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In machine learning, both the properly used networks and the selected features are 

important factors which should be considered carefully. These two factors will influence 
the result, whether for better or worse. In bioinformatics, the amount of features may be 
very large to make machine learning possible. In this study we introduce the idea of 
feature selection in the problem of bioinformatics. We use neural networks to complete 
our task where each input node is associated with a gate. At the beginning of the 
training, all gates are almost closed, and, at this time, no features are allowed to enter the 
network. During the training phase, gates are either opened or closed, depending on the 
requirements. After the selection training phase has completed, gates corresponding to 
the helpful features are completely opened while gates corresponding to the useless 
features are closed more tightly. Some gates may be partially open, depending on the 
importance of the corresponding features. So, the network can not only select features in 
an online manner during learning, but it also does some feature extraction. We combine 
feature selection with our novel hierarchical machine learning architecture and apply it 
to multi-class protein fold classification. At the first level the network classifies the data 
into four major folds: all alpha, all beta, alpha + beta and alpha/beta. In the next level, 
we have another set of networks which further classifies the data into twenty-seven 
folds. This approach helps achieve the following. The gating network is found to reduce 
the number of features drastically. It is interesting to observe that, for the first level using 
just 50 features selected by the gating network, we can get a test accuracy comparable to 
that using 125 features in neural classifiers. The process also helps us get a better insight 
into the folding process. For example, tracking the evolution of different gates, we can 
find which characteristics (features) of the data are more important for the folding 
process. Eventually, it reduces the computation time. The use of the hierarchical 
architecture helps us get a better performance also. 
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1. INTRODUCTION 
 

For the past few decades, neural networks (NNs) had been used as an intelligent 
machine learning method in many fields such as pattern recognition, speech and 
bioinformatics. There have been several attempts to use NNs for the prediction of protein 
folds.  

Dubchak et al. [1] pointed out that when they requested a broad structural classi- 
fication of protein, four classes, all alpha, all beta, (alpha + beta) and (alpha/beta), it was 
easy to get more than 70% prediction accuracy using a simpler feature vector to represent 
a protein sequence [2-4]. However, the problem become more and more difficult as 
demand for more classes increased.  

Dubchak et al. [5] used a multi-layer perceptron network for predicting protein folds 
using global description of the chain of amino acids to represent proteins. They used the 
different properties of amino acids as features. For example, they used the relative 
hydrophobicity of amino acids and also used information about the predicted secondary 
structure and the predicted solvent accessibility. With this method, they divided the 
amino acids into the following: three groups based on the hydrophobicity, three groups 
based on secondary structure and four groups based on the solvent accessibility. Now, a 
protein sequence is described based on three global descriptors: Composition (C), 
Transition (T) and Distribution (D). These descriptors essentially describe the frequencies 
with which the properties change along the sequence and their distribution on the chain. 
In reference [5], the authors used various combinations of these features and trained 
networks to find a good set of features.  

Dubchak et al. [1] proposed a neural network-based scheme for classifying protein 
folds into 27 classes. This method, as the one in reference [5], used global descriptors of 
the primary sequence. These descriptors were also computed from the physical, chemical 
and structural properties of the constituent amino acids.  

In reference [1], the authors used proteins from the PDB where two proteins had no 
more than 35% of sequence identity. Here, in addition to the three amino acid attributes 
described earlier, the authors used three more attributes: normalized van der Walls 
volume, polarity and polarizability. The same set of descriptors were used for all 
attributes resulting in a parameter vector of 21 components for each attribute. They also 
used the percent composition of amino acids as feature vectors. Let there be M folds in 
the data set. For each fold, the authors divided the data set into two groups, one 
containing points from the fold and the other containing the rest. So, there were M such 
partitions. For each fold an NN is trained. This procedure was repeated seven times for 
each fold. Each time only one set of features computed from a particular attribute was 
used and this procedure was repeated seven times for each fold. Then, a voting 
mechanism was used to decide the fold of a given protein. All these investigations clearly 
suggest that features are very important for a better prediction of protein folds.  

Researchers in bioinformatics have acknowledged the importance of feature 
analysis. Some systematic efforts to find the best set of features have been done. But 
mostly, the authors have used enumeration techniques. Feature analysis is more 
important for bioinformatics applications for two reasons: the class structure is highly 
complex and the data usually has very large dimensions. Most of the feature analysis 
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techniques available in the pattern recognition literature are off-line in nature. It is known 
that every feature,which characterizes a data point may not have the same impact with 
regard to its classification, i.e., some features may be redundant and some may have 
derogatory influence on the classification task. Thus, selection of a proper subset of 
features from those available is important for the design of efficient classifiers. There are 
methods for selecting good features based on feature ranking, etc., [6-9]. 

The goodness of a feature depends on the problem being solved and on the tools 
being used to solve the problem [6]. Therefore, feature selection, can select the most 
appropriate features for the task and result in a good classifier simultaneously. In 
referecne [10], Pal et al. developed an integrated feature selection and classification 
scheme based on the multilayer perceptron architecture. We would like to use the same 
concept here to reduce the dimensionality of the data. In addition to this, we use a novel 
hierarchical architecture for achieving a better classification performance [5]. 

2. ONLINE FEATURE SELECTION THROUGH GATING 

In a standard multilayer perceptron network, the effect of some features (inputs) can 
be eliminated by forbidding them to enter the network, i.e., by equipping each input node 
(hence each feature) with a gate and closing the gate. For good features, the associated 
gates can be completely opened. On the other hand, if a feature is partially important, 
then, the corresponding gate should be partially opened. Pal and Chintalapudi [10] 
suggested a mechanism for realizing such a gate so that “partially useful” features are 
identified and attenuated according to their relative usefulness. In order to model the 
gates, we consider an attenuation function for each feature such that, for a good feature, 
the function produces a value of 1 or nearly 1, while for a bad feature, the value should 
be nearly 0. For a partially effective feature, the value should be intermediate in value. 
To model the gate, we multiply the input feature value by its gate function value and the 
modulated feature value is passed into the network. The gate functions attenuate the 
features before they propagate through the net, so we may call these gate functions 
attenuation functions. A simple way of identifying useful gate functions is to use 
sigmoidal functions with a tunable parameter, which can be learned by using training 
data. To complete the description of the method, we define the following in connection 
with a multi-layer perceptron network. 

Let Fi : R → [0, 1] be the gate or attenuation function associated with the ith input 
feature; Fi has an argument wi; Fi′(wi) is the derivative of the attenuation function at wi; µ 
is the learning rate of the attenuation parameter; i is the learning rate of the connection 
weights; xi is the ith input of an input vector; x′ is the attenuated value of x, i.e., x′ = xF(w); 

0
ijw  is the weight connecting the jth node of the first hidden layer to the ith node of the  

input layer; and 1
jδ  is the error term for the j-th node of the first hidden layer. It can be 

easily shown that, except for 0 ,ijw  the update rules for all weights remain the same as that 
for an ordinary MLP. Assuming that the first hidden layer has q nodes the update rules 
for 0

ijw  and wi are  

0 0 1
, , ( ),ji new ji old i j iw w x F wν δ= −                                          (1) 
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Although for the gate function, several choices are possible, here we use the sigmoidal 
function F(w) = 1.0/(1 + e−w). The p gate parameters are initialized so that when the 
training starts, F(w) is practically zero for all gates, i.e., no feature is allowed to enter the 
network. As the back-propagation learning proceeds, gates for the features that can 
reduce the error faster are opened. Note that, the learning of the gate function continues 
along with other weights of the network. At the end of training, the important features 
can be picked up based on the values of the attenuation function. 

3. LEARNING MACHINES 

In our experiment, we use a novel hierarchical learning architecture which has been 
proposed by us [11]. The concept of the hierarchical architecture is neither the same as 
the cascade network nor the divide-and-conquer network. The constituents of the 
hierarchical architecture are all independent networks.  

A hierarchical architecture is suitable for data sets that can be grouped into a smaller 
number of classes, where each class can be further divided into a set of other classes. The 
problem handled here, the multi-classification of protein structure, has this characteristic. 
Under each of the main structures, all alpha, all beta, alpha/beta and alpha + beta, there 
are several folds. Fig. 1 illustrates the concept of hierarchical learning architecture. 
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Fig. 1. Concept of hierarchical learning architecture. In the figure, the black solid arrows between 
levels 1 and 2 are soft switchs used to switch the classified data of level 1 to corresponding 
classifiers of level 2. 

 
Before training the hierarchical classifier, data should be passed through the feature 

selection network to find the important features. Fig. 2 shows the integrated view of the 
whole system. There are major components, the gating network and the hierarchical 
classifier. First, the original data is used to train the gating network. At the end of the  
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Fig. 2. Block diagram of overall learning system. In the architecture, features are gated by a gate 
before they are fed into classifiers. The gated data feed into levels 1 and 2 are the same data 
sets which have been gated. By using gated data, the classifiers can do its mission, four 
outputs for level 1 and 27 for level 2. 

 
training, we look at the gate function values for each feature. If the gate function value is 
greater a threshold th, then we consider that feature important. In this way, from the 
initial set of p features, we get a reduced set of q important features. 

Now, this q-dimensional data set is used to train the hierarchical learning machine 
represented by Levels 1 and 2 in Fig. 1. This hierarchical machine is shown in Fig. 2. Let 
the training data be XTr = X1 ∪ X2 ∪ X3 ∪ X4, where Xi is the training data corresponding 
to group i. First, we train the Level 1 NN (the NN in Level 1, see Fig. 1) using X. The 
Level 1 NN divides the data into four groups. Note that the division of X made by the 
Level 1 NN may not exactly correspond to XTr = X1 ∪ X2 ∪ X3 ∪ X4. The Level 2 
networks are independently trained. The ith Level 2 NN is trained with Xi. Once the 
training of the second level networks is complete, the system is ready to be tested. A test 
data point is first passed through the gating network, which reduces its dimension to q. 
This q dimensional data point is now fed to the Level 1 NN which will classify the point 
to one of the four groups, say to group 3. Then, the training data point is fed to the 3rd 
network in the second level. It should be noted here that, for such an architecture, if the 
Level 1 NN makes any mistakes, the Level 2 network cannot recover the same. The 
proposed architecture is quite general and, hence, for both Levels 1 and 2, we can use 
any classification network In fact, we can use any non-neural classifier too. Although 
features are selected by using a feature-selection multilayer perceptron type network, we 
use the selected features for classification by using both MLP and RBF networks. 

4. DATA SET AND FEATURES 

For bioinformatics applications, feature extraction is a very important task which 
deserves discussion because the extracted features may have a strong influence on the 
accuracy. Table 1 summarizes the characteristics of the descriptors. For comparison, we 
used the same data sets as Dubchak and Ding’s prior work. The number of training 
proteins used in our experiments is 313. They can be divided into 4 groups with 27 folds.  
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Table 1. Features used in the experiments. 

 Descriptors Features 

Composition (C) 20 kinds of amino acids 20 

Predicted Secondary Structure (S) Alpha Beta Loop 21 

Hydrophobicity (H) Positive Neutral Negative 21 

Volume (V) Large Middle Small 21 

Polarity (P) Positive Neutral Negative 21 

Polarizability (Z) Strong Middle Weak 21 

Total 125 

 

Table 2. Numbers of patterns in the training and test sets. 

Fold Types Number of Training Patterns Number of Test Patterns 

All Alpha 55 61 

All Beta 109 117 

Alpha/Beta 115 145 

Alpha + Beta 34 62 

Total 313 385 

 
The number of proteins used in the test set is 385. Table 1 shows the number of input 
nodes of the neural networks. Table 2 depicts the distribution of training and test proteins 
in different groups. 

5. EXPERIMENTS AND RESULTS 

We have run the gating networks for several times and the results presented 
correspond to some typical outputs. We emphasize the fact that, depending on the 
initialization, two different sets of features may be picked by the gating net as the 
important items in two different runs. This is absolutely fine, as features are often highly 
correlated. Moreover, depending on the choice of threshold, the number of selected 
features may be different. Table 3 shows 15 of the most important features of a typical 
run of the gating network after 1000, 1500, and 4000 iterations. It is interesting to note 
that, after 1000 iterations, eight of the top-most 15 important features come from the 
group predicted by the secondary structure. Of these eight, one of the features, No. 27, 
disappears from the list of important features with further iterating. Probably, the gate 
corresponding to some other correlated feature opened faster.  

After 4000 iterations, of the 15 important features, nine come from the predicted 
secondary structure. This clearly tells that the local secondary structure, as expected, has 
a strong impact on the final folds. In this list of 15 important features, we have 
representation from polarity, polarizability, volume and hydrophobicity. In this 
investigation, we initialized the gating function with a value of 0.000124. 
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Table 3. Values of the gate functions for the most important 15 features after different 
numbers of iterations. 

Feature 
number 

Gating function 
values- after 

1000 iterations 

Feature 
number 

Gating function 
values- after 

1500 iterations 

Feature 
number 

Gating function 
values- after 

4000 iterations 

30 0.002657 82 0.002903 103 1.0 

81 0.002677 98 0.002995 22 1.0 

41 0.002774 79 0.00305 26 1.0 

40 0.002952 83 0.003197 28 1.0 

77 0.002964 92 0.003634 29 1.0 

103 0.00297 40 0.003697 30 1.0 

82 0.003042 81 0.004338 31 1.0 

92 0.003211 41 0.004585 33 1.0 

98 0.003256 103 0.007582 35 1.0 

27 0.0035 22 1.0 38 1.0 

31 0.004106 26 1.0 41 1.0 

22 0.008275 29 1.0 59 1.0 

26 1.0 30 1.0 75 1.0 

29 1.0 31 1.0 81 1.0 

35 1.0 35 1.0 83 1.0 

Table 4. Performance of ordinary MLP on different subsets of features. 

 C CS CSH CSHP CSHPV CSHPVZ 

Correct 
Classifications 

243 
(63.1%) 

308 
(80.0%) 

305 
(79.2%) 

301 
(78.2%) 

302 
(78.4%) 

309 
(80.3%) 

 
Table 4 depicts the classification performance at level 1 (into four groups) by the 

MLP network with different sets of features. Table 4 reveals that the use of more features 
are not necessarily good. It also says that the distribution predicted secondary structure 
and composition constitute a good set of features. This is also consistent with the results 
obtained from the gating network. 

Table 5 presents classification performance of the system with different feature sets 
when RBF nets are used as the basic classifier unit. The Level 1 performance shows that, 
with 67 features (50% reduction), the decrease in performance is only 1.26%, while with 
65% of the features, the test accuracy is reduced by only 0.76%. This clearly suggests 
that the gating network can do an excellent job in selecting important features. Let us 
consider the overall classification performance (with 27 folds) now. For this case, we get 
53% of the test accuracy with 67% of the features which is just 3% less than what we can 
achieve in taking all 125 featues into account. Comparing our results with that of 
Dubchak et al. [12], we find that All vs. All method with support vector machines they 
used can result in a test accuracy of 53.9%, while with the RBF networks, using only 
67% of the features, we can get 53% of the test accuracy. 
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Table 5. Performance of the hierarchical system using different feature gated sets. 

Number of features used 

125 80 67 50 
Feature number & 

hierarchical architecture 
No. % No. % No. % No. % 

Level 1 314 81.56 311 80.8 309 80.3 305 79.2 

Classifier #2 41 67.2 45 73.8 31 50.8 29 47.5 

Classifier #3 61 52.1 66 56.4 60 51.3 56 47.9 

Classifier #4 85 58.6 79 54.5 77 53.1 74 51.0 
Level 2 

Classifier #5 30 48.4 54 87.1 34 54.8 30 48.4 

Overall 217 56.36 204 53.0 202 52.5 189 49.1 

6. CONCLUSIONS 

In this paper, we integrated two novel ideas: an online feature selection technique 
and a hierarchical learning machine to treat the multi-class protein fold recognition 
problem. The results show that the proposed architecture is quite effective in both 
reducing the dimensionality of the data and enhancing the classification performance.The 
proposed methods are simpler than other machine learning methods, e.g. one-vs.-others 
method. Since the consideration of all possible subsets is not computatonally feasible, it 
is often impossible to find the best set of features. The proposed technique allows the 
processing of more futures from amino acid sequences, such as N-gram and spaced-N- 
gram. We have used these high-order features along with the features used in this paper 
in our experiemnts and have achieved higher accuracy than other exisitng methods. 
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