometimes it is simply called site.

(4) OpenID Provider: A service provider offering the
service of registering OpenID URLs or XRIs and
providing OpenID authentication (and possibly other
identity services).

The current version of OpenID is OpenID 2.0,
released in December 5, 2007. The end user can own
an OpenID identifier and login to a website supporting
OpenID by the identifier. The website usually has an
input box with an OpenID logo for user’s identifier.
The user’s identifier is also a URL that describes the
authentication server. The unauthenticated identifier is
called “claimed identifier”. The relying party can find
user’s OpenID provider from the URL and require
authentication. This moment, the user’s browser
redirects to the website of OpenID provider. The user
logins and permits the authentication from the external
site. After that, the authentication server notifies the
external site of the successful authentication. The
user’s browser redirects to the site and uses its services
with OpenID identity.

Up to July 2007, there are only approximately 120
million valid OpenID accounts and approximately
4,500 sites have integrated OpenID consumer support
[6]. However, some websites with a large number of
members also began to support the plan [6] [7]. For
example, Yahoo users can use their Yahoo IDs as
OpenIDs starting from January 31st, 2008. We can
expect the number of OpenIDs becomes larger and
larger. The situation of OpenID authentication is more
and more universal. Hence, our system adopts the
solution to eliminate the problems of identity
authentication and management. Therefore, the P2P
Network architecture doesn’t have to maintain its own
account/password information.

10571065

3. System Architecture

Figure 1. System architecture

3.1. OpenID

The P2P Blog system needs a web server inside to
integrate itself with the authentication standard,
OpenID. OpenID provides the authentication
mechanism for web sites, but no integrated solution for
windows applications. We know that there are three
roles in OpenID standard: “User”, “Site”, and “OpenID
Provider”, and they contact with each other via HTTP
protocol. In addition, based on the operation of
OpenID protocol, OpenID Provider must receive an
absolute address to send the “Site” information back
after user logs in. We can not build a central web site
to be the “Site” because it will be the bottleneck in the
architecture and destroy the original intention of
distributed network. However, we still need a web site
which responses for accepting messages from the
OpenID Provider. Based on the situation, we propose
our solution to attach a light web server to user’s
computer. In other words, users play “User” and “Site”
role simultaneously, and “User” can communicate
directly with “Site”.

The OpenID part in the P2P Blog system includes
all mechanisms for OpenID integration. The web
server in our system is responsible to build a website
temporarily, and the website can work and
communicate with OpenID Providers. While users
want to login, the windows application launches the
web server via a batch file. At this moment, the web
application, named WebApp_OpenID, in the web
server is usable and allows users to login with OpenID.
Users can input their OpenID identifiers on the website,
and the website can deal with the identifier. We
assume that the port of the web server is 8080, thus, we
set redirect address to “http://localhost:8080/WebApp_
OpenID/returnurl.jsp”. Next, we find out the OpenID
Provider of user’s identifier and deliver a request to it.
The OpenID Provider exchanges messages with the

website. Since our redirect address is on the localhost,
it allows the user to redirect to “localhost” after logged
in on the OpenID Provider website.

After completed the steps of login through OpenID
Provider, users visit the redirect address. On the
returnurl.jsp, we deliver the results via socket stream.
The stream is a string which is formatted as:
“OpenID:useridentifier”, e.g., “OpenID:http://user.ope
nid.example.org”. If there are any failures or errors, the
string format will be: “Fail.Error Message”, i.e.,
“Fail.login failure”.

3.2. Static Data

Static Data is a special class that all variables and
functions in this class are static. It is similar to the
existence of global variables. The common feature of
these variables is that the whole program only needs
these variables with the same version, such as user
identifier and P2P environment parameters.

The main work of Static Data is initialization, e.g.,
initializes the P2P network environment, or accesses a
configuration file, config.properties. The configuration
file maintains several modifiable parameters, i.e.,
default bindport value.

3.3. P2P Pub/Sub Module (FreePastry)

The P2P Pub/Sub Module manages all operations
about P2P network and Pub/Sub system via FreePastry.
It needs to be supported directly by P2P libraries,
hence, with different P2P libraries, the implementation
ways diverge.

Our system is started and joins a P2P network at
initiating Static Data. The Static Data achieves the job
by the functions of P2P Pub/Sub Module.

3.4. Action Functions

Action Functions are responsible for specific
abilities according to different applications. For
example, a blog system should have the ability of
posting an article. At this moment, it critically controls
how to store an article. We know that our system is
totally distributed and the data are stored on the P2P
network. Actually, the data are composed of two kinds
of types, profile and article. A profile file is used to
save information of single personal account, such as
the number of articles; an article file is used to store an
article, including title, content and comments.

According to the P2P protocol, every file contains
one unique identifier. The identifier is produced by
hashing a key. In other words, we can’t find the file if

10581066

Table 2. Custom URL in the presentation canvas
URL Action (useridentifier / useridentifier#N)

http://Action.Comment.<Link> View comments / Leave a Comment

http://Action.targetlink.<Link> List all articles of the author / Link to the article

http://Action.Bookmark.<Link> Bookmark it

http://Action.Subscribe.<Link> Subscribe all articles of the author

Figure 2. System screenshot

we don’t have the key. Thus, we define the rules of
how to generate a key. The key of a profile file is the
user’s identifier (OpenID), and the key of an article is
made of the concatenation of user’s identifier and the
serial number of the article (useridentifier#N). The
serial number (N) is counted from 1 and independent
of each user. For example, if a user’s identifier is
“http://user
.openid.example.org”, then the key of his third article
is “http://user.openid.example.org#3”. Therefore, the
program can find out all information produced by a
user with his OpenID identifier.

3.5. GUI design

The GUI of our system is shown in Figure 2. We
describe the five areas of GUI in detail.

(1) Searching box: Users can input an exact key of
data to find out the information.

(2) Action buttons: Users can link to his homepage
via the “Home” link. If the users do not log in, it will
redirect the user to the blog of Anonymous. “Post”
function can publish articles. “Edit Self-Profile”
function can edit information of self account. “Login”
function provides the authentication ability for users to
login to our system.

(3) Bookmarks and subscription list: Users can
choose the view by tab controller.

(4) Presentation Canvas: This area is responsible for
displaying information of blogs. The information is
composed of several articles. We can slightly
typesetting and print them with simple text, but it is not
convenient or intuitive. Users may have many kinds of
interactions to the article, e.g., subscribe author’s
articles, or leave comments. The interface may become
complex and unnecessary while there are lots of
buttons for those actions.

Therefore, our program dynamically generates html
codes from the information and displays it with web
page style on the Presentation Canvas. It is different to
the previous embedded web browser. In addition, the
program transforms the information into html codes
just for the basic color and hyperlink control. The
Presentation Canvas has some hyperlinks for usual
actions. If users click hyperlinks, the program can
parse the hyperlinks and executes actions. The
hyperlink URL formats are shown as in Table2.
(<Link> stands for “useridentifier” or “useridentifier#
N”).

After we transformed the information into web page
style, the operation of information is close to the user
experiences, which makes users easy to get started.
More importantly, the webpage-style improves the
presentation and scalability of operations.

(5) Message windows: The messages of operations are
also logged in the system log file.

4. Comparison

Table 3 illustrates the comparison between the P2P
blog system we proposed with relevant related works.
In contrast with traditional client/server architecture,
our blog system is totally distributed. Although
NUWeb is regarded as a distributed system, there is
still a central portal site which is the bottleneck of
NUWeb, which has the same problem of DSPs. In
addition, only web browser is needed to visit the
traditional blog systems, but users have to install
additional application to use NUWeb and our system.

10591067

Table 3. Comparison with NUWeb and traditional blog systems

 P2P Blog with OpenID NUWeb Traditional blog systems
(via BSP)

Architecture Distributed Distributed but
a central portal site Client/Server

Additional
installation

Custom windows
application

Custom windows
application (NUBraim) none

Registration OpenID Provided by central
portal site Provided by BSP

Subscription Scribe RSS RSS, Atom

Domination
of blog

information
Complete Complete Partial

On the other hand, users have to apply for

membership of BSP when they intend to build their
own blogs. In our system, we only require OpenID to
build a blog. Moreover, all three blog systems have
subscription mechanism. Finally, the domination of
blog information is complete in our system and
NUWeb, but not in traditional blog systems.

5. Conclusion

The blog service is more and more popular in recent
years. Blog services are generally provided by BSPs.
However, the article data is traditionally owned by user
but maintained by BSP. Users may suffer from the loss
of data without the domination of data. The paper
proposes the P2P Blog system to solve the domination
problem. We have established the blog service on the
totally distributed architecture. Except for the
advantage of protecting personal control ability,
building the system via P2P architecture is simpler
than via client/server model. Since P2P technology
already has some essential mechanisms such as routing
and backup/duplication of files. However, P2P network
requires enough users to keep the network operation
steady. In addition, the system has to notify users about
the security problems on each host.

In order to recognize the owner of blog information,
the user identification mechanism is needed. However,
the anonymous feature of P2P network disables the
P2P blog system from providing authentication. In the
paper, we propose the P2P blog system which
integrates the P2P network and OpenID standard to
solve the authentication problem. Hence, the user

identity is possible in the P2P blog system with
entirely distributed P2P network environment.

With the authentication function, the P2P with
OpenID platform can be utilized for other Internet
applications as well, e.g., auctions, forums.

6. Future Works

We have defined the following problems to be
solved in the near future:

(1) The P2P Blog system only searches data by using
exact keys to find file identifiers because of the
limitation of FreePastry. It is inconvenient to visit
blogs by exact keys. We have to integrate our system
with advanced keyword search.

(2) The traditional blog systems have a lot of data of
statistical analysis, e.g., popular articles, hot blog list,
etc. It is difficult to count exact results from the
distributed nodes in P2P network. Hence, we intend to
provide reference values to users.

(3) Now users can only post articles of full text. We
will allow multimedia presentations in an article, i.e.,
pictures and videos.

(4) The data on the P2P network is stored as files, and
the file size will affect the system efficiency, especially
when the articles have multimedia contents in the
system. For the reason, we intend to divide large files
into several fragments for system stability in the later
operations. In addition, we may design different

10601068

methods for different kind of data type to solve this
problem.

(5) Beyond the P2P Blog system, we intend to refine
the core architecture to make it a more general purpose
service platform. We also plan to implement other
applications on the P2P with OpenID platform.

Acknowledgments
This work was mainly supported by National Science
Council grant NSC96-2221-E-009-142: pub/sub-based
P2P platform and its applications, and partially
supported under grant NSC96-2520-S-009-007-MY3.

Reference

[1] JXTA. https://jxta.dev.java.net/

[2] Open Chord. http://www.uni-bamberg.de/en/pi/

bereich/research/software_projects/openchord/

[3] FreePastry. http://freepastry.org/

[4] OpenID. http://openid.net/

[5] OpenID. http://en.wikipedia.org/wiki/OpenID

[6] Michael Arrington(Jan 17, 2008). Yahoo

Implements OpenID; Massive Win For The

Project. http://www.techcrunch.com/2008/01/17/

yahoo-implements-openid-massive-win-for-the-p

roject/

[7] Marshall Kirkpatrick (Feb 7, 2008). OpenID:

Google, Yahoo, IBM and More Put Some Money

Where Their Mouths Are. http://www.readwrite

web.com/archives/openid_big_companies.php

10611069

