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Abstract

Use of characteristics method integrated with cubic-spline interpolation technique (CSMOC scheme) for computation of one-

dimensional and two-dimensional kinematic overland flow has been examined in this study. The characteristic trajectory is allowed

to fall on space line and time line for interpolating the corresponding values at the foot of trajectory in terms of neighboring grid

points. The effects of different endpoint constraints on use of cubic-spline interpolation are investigated. As far as accuracy and sim-

plicity are concerned, the not-a-knot constraint could be a better choice. Three hypothetical examples are used to examine the capa-

bilities of CSMOC scheme through the comparison with the analytical solution and the well-known Preissmann scheme. Some

degrees of numerical diffusion and numerical oscillation, attenuating and overestimating the peak discharge, are induced by the Pre-

issmann scheme. In contrast, the CSMOC scheme gives convincing results for the kinematic overland flow computations.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The kinematic wave equation approximation to the

Saint-Venant hydrodynamic equations is frequently ap-

plied to the overland flow computations due to its sim-

plicity. The kinematic wave theory is also often

sufficiently accurate for flow modeling, where the back-

water effects and the flow acceleration are not impor-

tant. Growing environmental and ecological concerns

have increased the role of the kinematic wave theory
in modeling hydraulic processes [20]. Hjelmfelt [9], Par-

lange et al. [19], Govindaraju et al. [6,7], and Singh [20]

have generated analytical or semianalytical solutions for
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the kinematic wave equations with simplified conditions.

However, for most realistic problems in which rainfall,
infiltration and surface characteristics vary randomly

in space and time, the analytical solutions for the kine-

matic wave equations are not tractable and the numeri-

cal approach is the only choice.

The finite difference method and the finite element

method are two common numerical approaches used

for the kinematic overland flow computations. For

example, de Lima and Singh [4] used the Lax–Wendroff
scheme to investigate the influence of the pattern of

moving rainstorms on overland flow. Holden and Ste-

phenson [10] applied the Preissmann scheme for the

overland flow computation and assessed the effects of

grid space and the spatial and temporal weighting coef-

ficients on it. In addition, numerous studies on solving

the kinematic wave problems using the Galerkin finite

element scheme have been reported [8,21,11]. However,
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Nomenclature

h water depth

q flow rate per unit width
r excessive rainfall rate

A–D coefficients of the cubic-spline interpolation

N Manning roughness coefficient

S second derivative

S0 bottom slope

Sf friction slope

/ longitudinal space weight

h time position weight

Dx computational grid interval
Dt time increment

Subscript

i x-directional computational point index

Superscript

n time step index
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use of the finite difference method and the finite element

method could induce some degree of numerical diffusion

or numerical oscillation that can attenuate or overesti-

mate the peak discharge of flow.

The method of characteristics is known to have many

advantages for the theoretical and physical interpreta-

tion of flow patterns. The method of characteristics

can be classified into two categories, i.e., the character-
istics-grid scheme and the specified-time-interval

scheme. The specified-time-interval scheme is the popu-

lar scheme for hydraulic engineering problems because

of its practicability. With the specified-time-interval

scheme, the characteristic trajectory usually does not

pass through the grid points. An interpolation technique

is needed to obtain corresponding values at the foot of

the trajectory. Thus, the accuracy of characteristics
method is strongly related to the form of interpolation

technique.

Use of the characteristics method with linear interpo-

lation leads to an inevitable smoothing of the solution

for flow modeling [16–18,28]. In order to efficiently re-

duce the numerical errors induced by linear interpola-

tion, the cubic-spline interpolation, a kind of piecewise

cubic approximation, was first applied by Schohl and
Holly [22] in one-dimensional advective solute transport

and then applied to the two-dimensional advection–dif-

fusion equation by Karpik and Crockett [13] and Stefa-

novic and Stefan [23]. The cubic-spline interpolation

originally developed on the space line had also been ex-

tended to the time line [1], which allows the characteris-

tic curve to fall on the temporal axis. Tsai et al. [27]

investigated the effects of different kinds of endpoint
constraints on the use of cubic-spline interpolation for

solving the advection–diffusion equation.

The goal of this paper is to examine the applicability

of the characteristics method integrated with cubic-

spline interpolation technique for one-dimensional and

two-dimensional kinematic overland flow computations.

In this study, the method of characteristics integrated

with cubic-spline interpolation technique is called
CSMOC scheme. In the following sections, the mathe-
matical and numerical formulations for the CSMOC

scheme in modeling the kinematic overland flow are first

introduced. The effects of endpoint constraints on use of

cubic-spline interpolation are then examined. Finally,

the comparison study for the results from the CSMOC

scheme, the analytical solutions, and the well-known

Preissmann scheme are conducted on some one-dimen-

sional and two-dimensional hypothetical examples.
2. Governing equations

Any appropriate mathematical formulation of the

overland flow makes use of the fundamental mass and

momentum equations. The equation of continuity for

shallow water flow, representing the conservation of
mass, can be written in one dimension as

oh
ot

þ oq
ox

¼ rðx; tÞ ð1Þ

where q = flow rate per unit width; h = flow depth;
x = distance in the flow direction; t = time; r = excess

rainfall rate.

A flow-resistance equation, derived by neglecting the

inertia force and the pressure force in the momentum

equation (S0 = Sf), can be represented as

q ¼ ahb ð2Þ

where, using Manning�s equation, a ¼ S1=2
0 =N ; b = 5/3 in

which N is the Manning�s roughness coefficient; S0 and

Sf are the bottom slope and the friction slope,

respectively.

Substituting Eq. (2) into Eq. (1), the kinematic wave

equation for the overland flow can be represented as

oh
ot

þ abhb�1 oh
ox

¼ rðx; tÞ ð3Þ

Eq. (3) can be rewritten as

Dh
Dt

¼ rðx; tÞ ð4Þ
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Fig. 1. Grid system of characteristics method with cubic-spline

interpolation.
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along with

dx
dt

¼ abhb�1 ð5Þ

where D/Dt = (o/ot) + (dx/dt)(o/ox) denotes the total

derivative. Eq. (5) represents the characteristic curve

shown in Fig. 1.
3. Numerical framework of characteristics method with

cubic-spline interpolation

By integrating Eqs. (4) and (5) along the characteris-

tic curve from l to p shown in Fig. 1 and applying the

trapezoidal-rule approximation to the time integration

term yields

hp � hl ¼
Dt
2
ðrp þ rlÞ ð6Þ

and

xp � xl ¼
abDt
2

hb�1
p þ hb�1

l

� �
ð7Þ

The points l and p are two nodal points of the character-

istic trajectory. hp is the unknown water depth of grid

point p at time level n, which is to be solved. hl is water

depth of point l at time level n � 1, in which water

depths of all grid points are known. The nodal point l
does not usually coincide with any grid point. Several

forms of interpolation techniques could be used to

approximate hl. The cubic-spline interpolation is to con-

struct a piecewise cubic polynomial function of the

dependent variable between two grid points such that

the interpolating function must pass through each node

and be continuous in its first and second derivatives at

interior nodes.
When the characteristic curve intersects the space line

at time level n � 1, shown in Fig. 1, the cubic-spline

interpolation can be used to evaluate hl corresponding

to all known grid values of h at time level n � 1, i.e.,

hn�1
i , i = 1,2, . . .,NX. From the description of the cu-

bic-spline interpolation mentioned above, the second

derivative of h at time level n � 1 is a continuous piece-

wise linear function between each two grid points, that is
hn�1ðxÞ00 ¼ Si
xiþ1 � x

Dx
þ Siþ1

x� xi
Dx

x 2 ½xi; xiþ1	 ð8Þ

where i = 1,2, . . .,NX � 1 in the uniform grid space

Dx = xi+1 � xi. h
n�1(x)00 is the function of second deriv-

ative of h at time level n � 1. Si and Si+1 denote the sec-

ond derivative of h at time level n � 1 and grid points i

and i + 1, respectively. Integrating Eq. (8) twice with re-

spect to x and substituting the nodal values at grid

points i and i + 1 yields the expression for the cubic

function hn�1(x) on interval xi to xi+1

hn�1ðxÞ ¼ Si
ðxiþ1 � xÞ3

6Dx
þ Siþ1

ðx� xiÞ3

6Dx

þ hn�1
i � Si

Dx2

6

� �
xiþ1 � x

Dx

þ hn�1
iþ1 � Siþ1

Dx2

6

� �
x� xi
Dx

ð9Þ

The second derivative with respect to space at grid

points shown in Eq. (9) can be obtained by using the
continuity of the first derivative with respect to space

at interior nodes

Si�1 þ 2Si þ Siþ1 ¼
6

Dx2
hn�1
iþ1 � 2hn�1

i þ hn�1
i�1

� �
i ¼ 2; . . . ;NX � 1 ð10Þ

The system of equations in Eq. (10) is underdetermined

since it involves only NX � 2 equations for finding NX

unknowns. Two additional constraints at endpoints,
i.e., S1 and SNX, must be added to close this system.

Four types of endpoint constraints [5,14,15,27] may be

used to produce the various types of cubic-spline inter-

polations. They are stated below:

1. First derivative endpoint constraints:

2DxS1 þ DxS2 ¼ 6
hn�1
2 � hn�1

1

Dx
� ohðx1Þ

ox

� �
ð11aÞ

and

2DxSNX þ DxSNX�1 ¼ 6
ohðxNX Þ

ox
� hn�1

NX � hn�1
NX�1

Dx

� �

ð11bÞ
2. Second derivative endpoint constraints:

S1 ¼
o2hðx1Þ
ox2

ð12aÞ

and

SNX ¼ o
2hðxNX Þ
ox2

ð12bÞ

3. Quadratic endpoint constraints:

S1 ¼ S2 ð13aÞ
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Fig. 2. Flow chart of the characteristics method with cubic-spline

interpolation for computation of kinematic overland flow.
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and

SNX ¼ SNX�1 ð13bÞ
4. Not-a-knot endpoint constraints:

S1 ¼ 2S2 � S3 ð14aÞ

and

SNX ¼ 2SNX�1 � SNX�2 ð14bÞ

In Eqs. (11) and (12), the unknown first and second deriv-

atives could be obtained by finite difference approxima-
tion corresponding to grid points near the boundary.

However, the frequently used natural cubic-spline inter-

polation simply takes S1 = SNX = 0 in Eq. (12) and

neglects the second derivative at endpoints. Thus, it

makes the end cubics approach linearity at their extremi-

ties. On the other hand, by substituting Eq. (13) into Eq.

(9), one can clearly find that this endpoint constraint is

equivalent to assuming that the end cubics approach to
quadratic curves at their extremities. The not-a-knot end-

point constraint shown in Eq. (14) represents the continu-

ity of the third derivative at the nodes x2 and xNX�1 [3]. In

other words, two cubic segments that join at the node x2
are adjacent parts of the same cubic curve. The identical

result as that at node x2 is also yielded at node xNX�1.

The system of equations shown in Eq. (10) associated
with additional endpoint constraints shown in Eqs.

(11)–(14) can be easily and efficiently solved by the Tho-

mas algorithm [24].

According to cubic-spline interpolation given by Eq.

(9) and the distance between xp and xl shown in Eq. (7),

hl can be evaluated as

hl ¼ Ai�n̂l�1½ð1� xÞDx	3 þ Bi�n̂l�1½ð1� xÞDx	2

þ Ci�n̂l�1½ð1� xÞDx	 þ Di�n̂l�1 ð15Þ
with

x ¼
ðhÞplDt

Dx
� n̂l ð16Þ

where ðhÞpl ¼ abðhb�1
p þ hb�1

l Þ=2; n̂l ¼ INT½ðhÞplDt=Dx	
in which INT denotes the integral portion. The coeffi-

cientsAj,Bj,Cj, andDj shown in Eq. (15) can be written as

Aj ¼
Sjþ1 � Sj

6Dx
ð17Þ

Bj ¼
Sj

2
ð18Þ

Cj ¼
hn�1
jþ1 � hn�1

j

Dx
� 2DxSj þ DxSjþ1

6
ð19Þ

Dj ¼ hn�1
j ð20Þ

where j = 1,2, . . .,NX � 1. With known hl, hp is then ob-

tained from Eq. (6). An iterative solution procedure
shown in Fig. 2 is needed to complete above computa-

tion as follows:

1. Give an assumed value of water depth at grid i and
time level n, i.e. hp = (hp)old.

2. Apply Eqs. (7) and (15) to find xl and hl with the

given water depth in step 1.

3. Calculate new hp using Eq. (6) with known hl found

from step 2, and then let (hp)new = hp.

4. Compare the relative difference rd = b(hp)new �
(hp)oldc/(hp)old with the tolerant error e (e = 0.001 is

used in this study).
5. If jrdj is less than e, the computation moves forward

to the next time step.

6. If jrdj is larger than or equals e, set (hp)old = (hp)new
and repeat step 1 to step 6.

In the solution procedure mentioned above, the char-

acteristic curve will intersect the time line at boundary

shown in Fig. 3 when the ratio of Dt to Dx is too large,
i.e. (h)plDt/Dx P i � 1. The cubic-spline interpolation
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Fig. 3. Grid system of characteristics method with cubic-spline

interpolation at boundary.
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technique can also be applied to the time line to approx-

imate hl shown in Appendix A.
4. Extension to two-dimensional problems

The above derivation for solving one-dimensional

kinematic overland flow problems can be extended by
the method of fractional steps [25,26,30] to two-dimen-

sional cases without difficulty. The governing equation

for the two-dimensional kinematic overland flow can

be represented as

oh
ot

þ axbh
b�1 oh

ox
þ aybh

b�1 oh
oy

¼ rðx; y; tÞ ð21Þ

where, using Manning�s equation, ax ¼ S1=2
0x =N and

ay ¼ S1=2
0y =N in which N is the Manning�s roughness coef-

ficient; S0x and S0y are the bed slopes in the x and y

directions, respectively. Using the method of fractional
steps, Eq. (21) can be approximated with a series of

one-dimensional kinematic overland flow equations as

oh
ot

þ axbh
b�1 oh

ox
¼ rðx; y; tÞ

2
ð22Þ

and

oh
ot

þ aybh
b�1 oh

oy
¼ rðx; y; tÞ

2
ð23Þ

Eqs. (22) and (23) can each be solved by the charac-

teristics method integrated with the cubic-spline interpo-

lation on the basis of one dimension shown in Eqs. (6),
(7) and (15).
5. Examination of endpoint constraints

In this section, a sloping plane with length of 900 m

and slope of 0.02 subject to a steady uniform rainfall
rate r = 30 cm/h with duration of 3000 s is applied to

examine the effects of different endpoint constraints on

use of the cubic-spline interpolation for solving the kine-

matic overland flow. The initial and the upstream

boundary conditions, respectively, are taken as q =

h = 0 at t = 0 for all x; and q = h = 0 at x = 0 for all t.
The grid space Dx = 100 m, 150 m, and 180 m are

respectively used in this simulation. Tables 1 and 2 dis-

play the simulated results from different endpoint con-

straints in terms of peak discharge and root mean

square error of discharge at x = 900 m with time step

Dt = 80 s, and Manning�s roughness coefficient N =

0.02. One can observe from Tables 1 and 2 that the more

accurate simulated results are obtained by use of small
grid space. The natural constraint and the first deriva-

tive constraint with first-order finite difference approxi-

mation induce large numerical diffusion and have

worse simulated results than the other constraints. This

is due to the fact that these two constraints approach the

end cubics to linear ones at their extremities. The not-a-

knot constraint produces better simulated results than

the quadratic constraint. The computational results of
the first and second derivative constraints are related

to the derivative approximations, especially for the use

of lower-order finite difference approximation. The bet-

ter simulated results, competitive to those from the not-

a-knot constraint, are obtained by the application of

higher-order finite difference approximation to the first

and second constraints. Thus, as far as the accuracy

and simplicity are concerned, the not-a-knot constraint
seems to be a better choice. In the following section,

only the not-a-knot constraint is employed in the

CSMOC scheme.
6. Demonstration and evaluation

6.1. One-dimensional examples

Two hypothetical examples are used to examine the

CSMOC scheme for solving the one-dimensional kine-

matic overland flow as compared with the well-known
Preissmann scheme. The Preissmann formulation of

the continuity equation for the overland flow shown in

(1) can be expressed as

h hni�1 � hn�1
i�1

� �
þ ð1� hÞ hni � hn�1

i

� �
Dt

þ
/ qn�1

i � qn�1
i�1

� �
þ ð1� /Þ qni � qni�1

� �
Dx

¼ r ð24Þ

where / and h are a time position weight and a longitu-

dinal space weight, respectively. / = 0, / = 0.5, and

/ = 1 respectively result in explicit, centred, and implicit

schemes. Brakensiek [2] showed that the latter two

schemes were more stable than the explicit one. Holden



Table 1

Peak discharge (m2/s) at x = 900 m for various endpoint constraints

(the exact peak discharge is 0.075 m2/s)

Constraints Grid size

Dx = 100 m Dx = 150 m Dx = 180 m

Natural 0.0734 0.0722 0.0715

Quadratic 0.0747 0.0736 0.0730

Not-a-knot 0.0750 0.0749 0.0748

First derivative

1st Order 0.0733 0.0720 0.0713

2nd Order 0.0742 0.0735 0.0729

3rd Order 0.0750 0.0748 0.0746

4th Order 0.0750 0.0750 0.0748

5th Order 0.0750 0.0749 0.0749

Second derivative

1st Order 0.0737 0.0726 0.0720

2nd Order 0.0746 0.0743 0.0740

3rd Order 0.0750 0.0749 0.0747

4th Order 0.0750 0.0750 0.0749

Table 2

Root mean square error of discharge (m2/s) at x = 900 m for various

endpoint constraints

Constraints Grid size

Dx = 100 m Dx = 150 m Dx = 180 m

Natural 0.000879 (1.17%)a 0.00155 (2.06%) 0.00195 (2.60%)

Quadratic 0.000761 (1.01%) 0.00134 (1.78%) 0.00169 (2.25%)

Not-a-knot 0.000640 (0.85%) 0.00101 (1.34%) 0.00133 (1.77%)

First derivative

1st Order 0.000953 (1.27%) 0.00167 (2.22%) 0.00211 (2.81%)

2nd Order 0.000761 (1.01%) 0.00139 (1.85%) 0.00175 (2.33%)

3rd Order 0.000645 (0.86%) 0.00104 (1.38%) 0.00136 (1.81%)

4th Order 0.000639 (0.85%) 0.00100 (1.33%) 0.00133 (1.77%)

5th Order 0.000644 (0.86%) 0.00103 (1.37%) 0.00133 (1.77%)

Second derivative

1st Order 0.000799 (1.06%) 0.00137 (1.82%) 0.00173 (2.31%)

2nd Order 0.000646 (0.86%) 0.00107 (1.42%) 0.00136 (1.81%)

3rd Order 0.000638 (0.85%) 0.00103 (1.37%) 0.00132 (1.76%)

4th Order 0.000641 (0.85%) 0.00102 (1.36%) 0.00129 (1.72%)

a The percentage represents the ratio between the exact peak dis-

charge (0.075 m2/s) at x = 900 m and the root mean square error of

computed discharge from various endpoint constraints.
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and Stephenson [10] further pointed out that a central-

difference formulation should be used to prevent numer-

ical diffusion for solving the kinematic wave equations.

In addition, Weinmann and Laurenson [29] showed that

h must lie between 0 and 0.5 for a valid solution when
the temporal derivative is centred, i.e. / = 0.5. Thus,

in this study, the Preissmann scheme with / = 0.5,

h = 0 and / = 0.5, h = 0.5 are respectively used for the

kinematic overland flow computations.
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Fig. 4. The simulated results of water depth at 500 m and 1000 m downstream
The first example is the overland flow on a sloping

plane with length of 1000 m and slope of 0.01 subject

to a steady uniform excess rainfall rate r = 30 cm/h with

duration of 1600 s. The following parameters are used in

the numerical simulation: grid space Dx = 50 m, time

step Dt = 80 s, and Manning�s roughness coefficient
N = 0.02. The initial and the upstream boundary condi-
00 4000 5000 6000

Preissmann
Preissmann
CSMOC
exact
LIMOC

0.50, φ=θ
0.50.5, φ=θ

x = 1000 m
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from the upstream boundary for the case of steady excess rainfall rate.



Table 3

Root mean square error of water depth at x = 500 m and x = 1000 m

for various schemes

Schemes Positions

x = 500 m x = 1000 m

Preissmann h = 0, / = 0.5 0.00100 0.00105

Preissmann h = 0.5, / = 0.5 0.00035 0.00047

CSMOC 0.00018 0.00017

LIMOC 0.00059 0.00050
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tions, respectively, are taken as q = h = 0 at t = 0 for all

x; and q = h = 0 at x = 0 for all t. The analytical solution

[20] and the simulated results in terms of the water depth

with respect to time at position 500 m and 1000 m down-

stream from the upstream boundary by the CSMOC

scheme, the LIMOC scheme (the characteristics method
with linear interpolation), and the Preissmann scheme

are shown in Fig. 4. One can clearly see that the simu-

lated results by the CSMOC scheme almost agree with

the analytical solutions, whereas the computational re-

sults by the Preissmann scheme and the LIMOC scheme

have some deviations from the exact solutions. The Pre-

issmann scheme with / = 0.5, h = 0.5 produces some

degree of numerical oscillation, especially for the estima-
tion of water depth at peak discharge of outflow. The

Preissmann scheme using / = 0.5, h = 0 results in the

attenuation of peak discharge of outflow and the overes-

timation of the discharge in the recession process of

overland flow. Thus, for values of h between 0 and

0.5, various degrees of numerical diffusion or numerical

oscillation will be introduced by the Preissmann scheme.

The root mean square error (RMSE) of water depth at
position 500 m and 1000 m downstream from the up-

stream boundary by various schemes used for compari-

son herein is shown in Table 3.

The case of unsteady uniform excess rainfall is em-

ployed for the further examination of the kinematic

overland flow computation by the use of the CSMOC

scheme. The unsteady uniform excess rainfall lasts for

4500 s. The excess rainfall rate is r = 10 cm/h from the
beginning to 1500 s and from 3000 s to 4500 s. A triple

excess rainfall rate happens between 1500 s and 3000 s.
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Fig. 5. The simulated results of water depth at 1000 m downstream from
The corresponding surface characteristics of sloping

plane, such as slope, length, and Manning�s roughness

coefficient, are the same as those used in the first exam-

ple. In addition, the initial and the boundary conditions
applied are identical to the first example. With grid space

of 100 m and time step of 150 s, the simulated water

depth with respect to time at position 1000 m down-

stream form the upstream boundary by the analytical

solution, the Preissmann scheme, the CSMOC scheme,

and the LIMOC scheme are shown in Fig. 5. Again a

numerical oscillation appears in the Preissmann scheme

with / = 0.5, h = 0.5, and the numerical dissipation re-
sults from the LIMOC scheme and the Preissmann

scheme with / = 0.5, h = 0. The simulated result from

the CSMOC scheme is in good agreement with the ana-

lytical solution. The RMSE of water depth at position

1000 m downstream from the upstream boundary by

the CSMOC scheme, the LIMOC scheme, and the Preiss-

mann scheme with / = 0.5, h = 0.5 and / = 0.5, h = 0 are

0.0025, 0.00379, 0.00377 and 0.00384, respectively.
From the simulated results of above two hypothetical

examples, one could conclude that the CSMOC scheme
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the upstream boundary for the case of unsteady excess rainfall rate.
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Fig. 6. Hydrograph of discharge of two-dimensional overland flow using characteristics method with cubic-spline interpolation.
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can accurately compute the one-dimensional kinematic
overland flow and seems to be superior to the LIMOC

scheme and the well-known Preissmann scheme.

6.2. Two-dimensional example

A sloping plane of 500 m · 400 m is subject to an

unsteady uniform excess rainfall rate with duration

of 200 min. The rainfall pattern is given by a trian-
gular hyetograph with a peak rainfall of 2.88 cm/h,

i.e., r(t = 0 min) = r(t = 200 min) = 0 cm/h and r(t =

100 min) = 2.88 cm/h. The slopes of the plane in the x

and y directions are

S0x ¼ 0:02þ 0:0000149x ð25Þ
and

S0y ¼ 0:05þ 0:0000116y ð26Þ
In addition, Manning�s roughness coefficient is

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:1� 0:0000168xÞ2 þ ð0:1� 0:0000168yÞ2

q
ð27Þ

A grid size of 25 m · 25 m and a time step of 80 s are

used in the numerical simulation. The initial condition

is taken as q = h = 0 at t = 0 for all x and y. The bound-

ary conditions are q = h = 0 at x = 0 and y = 0 for all t.

The simulated results in terms of discharge with re-
spect to time at the outlet node of coordinates of

(500 m,400 m) by the CSMOC scheme, and the pro-

posed analytical solution are shown in Fig. 6. The pro-

posed analytical solution was obtained by the Galerkin

finite element method with very fine time step and grid

size [12]. One can clearly see that the simulated results

are identical to the analytical solutions.
7. Conclusions

Many environmental and ecological studies have ana-

lyzed overland flow by use of the approximation of kine-

matic wave theory due to its simplicity and satisfactory

accuracy compared to the Saint-Venant hydrodynamic

equations. A numerical model is a practical approach

for the kinematic overland flow computations in most

realistic problems. Some degree of numerical diffusion
and oscillation is induced by the finite difference method

and the finite element method which are popular numer-

ical schemes used for the overland flow simulations. In

this study, the specified-time-interval characteristics

method integrated with the cubic-spline interpolation

technique (CSMOC scheme) is applied to one-dimen-

sional and two-dimensional kinematic overland flow

computations. The characteristic trajectory is allowed
to intersect on the space line and time line. The corre-

sponding values at the foot of the trajectory can be

approximated in terms of the neighboring grid points.

The effects of different endpoint constraints, including

the natural constraint, the quadratic constraint, the

not-a-knot constraint, the first derivative constraint,

and the second derivative constraint, on use of cubic-

spline interpolation technique are examined. The results
show that as far as accuracy and simplicity are con-

cerned, the not-a-knot constraint could be a better

choice. The examination of two one-dimensional hypo-

thetical examples shows that the CSMOC scheme is

competitively accurate with the well-known Preissmann

scheme for the kinematic wave modeling of overland

flow. The numerical dissipation and numerical oscilla-

tion induced by the Preissmann scheme will not appear
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in the CSMOC scheme. In addition, with the application

of the fractional-step method, the CSMOC scheme can

accurately simulate the two-dimensional kinematic over-

land flow.
Appendix A. The time line cubic-spline interpolation

If the characteristics curve intersects the time line at

boundaries, the cubic-spline interpolation can be ap-

plied to the time line to approximate hl as follows:

hl ¼ En�m̂l�1½ð1� fÞDt	3 þ F n�m̂l�1½ð1� fÞDt	2

þ Gn�m̂l�1½ð1� fÞDt	 þ Hn�m̂l�1 ðA:1Þ

with

f ¼ ði� 1ÞDx
ðhÞplDt

� m̂l ðA:2Þ

where m̂l ¼ INTbði� 1ÞDx=ðhÞplDtc. The coefficients Ek,
Fk, Gk, and Hk shown in Eq. (A.1) can be expressed as

Ek ¼ Rkþ1 � Rk

6Dt
ðA:3Þ

F k ¼ Rk

2
ðA:4Þ

Gk ¼ hkþ1
1 � hk1

Dt
� 2DtRk þ DtRkþ1

6
ðA:5Þ

Hk ¼ hk1 ðA:6Þ
where k = 1,2, . . .,NT � 1 in which 1 denotes initial time

level and NT represents total time level shown in Fig. 3.
Rk, second derivatives for h with respect to temporal

coordinate at upstream boundary (grid point i = 1)

and time level k, could be expressed as following relation

Rk�1 þ 2Rk þ Rkþ1 ¼ 6

Dt2
/k�1

1 � 2/k
1 þ /kþ1

1

� �
k ¼ 2; 3; . . . ;NT � 1 ðA:7Þ

According to the natural cubic-spline interpolation, two
additional constraints on second derivative with respect

to time at initial time level and total time level, i.e. R1

and RNT, could be represented as
R1 ¼ 0 ðA:8Þ

RNT ¼ 0 ðA:9Þ
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