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Abstract 

High-temperature CO2 captures using powder and granule is investigated using thermogravimetric analyzer (TGA) 
and fixed-bed reactor (FBR). The CO2 sorbent, Ca-Al-CO3 powder was prepared using co-precipitation method of 
Ca+2, Al+3 and CO3

2- under alkaline conditions. The granule was fabricated by mixing Ca-Al-CO3 powder, H2O and 
w/ or w/o TiO2 binder, followed by granulation and calcinations at 600°C. In TGA experiment, high CO2 capacity of 
45~50 wt% after 100 cycles can be achieved with powder at 750°C, while it was dramatically decayed to 40-50% 
only after 2-5 cycles in FBR. Alternatively, using Ca/Ti granule exhibited recovery of 80-90% for 15 cycles in TGA 
and 70-80% for 10 cycles in FBR, respectively. This outcome indicates that calcium aluminates granule with TiO2 
binder is competitive CO2 sorbent. 
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1. Introduction 

Capturing of carbon dioxide at high temperature condition has a direct advantage for abating CO2 from 
concentrated sources. In terms of material stability and thermodynamic consideration, adsorption of CO2 
by solid sorbent is a specific method and environmental compatibility [1]. Among several common 
adsorbing materials, in terms of oxides [2], CaO-based sorbent exhibits high CO2 adsorption capacity with 
average value of 50 wt% at 600-850°C. The stability of CO2 sorption has been tested for repeat cycles in 
TGA, for example using powders of nano-sized CaO [3], CaTiO3/nano-CaO [4], CaO-SiO2 [5] and Ca-Al-
Oxide [6]; pellet of limestone/kaolin [7], CaO/aluminate cement [8] and extruded particle of 
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Ca(OH)2/cement [9] etc. In these studies, using pure CaO as CO2 adsorbent, avoiding causing micropore 
blocking and loss of activity [10] by CaCO3 is a main target. Therefore, it is concluded that modification 
of CaO-based sorbent receives a significant improvement in long-term stability and extended CO2 
sorption capability.  

Utilization of layered double hydroxides (LDHs) with hydrotalcite-like structure as a template for 
synthesizing CO2 sorbent has showed a vital breakthrough in multi-cycle performance. High-temperature 
CO2 adsorption capability could be notably improved via replacement of Mg+2 by Ca+2 in Ca-Al-LDHs, 
which accomplished at least 90% of CaO conversion after 100 cycles [11]. The stability is maintained 
mainly by forming of aluminum oxides that act as the separating layer over CaO aggregates in calcined 
Ca-Al-Oxide [12]. However, sintering and mechanical strength are crucial considerations for using of 
them in a fixed-bed reactor. The sintering is still possible existed for spent sorbent, ascribing to larger 
molar volume of CaCO3 covered on neighboring Ca-Al-Oxide kernels, resulting to de-activate sorbent. 
Due to poor heat transfer developed within nascent CaO structure [13], the heat expansion create 
asymmetric stress difference in grains, leading to crushed particle. Thus Ca/Al oxides boundary should be 
isolated and/or bonding with suitable inorganic binder as supported material.  

TiO2 is a commercial available material with hydrophilic attraction force with Ca+2 and Al+3 under 
alkaline condition, emerging an economically competitive potential for as a binder of Ca/Al LDHs. In 
addition, a heat-resistance compound of CaTiO3 can be formed under high temperature calcinations, 
helping to acquire a satisfied CO2 capture activity. In this work, the solid sorbents of Ca-Al-CO3 with 
powder and granule form were prepared using coprecipitation method. The pore property, crystalline and 
morphology of these materials were examined by BET, XRD and SEM. A fixed-bed reactor was built up 
for testing CO2 capture performance at 600-850°C, using TGA and fixed-bed adsorption of CO2 on 
sorbents made of Ca/Al granule with TiO2 binder. Multi-cycling test method was applied for inspection of 
CO2 sorption stability in both reactors. 
 

2. Experimental 

2.1. Synthesis of sorbents 

The CaO based sorbents were prepared by precipitation of inorganic ions of Ca+2, Al+3 and, CO3
2-

under alkaline conditions. Raw materials of Ca(OAc)2·H2O, Al(NO3)3·9H2O, NaOH and Na2CO3 were 
purchased from Merck Co. TiO2 powder (Degussa P25) is used as a binder for forming granule. 

Fig. 1 depicts the synthesis procedure of Ca-Al-CO3 powder and granule. In this method, cationic 
solution of Ca+2/Al+3, with molar ratio of 7:1 of Ca(OAc)2 and Al(NO3)3, was prepared by dissolution of 
both chemicals in Di-H2O. The precipitate of Ca/Al carbonates was formed after addition of 0.16 mol 
NaOH with 0.01 mol Na2CO3 in stirred Ca+2/Al+3 solutions and followed by filtration to obtain layered 
double hydroxides (LDHs) powder. These LDHs were further calcined at 600°C for producing Ca-Al-
CO3 powder, which is used as raw material for granulation. The granule can be fabricated by either 
simply adding of H2O into Ca-Al-CO3 powder or with extra TiO2 binder. In the latter case, granule was 
made of different weight ratio x of Ca-Al-CO3 (Ca) powder and TiO2 (Ti) binder, with x from 1 to 6. The 
obtained cylindrical granule with an average size of 3 mm (diameter) by 5 mm (length) that was shaped 
by appropriate apparatus. The Ca/Ti granules were calcined at 600~850°C for identifying the specific 
patterns. The characteristics of surface area, morphology/particle size and crystalline of prepared sample 
were determined by BET (Quantchrome), SEM (Hitachi) and PXRD (Bruker), respectively. 
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Fig.1. Flow chart of preparing Ca-Al-CO3 powder, granule and Ca/Ti granule. 
 

 
 
2.2 CO2 sorption experiment 

Thermogravimetric analysis is used to investigate CO2 capture activity over sorbents at the same 
temperature of 750°C for 1 hour adsorption at 100% CO2 (50 mL/min) and 0.5 hour desorption at 100% 
N2 (50 mL/min) conditions, respectively. The capture capacity (wt%, g CO2/g sorbent) in TGA was 
recorded by balance and expressed in terms of sorption weight with respect to the sorbent weight. 

Referring to Fig.2, illustrating of a fixed-bed reactor (FBR) for CO2 adsorption experiment operated 
at 600-850°C and ambient pressure. The testing gas stream is 40% CO2 (N2 balance, 2L/min), which is 
fed to a 1-inch quartz column packed with the adsorbent. After CO2 uptake on CaO, the passing gas was 
cooling down together with CO2 volume monitored by a Non-dispersive Infrared (NDIR) detector. The 
average integral method on the values of CO2 volume obtained at each cycles was applied for the 
estimation of absorption capacity [14]. In this approximation, CO2 sorption volume was calculated by 
integrating the volume difference of CO2 ( VCO2) with time, which was based on 90% breakthrough over 
the outlet of column. CO2 capacity (g) was estimated by molar volume at 25°C via an ideal gas equation. 
The CO2 specific absorption W(t) as a function of cycle was then obtained according to the formula: 
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Fig.2. Schematic of a fixed-bed reactor (FBR) for CO2 adsorption experiment. 
 

3. Results and discussion 

3.1 Characterization of sorbents 

Microscopic characters of TiO2 and calcined samples were shown in Table 1. The binder, TiO2 has 
the smallest value of particle size, the next of Ca-Al-CO3 powder and the last of two granules. BET data 
indicated that both of powder and granule exhibited mesoporous character with a pore size value of 
14~24 nm and the surface area was around 17~23 m2/g [15]. Extruded Ca-Al-CO3 granule shows a 
slightly smaller surface area than powder. However, pore volume and pore size of Ca/Ti granule were 
enhanced by incroporating of TiO2. The hydroxyl group on the surface of TiO2 provides a linking force 
between Ca+2/Al+3 ions and OH-, which promotes a separated layer of TiO2 formed on surround of Ca-Al-
CO3 aggregates. The carbonation reaction of CO2 and TiO2 is unavailable in 750°C; therefore, with the 
advantage using TiO2 as binder, the higher surface area of granule than powder is beneficial for 
increasing adsorption performance of sorbent.  

 
 

  
Fig. 3 illustrated the SEM image of calcined Ca/Ti granule with a smooth appearance and compacted 

formation. At the same experimental conditions, granule made from the absent of TiO2 displayed a rapid 
decay on CO2 multi-sorption performance in FBR. Actually, CO2 sorption using Ca-Al-CO3 powder has 

Sorbents Particle size Surface Area, 
m2/g 

Pore Volume, 
cc/g 

Pore Diameter, 
nm 

TiO2 
powder 40 nm 63.8 0.25 3.0 

Ca-Al-CO3 
powder  17.3 0.06 14.6 

Ca-Al-CO3 
granule 

3 mm× 5 mm 
(diameter×length) 12.9 0.04 23.9 

Granule with x= 
Ca/Ti; x=4 

3 mm× 5 mm 
(diameter×length) 23.0 0.06~0.16 15.0 

Table 1.  Microscopic characteristics of sorbents 
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an obvious drawback, as quickly breakthrough appearance in FBR. In addition, Ca-Al-CO3 granule 
became easily fragile material after repeated high-temperature swimming adsorption process. The 
mechanical strength needs to be improved by using TiO2 as support. At the same time, this figure 
indicated a clear co-existence of Ca-Al-CO3 and TiO2 in the magnification part. The morphology showed 
Ca-Al-CO3 was entirely separated by surrounded TiO2 that was suspected to as an effective isolator of in 
Ca-Al-O LDO reactor.    

As shown in this figure, XRD patterns demonstrated that specific absorption peaks were observed in 
calcined Ca/Ti granule, including of anatase (A) and rutile phase (R) of TiO2, mainly of CaO and CaCO3 
for calcined Ca-Al-CO3, and CaTiO3 for granule. Wherein, a commercial product of TiO2 (Degussa P25) 
has 80:20 (w/w) of A/R, which is accordance with observed patterns. The hydrotalcite-like structure is 
merely existed at larger than 400°C calcinations [10], thus resulting in the structure change from LDH-
like formation of nascent Ca/Al carbonates to calcined Ca-Al-CO3 with layered double oxide (LDO) 
structure at 600°C-calcination. Besides, by using TiO2 as binder, calcination of TiO2/CaCO3 to form 
CaTiO3/CaO composition was found in the XRD patterns of granule.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2 Investigation of CO2 sorption capacity 

Multi-cycle stability was tested using prepared sorbents in TGA. As shown in Fig.4(A), the result 
showed that calcium acetate derived Ca-Al-CO3 powder exhibited high CO2 capacity of about 54 wt% at 
the first cycle. This material exhibited an improved performance with at least 90% recovery of initial 
capacity, as shown of approximately 50wt% capacity after 100 cycles (9,000 min). There is a 
conservative estimation that CO2 sorption weight is maintained as 50 times of used sorbent weight after 
150 hours.  

Fig. 3. Left: SEM imagines of Ca/Ti granule. Right: XRD patterns of TiO2, calcined Ca-Al-CO3 powder 
and calcium aluminates granules with molar ratio of Ca:Al of 1:1, 3:1 and 6:1. 
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The mixing of Ca-Al-CO3 (Ca) and TiO2 (Ti) powder is feasible to prepare granule as CO2 sorbents. 
In various ratio of x=Ca/Ti, CaO content of sorbent is decreased with increased of TiO2. Thus as in 
Fig.4(B), the initial capture weight of these granules was raised with higher Ca content. However, CO2 
sorption weight be became gradual saturation at x=4-6. When x=4, this sorbent has 90% recovery of 
initial CO2 capture weight after 15 cycles, which revealed the better performance than others. These 
outcomes obviously display the good performance of Ca-Al-CO3 based oxides as CO2 solid sorbent at 
high temperature condition. 
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Fig. 4. Testing of CO2 sorption stability in TGA using (A) Ca-Al-CO3 powder after 100 cycles and (B) Ca/Ti 
granules after 15 cycles. 
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In a fixed-bed reactor, CO2 sorption stability tested by using Ca-Al-CO3 powder and Ca/Ti granule 
(x=4) was shown in Fig. 5. The sorption weight was calculated by transform of adsorbing volume into 
molar volume of ideal gas at 25°C and 1 bar condition. CO2 sorption performance was estimated by ratio 
of weight change at nth cycles (Wn) by the first cycle (W1) using Ca-Al-CO3 based sorbents. It was found 
that a fast breakthrough appeared in a short period, emerging CO2 sorption recovery using pure Ca-Al-
CO3 (powder and granule) was dramatically decayed to 40-50% only after 2-5 cycles and further 
deteriorated to 33% after 10 cycles. Alternatively, the stability was obviously improved to 80% using 
granule after 10 cycles. It is believed that TiO2 provides a binding force to form a matrix of (Ca-Al-CO3)-
Ti-O, effectively separating the Ca-Al-CO3 segment from local sintering effect on neighboring sorbents in 
reactor. Therefore, one of the significant drawbacks such as fast breakthrough can be greatly retarded via 
incorporating TiO2 into Ca-Al-CO3. These promising results suggest that granule derived from Ca-Al-
CO3 absorbent may provide outstanding performance in carbonation calcination processes for CO2 
capture reactor. According to the performance of CO2 sorption experiment, granule sorbent displays more 
advantages than powder in FBR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4. Conclusions 

In this study, Ca-Al-CO3 has been used as high-temperature CO2 sorbent, which is fabricated as 
powder and Ca/Ti granule. In TGA experiment, relatively high CO2 capacity of approximately 45~50 
wt% after 100 cycles can be achieved with Ca-Al-CO3 powder; however, CO2 breakthrough tendency 
becomes significant, due possibly to the sintering of powder, and results in poor performance for Ca-Al-
CO3 in FBR. The reaction of CO2 with sorbent is better conducted on granule than over powder, 
especially at fixed-bed reactor. The results showed that sorption-desorption cyclic test using granule 
worked successfully at 600-850°C, with 80-90% recovery of initial CO2 capture weight after 15 cycles in 
TGA and 70-80% of that after 10 cycles in FBR, respectively. This outcome indicates that CO2 sorbent 
developed from calcium aluminates granule with TiO2 binder is competitive material for controlling CO2 
emission. 

Fig. 5. CO2 sorption stability using Ca-Al-CO3 powder, granule and Ca/Ti granule after 10 cycles tested in FBR. 
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