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ABSTRACT 

Cartesian product file (CPF) has been proposed as a good multi-attribute file 
structure. Although designing an optimal CPF for partial match queries (PMQs) has 
been proven to be NP-hard, some useful properties have been studied for PMQs to help 
the work. However, a good CPF for PMQs may not be beneficial for orthogonal range 
queries (ORQs). Therefore, in this paper, we intend to study properties that help the 
design of a good CPF for ORQs. We found that the problem of designing the optimal 
CPF for ORQs is related to the problem of finding a minimal-f N-tuple. We will also 
show some theories of minimal-f N-tuples and develop a method for generating a 
minimal-f N-tuple. Finally, we will present some properties of the optimal CPF for 
ORQs from the theories of minimal-f N-tuples. 

1. I N T R O D U C T I O N  

The need for efficient retrieval methods in large databases has in- 
creased recently. Files that store large amounts of data are often used in 
many applications. In such applications, the size of data is usually too large 
to be wholly stored in primary memory. In practice, files are usually 
divided into buckets and then stored in a disk. Therefore, the distribution 
of a file over multiple buckets directly influences the performance of 
retrieval. 
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A multi-attribute file (MAF) is a collection of records characterized by 
more than one attribute. An orthogonal range query (ORQ) is a query of 
the following form: retrieve all records satisfying (x~, x 2 . . . . .  XN), where x i 
is either a range [l~,ui] contained in the domain of the ith attribute, or is 
unspecified (denoted by *). For instance, in a two-attribute file system 
{a, b} × {1,2,3,4}, (*,[1,3]) denotes an ORQ which retrieves all records 
with the first attribute being either "a"  or "b" and the second attribute 
being in the range [1,3]. If l~=u i for all specified x~, then the ORQ 
reduces to a partial match query (PMQ). 

Since each time the disk is accessed, an entire bucket is brought into 
primary memory, we can simply measure the retrieval performance of a 
file structure by counting the average number of buckets (ANB) to be 
examined over all possible queries. Therefore, the optimal MAF system 
design problem can be stated as follows: given a set of multi-attribute 
records, and a fixed number of buckets, arrange the records into buckets 
such that the ANB to be examined over all possible queries will be as small 
as possible [3]. 

In prior research work, great progress has been achieved on designing 
optimal MAF systems for PMQs. Tang, Buehrer, and Lee [14] showed that 
this problem is NP-hard, and many heuristic methods have been proposed 
to solve it, for example, the string homomorphism hashing (SHH) method 
by Rivest [12], the multi-key hashing (MKH) method by Rothnie and 
I_ozano [13], the multi-dimensional directory (MDD) method by Liou and 
Yao [11], the optimal Cartesian product file (CPF) design method by 
Chang, Du, and Lee [4], the Greedy File design method proposed by Chou, 
Yang, and Chang [9], and so on. Recently, the optimal disk allocation for 
PMQs was also proposed by Abdel-Ghaffar and E1 Abbadi [1]. However, 
the study of that for ORQs is far less progressive [6-8]. 

In our work, we paid particular attention to the design of Cartesian 
product files (CPFs) for ORQs. The CPF is a hashed file in essence, and 
the choice of hash functions (i.e., partition forms) determines the perfor- 
mance of retrieval. Chou et al. have derived the performance formula of 
CPFs for ORQs in [8]. However, as we should see, the performance 
formula is too complicated to apply. In this paper, we intend to find some 
properties to determine which partition form is better, instead of directly 
calculating their performance. 

Chang et al. [3] presented some properties of CPFs for PMQs and 
showed that the problem of designing the optimal CPF for PMQs is 
related to the problem of finding a minimal N-tuple, where the N-tuple 
exactly corresponds to the partition size form of a CPF. In this paper, we 
intend to study whether the problem of designing the optimal CPF for 
ORQs is also related to the problem of finding a minimal N-tuple. 
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Fortunately, we are able to show that the answer is yes, although the 
N-tuple now corresponds to the partition fo rm of a CPF. Besides, there 
exist exceptions in which the minimal N-tuple is not always the optimal 
partition form of a CPF for ORQs. Therefore,  we define a new term, 
min ima l - f  N-tuple, to cover minimal N-tuples that describe the properties 
of optimal CPFs for ORQs. Then, we will also show some theories of 
minimal-f N-tuples and develop a method for generating a minimal-f 
N-tuple. Finally, we will present some properties of the optimal CPF from 
the theories of minimal-f N-tuples. 

In the next section, we will review the CPF concept and its performance 
formula for ORQs. In Section 3, we will define a minimal-f N-tuple, then 
derive some theories of minimal-f N-tuples and propose an algorithm for 
finding a minimal-f N-tuple. In Section 4, the problem of designing the 
optimal CPF for ORQs is shown to be related to the problem of finding a 
minimal N-tuple with reverse order (defined later) or finding a minimal-f 
N-tuple. Finally, conclusions are given in Section 5. 

2. A REVIEW OF CPFS FOR ORQS 

The CPF concept was originally proposed by Lin, Lee, and Du [10]. 
They also pointed out that file systems designed using the SHH, MKH, 
and MDD methods are all CPFs. The CPFs are defined as follows. 

DEFINITION 2.1 [10]. An N-attribute CPF is a file in which each domain 
D i is divided into m i equal-sized subdomains DipDi2  . . . . .  Dim,, and all 
records in each bucket are of the form Dxs ' XD2s2X " "  XDNsN, where 
l<~si<~m ~ and l < ~ i ~ N .  The partition form of this CPF is denoted as 
( m l ,  m 2 . . . . .  m N ), where m i is the number of partitions in the ith domain. 
The partition size fo rm of this CPF is denoted as (z 1, z 2 . . . . .  zN), where 
z i = [Di l /m  i is ith subdomain size and is an integer. 

To measure the performance of CPFs for ORQs, we have derived the 
following formula to directly evaluate the ANB of a CPF over all possible 
ORQs in [8]. Let F be an N-attribute CPF with partition form 
( m l , m  2 . . . . .  m N )  and d~ be the domain size of the ith attribute. If the 
probabilities of all occurring queries are equal, then the ANB of this CPF 
over all possible ORQs is as follows. 

IltN ( (d )2 ) _ i + 3d i 3d~ +dZ i + 6  
A N B ( O R Q )  = ~ i=, ~ mi  + mi ' 
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where NB is the number of buckets=FIU=lmi, and NOQ is the total 
number of ORQs = (½)NFIN l(d 2 +d i + 2). 

EXAMPLE 2.1. Consider a two-attribute file with D 1 = {a,b} and D 2 = 

{1, 2, 3, 4, 5, 6}. Suppose we have six buckets, and each can hold two records. 
If Dll={a,b}, D2l={1}, D22={2}, D23={3}, 
D26 = {6}. Then the following file F is a CPF. 

Bucket 1: 

Bucket 2: 

Bucket 3: 

Bucket 4: 

Bucket 5: 

Bucket 6: 

Oil XD21 = {(a,1)  

D11 XD22  = {(a,2) 

Oil XD23 = {(a,3)  

D11 ×D24 = {(a,4)  

O11 ×925 = {(a,5) 

Oll ×D26 = {(a,6)  

D24 = {4}, 025  = {5}, and 

(b,1)},  

(b ,2)},  

(b ,3)},  

(b ,4)},  

(b ,5)} ,  

(b ,6)}.  

According to our formula, the corresponding ANB(ORQ) of this CPF is 
2.82 and its partition form (m 1, m 2) is (1, 6). However, if Dll = {a},D12 = 
{b}, D21 ={1,2}, D22 ={3,4}, and D23 ={5,6}. Then the following file F '  is 
also a CPF. 

Bucke t l :  D , , x O 2 , = { ( a , 1 ) , ( a , 2 ) } ,  

Bucket 2: D11xD22={(a,3),(a,4)},  

Bucket 3: D 1 1 x D 2 3 = { ( a , 5 ) , ( a , 6 ) } ,  

Bucket 4 : D 1 2  XD21= { (b ,1 ) , (b ,2 )} ,  

Bucket 5: D12xD2:={(b,3) , (b ,4)} ,  

Bucket 6: D12XDz3={(b,5),(b,6)}.  

F '  has partition form (2,3) and the corresponding ANB(ORQ) is 2.73. 
Since there are only two CPF partition forms (1, 6) and (2, 3), we know F '  
is the optimal CPF with partition form (2,3). 

In summary, the problem of designing an optimal CPF for ORQs can be 
formally stated as follows: given a set of integers dl, d 2 . . . . .  d s and NB, 
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our work is to find N integers m l , m  2 . . . . .  m N that satisfy the following 
conditions: 

(1) FIiU=lmi=NB, 
(2) d i / m  i is an integer for i = 1, 2 . . . . .  N, and 
(3) A N B ( O R Q )  is minimal, or lift= 1(-  (d i /m i )  2 + 3d i /mi  + 3d2i/mi + 

d~ + 6) is minimal. 

Since an integer can be factored into a finite number of different 
N-tuples, there are a finite number of feasible solutions, and we can 
conduct an exhaustive search. That is, given m l , m 2 , . . . , m  N, we can 
calculate 

N( ( 12 3d, 3d +d +6) 
i~=1 - mi ] + mi + ml 

We then choose the mi's that minimize the above formula. However, we 
shall show that an exhaustive search through all possible solutions can be 
avoided. Consider Example 2.1 again. The first solution of the problem is 
(1, 6). ( l ,  6) can be transformed into (2, 3) without affecting the feasibility 
of the solution. However, this transformation decreases the value of 
172= l(-(di /mi )2 + 3 d J m i  + 3dZ/mi  +d2 + 6). Let us now consider the 
following problem: given two N-tuples ( m p m  2 . . . . .  m N) and 
(dl, d2, . . .  ,dN) , where mi, d i ~ a n d  mildi, for ] ~< i ~<N, can we transform 
( m l , m  2 . . . . .  m u) into another N-tuple m'l,m ~ . . . . .  m' u) such that m'i~_.~ 

r N and mi)d i, for l<~i<~N, and I-liN=lmi=FIi=lmi, but the value of 
FIN- 1( -- ( d i / m ' Y  + 3dJm'i  + 3dZ/m'~ + d~ + 6) is smaller than the value of 
FIN 1 ( - ( d J m i )  2 + 3 d J m i  + 3d~/m~ + d~ + 6). 9 In the next section, we will 
develop some theories to answer this problem. 

3. SOME T H E O R I E S  OF MINIMAL-f  N-TUPLES 

In the rest of this paper, whenever we mention an N-tuple 
(a 1, a 2 . . . . .  aN), we shall assume that ai is an integer. 

DEFINrrION 3.1 [3]. An N-tuple (a), a e . . . . .  a N) is called an N-tuple of  C 
if 1-I~ lai = C. 

DEFINITION 3.2. An N-tuple (al ,a 2 . . . . .  a N) is called a factor of 
(d l , d  z . . . . .  d N) if aildi, for 1 <~i <~N. 

DEFINmON 3.3. A 2-tuple (a~,a 2) is called a minimal 2-tuple with 
respect to (d 1, d 2) if (a 1, a 2) is a factor of (d 1, d e) and for all other factors 
(a'p a~) with a'la' z =ala2, a I + a  2 <a '  1 +a~. 
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DEFINITION 3.4. An N-tuple (al, a 2 . . . .  , a n) is called a minimal N-tuple 
of C with respect to ( d l , d  2 . . . .  , d N )  if I-I N i = l a i = C  and for l ~ i ,  j<~N, 
(a i, aj) is a minimal 2-tuple with respect to (d i, dj). 

EXAMPLE 3.1. The 3-tuple (2,12,3) is not a minimal 3-tuple of 72 with 
respect to (12,24,6), because (2,12) and (12,3) are not minimal 2-tuples 
with respect to the corresponding 2-tuples (12, 24) and (24, 6), respectively. 
The 3-tuple (3, 4, 6) is a minimal 3-tuple with respect to (12, 24, 6), because 
each pair of this 3-tuple is a minimal 2-tuple. 

DEFINITION 3.5. Let S = (al,  a 2 . . . . .  aN) be a factor of R = 
(d~, d: . . . . .  tiN); we define 

( S )  = , ~  - a ,  + a, a i 

When S is not a factor of R, we define f R ( S ) =  ~. 

DEFINITION 3.6. A 2-tuple S = (a~, a 2) is called a minimal- f  2-tuple with 
respect to R if S is a factor of R and for all other factors T =  (a'l, a~) with 

a'la' 2 = ala 2, fR(S)  <fR(T). 

DEFINITION 3.7. An N-tuple (a l ,a  2 . . . . .  a N) is called a minimal-f N- 
tuple of C with respect to (d l ,d2  . . . . .  d N) if l - l N l a i = C  and for 1 ~<i, 
j ~<N, (a i, aj) is a minimal-f 2-tuple with respect to (d  i, dj). 

3.1 MINIMAL-]" 2-TUPLES 

Before discussing the general theories, we shall first discuss the theories 
for minimal-f 2-tuples. For example, is a minimal 2-tuple (a l ,a  2) with 
respect to (dl, d 2) also a minimal-f 2-tuple? In the following, we will show 
the answer is yes except when a l a 2 = 4  or min{dl,d 2} ~< 8. 

THEOREM 3.1. For a 2-tuple R, and its two factors S = ( a l , a  2) and 
T=(a'l ,a'2),  if ala2=a'la'2 4:4 and al + a2 <a'l + a' 2, then fR(S)  < fR(T) .  

Proof. We defer the proof until Appendix A. 

COROLLARY 3.1. I f  S = ( a l , a 2 ) ,  ala2 4=4, is a minimal 2-tuple with re- 
spect to R,  then fR(S)  is the smallest among all fR(T) ,  where T =  (a' 1 , a'2) is a 
2-tuple o f  ala 2 and a 1 + a  2 <a '  1 +a '  2. 

DEFINITION 3.8. We say (al,  a 2 . . . . .  a N) is in reverse order with respect 
to (d 1, d 2, . . . .  dN) if (a i - aj)(d i - dj) < 0 for all 1 ~< i, j ~< N. 
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DEFINITION 3.9. Let  S = (a  1, a2). We define S-1 = (a2, al ) as the inverse 
of S. 

THEOREM 3.2. I f  a 2-tuple S is a factor of R = (d I , d 2) and in reverse order 
with respect to R, and min{d 1, d 2} >~ 9, then fn(S)  <fn(S 1 ). 

Proof. I~t  S=(al ,a2) .  If  S -1 = ( a 2 , a  1) is not  a factor  of  R, then the 
theorem obviously holds. Let  us consider the case in which S 1 is a factor  
of  R. Since S is in reverse order  with respect to R, we can set a~ > a  2, 
9<~d I <d~, d 1 =px l, and d 2 =px2, where p=lcm(a l ,a  2) and x 1 < x  2. Let 
integers l I = p / a  I and l 2 = p / a  2. By a 1 > a2, we have 11 < l 2. Then  

and 

where 

fR( S) = ( --I~,X~ + 3l l~ + 311 p ~  +p~x~ + 6) 

--12X 2 + 312X 2 + 312px 2 +p2x 2 + 6), X( 2 2 

fR(S  ' )  = (-12xZ + 312x, + 312px~ +p2xl +6) 

× ( --l?x 2 + 31lx 2 + 311px; - +p-x  5 + 6), 

fR(S)--fR(S ~) =3(t,--t2)(X~--Xl)E, 

E=ll l2XlX 2 + 2(lj +12)(x , +x2) +p2xlx  2 - 6 ( 1  +p(x ,  +Xe) ). 

Since l 1 </2 and x 2 > x l ,  E ~ . 0  holds if and only if fR (S )< fn (S - l ) .  We 
now prove E > 0 as follows. 

(1) Let us consider the case in which xj = 1. 

E = l~I~_~ +2(1, +12)(1 +~2) + p ~ : -  6(1 +p(1 +x~)) 

= lj~x2 + 2(l, +l~)(1 + ~ )  - 6  + p ( ( p - 6 ) x ~ - 6 )  

> 0 ~ 0 

> 0 ,  by l <~ll <12, x2>~2 and p = d l / x ~  >~9. 
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(2) Let us consider the case in which x~ >~ 2. 

E = l , 1 2 x , x  2 + 2(l 1 + 12)(x I +x2) +pZx~x 2 - 6 ( 1  +P( Xl +x2))  

= 1,12x,x 2 + 2(l, + 12)(x ~ +x2) -- 42 + (d  1 - 6 ) (d  2 - 6) 

>~0 > 0 

>0,  byl~<l  t<12, 2<<.x l < x  2 and 9~<d l < d  2. 

By (1) and (2), we complete the proof. [] 

COROLtARY 3.2. I f  S = ( a l , a 2 )  , ala2 4:4, is a minimal 2-tuple and in 
reverse order with respect to R =(d l ,d2)  , and min{dl,d 2} >/9, then fR(S) is 
the smallest among all fR(T), where T is a 2-tuple of  ala 2. Furthermore, S is a 
minimal-f 2-tuple with respect to R. 

Proof. This follows directly from Corollary 3.1 and Theorem 3.2. [] 
We can find a minimal-f 2-tuple by employing a minimal 2-tuple. 

Although Corollary 3.1 holds only when ala 2 4:4, the unsatisfied cases 
simply include (1,4), (4, 1) and (2,2). Hence, when ala2 =4,  we can get a 
minimal-f 2-tuple by directly calculating the value of fR(S). As for the 
deficiency of Theorem 3.2, we can also directly calculate the value of fR(S) 
and fn(S- 1 ) as min{dl, d2} ~< 8. Therefore, we have the following algorithm 
to generate a minimal-f 2-tuple. 

ALGORITHM 1. An algorithm to find a minimal-f 2-tuple of C with 
respect to (dl, d2). 

Input: C and a 2-tuple R = ( d , , d 2 ) .  
Output: A minimal-f 2-tuple of C with respect to (d,, d2). 

STEP 1. If C = 4, then make comparisons to obtain the 2-tuple S* with 
the smallest fR(S') ,  where all possible 2-tuples S' include (2, 2), (1, 4), and 
(4,1), and go to Step 6. 

STEP 2. Find (p, q), where pq = C and (p, q) is a minimal 2-tuple with 
respect to (dl, d2). 

STEP 3. If d 1 = d  2 or (q ,p)  is not a factor of (dl,d2), then set S* = ( p , q )  
and go to Step 6. 

STEP 4. If ( p , q )  is in reverse order with respect to (d l ,d  2) and 
min{d 1, d 2} >~ 9, then set S* = (p, q) and go to Step 6. 
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STEP 5. Set S = ( p , q ) .  Compare S with S -~ by evaluating fR(S)  and 
fR(S-1) ,  and set S* to be the 2-tuple with the smallest fR(S'), where 
S'  ~ { S , S  1}. 

STEP 6. S* is a minimal-f 2-tuple with respect to R. 

3.2 M I N I M A L - f  N-TUPLES  

For an N-tuple (dl ,  d 2 , . . . , d N ) ,  we can transform an N-tuple 
N a N minimal-f N-tuple with respect (a l ,a  2 . . . . .  a N )  with FIi=l ilFli=ldi into a 

to (d l , d  2 . . . . .  d N) by employing Algorithm 1. The detailed process is 
described in the following algorithm. 

ALGORITHM 2. An algorithm that transforms an N-tuple (a I, a 2 . . . . .  a N )  

into a minimal-fN-tuple with respect to (d~,d 2 . . . . .  t iN).  

Input: Two N-tuples (a 1, a 2 . . . .  , a N) and (d  l, d 2 . . . . .  dN) ,  where 
N N 

I~i= lailI-[i= ldi  • 
Output: A minimal-f N-tuple of l-IN= lai with respect to (d~, d 2 . . . . .  dN). 

STEP l. If (a l ,a  2 . . . . .  a s )  is a factor of (d l , d  2 . . . . .  dN), then set a~=aj, 
for j = 1,2 . . . . .  N, and go to Step 3. 

l a i / l - ] i = l a i ) ,  for STEP 2. Set a' 1 =gcd(dl ,  l-INi=lai) and aj' =gcd(di ,  l-lU= j - l ,  
j = 2 , 3  . . . .  ,N,  to obtain a factor (a'l,a' 2 . . . . .  a' N) of ( d l , d  2 . . . . .  dN). 

(11 2 .-" N ) i ~ N ,  and j ~ N - 1 .  STEP 3. 7r 0 ~ 2 ... N ' 

STEP 4. C = a~a' i. Find (p,  q) by Algorithm l, where pq = C and (p,  q) is 
a minimal-f 2-tuple with respect to (d=o~j), d~,,~i)). 

STEP 5. If (p ,  q) = (a~, a'i), then go to Step 8. 

STEP 6. Reorder  (a'l,a' 2 . . . . .  p , q  . . . . .  a' N) to obtain a new N-tuple 
¢ ! ! t t (a~,a2,. .  a'u) such that ' and where 7r 1 is a permu- • , ak I <~ak ak=a~r;~(k),  

tation of {1,2,..., N}. 

STEP 7. 7r 0 ~ rr 1 • rr 0, and return to Step 4. 

STEp 8. If j 4: 1, then j ~ j  - 1, and return to Step 4. 

STEP 9. If i 4: 2, then i ~ i - 1, j ~ N, and return to Step 4. 

STEp 10. (a'l,a'2 . . . . .  a'N) is a minimal-f N-tuple with respect to 
(d=o~o,d~o~2) . . . . .  d,Q~N)). Let  a* =a 'o~ i  ). Thus, (a~,a~ . . . .  ,a* N) is a mini- 
mal-fN-tuple of lift__ lai with respect to ( d l , d  2 . . . . .  dN). 
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E X A M P L E  3.2. Consider  (al ,  a2, a3) = (2, 12, 3) and (d l, d2, d 3) = (8,12, 6). 
Then,  the process of  Algori thm 2 is as follows. 

1. Since (2, 12,3) is a factor of (8, 12, 6), set (a'l, a' 2, a~ )=  (2, 12,3). 
(1  2 3 ) i = 3 ,  and j = 2 .  2. Go  to Step 3. 7r 0=  1 2 3 ' 

3. C -- a' a' = 2 3 12 × 3 = 36. We find (6,6) as the minimal-f  2-tuple with 
respect to (d.,,~2~, d~,,~3)) = (d2, d 3) by Algori thm 1. 

4. Reorder .  We obtain (2, 6, 6) and 1r i =  1 ~ 3 " 

(I  2 3 ) , a n d r e t u r  n t o S t e p 4 .  5 .  7r 0 = 7rl  "7"/'(I = 2 3 

6. C = a'za'3 = 6 × 6 = 36. We find (6, 6) as the minimal-f  2-tuple with 
respect  to (dTr0{2) , dTrd3 )) + (d2, d3) by Algori thm 1. 

7. Go  to Step 8. Since j = 2 v~ 1, j ,--- 1 and return to Step 4. 
8. C =a'la'3 = 2 x 6 = 12. We find (4,3) as the minimal-f  2-tuple with 

respect  to (d,,,(l), d~,,o )) = (dl,  d 3) by Algori thm 1. 

9. Reorder .  We obtain (3,4,6)  and ~-t = 3 i " 

10. ~ '0=~'1"7r0= 3 1 2 " 

11. Since every 2-tuple in (3,4,6)  is a minimal-f  2-tuple, (3,4,6)  is a 
minimal-f  3-tuple with respect  to (d,~,,(1), d~o(a ), d~r~,(3 )) = (d3, dl, d2). That  
is, (4, 6, 3) is a minimal-f  3-tuple with respect  to (d~, d2, d3)" 

DEFINITION 3.10 [3]. Let  S = ( a l , a  2 . . . . .  aN), T=(a ' l ,a '  2 . . . . .  a'N), R =  
= I 1 u  ' and both S and T be factors of R. If ( d l , d  2 . . . . .  dN), IqiN lai i=lai, 

there  exists an i such that a i = p q  and a' i =q,  and a j such that a)=paj ,  
and for all k, k ~ i, j, a~, = a k, then T is a pq-tramformation of S for R. 

DEFINITION 3.11. Let  T be a pq- t ransformat ion  of S for R. If f R ( T ) <  
fR(S) ,  then T is an effectit,e pq-transformation of  S for R. 

Recall that in Example 3.2, the 3-tuple (2,12,3) is t ransformed as 
follows. 

(2,  12,3) --* ( 2 , 6 , 6 )  ~ ( 4 , 6 , 3 ) .  

Thei r  corresponding fR(S) 's  are 2436480, 2249856, and 2150400, respec- 
tively. That  is, each t ransformat ion gradually reduces the corresponding 
fR(S) .  We show that  such t ransformat ion is an effective pq- t ransformat ion  
as follows. 

LEMMA 3.1. Let  S = ( a l , a 2 , . . .  ,aN),  T =  (a'l,a' 2 . . . . .  a'u), and R = 
(dl ,  d 2 . . . . .  dN). Let  T be a pq-transformation o f  S for R. I f  in this pq-trans- 
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THEOREM 3.3. Let S = (a I, a 2 , . . . ,  aN), R = (d 1, 6 2 . . . . .  dN), and 
N N Hi= lailFIi= ldi • I f  S is not a minimal-f N-tuple with respect to R, then S can 

be converted into S* such that S* is a minimal-f N-tuple of  I-I N lai with 
respect to R and fR(S*) < fR(S). 

Proof. Note that in Algorithm 2, the algorithm always terminates and 
produces an N-tuple in which every pair (a i, a j) is a minimal-f 2-tuple with 
respect to (d i, dj). According to Lemma 3.1, every transformation executed 
in the algorithm is an effective pq-transformation. Therefore,  we can apply 
a sequence of effective pq-transformations to S to transform S into S* 
such that S* is a minimal-f N-tuple with respect to R. Assume that 
Algorithm 2 takes m steps to finish. Let S o = S and after the execution of 
the mth step, the N-tuple becomes S m. We now have S o, S~ . . . . .  Sin, where 
S O = S and S m = S*. According to I_~mma 3.1, fR(Sk) <fR(Sk _ 1). In particu- 
lar, fR(S*) =fR(Sm) <fR(So) =fR(S)" This completes the proof. [] 

Chang et al. [3] showed that there exist few exceptions such that 
minimal N-tuples are not unique. For instance, among all integers from 1 
to 1000 for N = 3, integer 360 is the only case with two minimal 3-tuples, 
namely (6, 6,10) and (5, 8, 9). Besides, a minimal-f N-tuple (al, a 2 . . . . .  a N) 
with respect to (d~,d 2 . . . . .  d N) is a minimal N-tuple except when there 
exists one pair a~ and aj such that aia j = 4, or min 1 ~< i ~ Ndi ~< 8. Therefore,  
there exists only one minimal-f N-tuple in most cases, and the minimal-f 
N-tuple is the N-tuple such that fR(S)  is the minimum. Furthermore,  we 
obtain the following corollary. 

COROLLARY 3.3. Let S be an N-tuple of  C and a factor of  N-tuple R. I f  
there is only one minimal-f N-tuple of  C with respect to R, fR(S) is the 
smallest among all possible N-tuples of  C with respect to R if and only if S is 
the only minimal-f N-tuple with respect to R. 

4. T H E  APPLICATION OF N-TUPLE T H E O R I E S  TO T H E  DESIGN 
OF CPFs 

In Section 2, we found that the problem of designing an optimal CPF 
can be reduced to the problem of dividing each domain D i into m i 
subsets. The values of m l ,m  2 , . . . ,m  N should satisfy the following condi- 
tions: 

1. m l m 2 . . ,  m N = NB = the number of buckets, 
2. d i / m  ~ is an integer, and 
3. FI~_ ~( - ( d i / m i  )2 + 3 d J m i  + 3dZ/mi  + d 2 + 6) is minimal. 

Applying Corollary 3.3, we obtain the following theorem. 

THEOREM 4.1. Let all records be N-attribute, d i be the domain size of  the 
ith attribute, and NB be the number of  buckets. Then a CPF F is the optimal 
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CPF for ORQs if its partition form ( m l ,  m 2 . . . . .  m N ) satisfies the following 
conditions: 

(1) FIN_lmi=NB, and 
(2) ( m l , m  2 . . . . .  m N) is the only minimal-f N-tuple of  NB with respect to 

( d l , d  2 . . . .  , d u ) .  

To obtain a set of mi's that satisfy conditions (1) and (2), we simply 
apply Algorithm 2 to the N-tuple (1,1 . . . . .  NB). If the resulting N-tuple 
(ml, m 2 . . . . .  m N) is the only minimal-f N-tuple with respect to 
( d  1, d 2 . . . . .  d N ) ,  then an optimal CPF has been obtained. 

EXAMPLE 4.1. Consider ID1]= 8, fD 2] = 4, ]D 3] = 6, and NB = 32. Apply- 
ing Algorithm 2 to (1, 1, 32), we obtain (4, 2, 4) as a minimal-f 3-tuple with 
respect to (]DI[, ]D2] , ]O3]). Since (4,2,4) is the only minimal 3-tuple of 32, it is 
the only minimal-f 3-tuple of 32. Therefore, D 1 should be equally partitioned 
into four subsets, D 2 into two subsets, and D 3 into four subsets to produce an 
optimal CPF. 

THEOREM 4.2. Let all records be N-attribute, d i be the domain size of the 
i-th attribute, and NB be the number of buckets. Then a CPF F is the optimal 
CPF for ORQs if its partition form { m t , m  2 . . . . .  m N ) satisfies the following 
conditions: 

(1) V I N l m i = N B ,  
(2) each pair (mi, mj) satisfies mira j 4: 4, 
(3) ( m l , m  2 . . . . .  m N) is the only minimal N-tuple of NB with respect to 

(dl,d2 . . . . .  dN), 
(4) (m~,m 2 . . . . .  m N) is in ret~erse order with respect to (d l ,d  2 . . . . .  dN), 

and 
(5) all di >19. 

Proof. According to Corollary 3.2, each pair (mi, m j) is a minimal-f 
2-tuple with respect to (di, dr). This yields (ml, mE . . . . .  m N) as a minimal-f 
N-tuple of NB with respect to (d i ,d  2 . . . . .  dN). Besides, (ml ,m 2 . . . . .  m N) is 
the only minimal N-tuple of NB. Thus ( m l , m  2 . . . . .  m N) is the only 
minimal-f N-tuple of NB with respect to (d~, d 2 . . . . .  dN). From Theorem 
4.1, we conclude that (m~,m 2 . . . . .  m N) is the optimal CPF partition form 
and F is the optimal CPF. [] 

5. CONCLUSIONS 

In this paper, we have studied properties that help in designing a good 
CPF for ORQs. We have shown the problem of designing an optimal CPF 
for ORQs to be related to the problem of finding a minimal N-tuple, 
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which corresponds to the partition form of a CPF, with few exceptions. 
Because of these exceptions, we defined a new term, minimal-fN-tuple, to 
cover minimal N-tuples that describe the properties of optimal CPFs for 
ORQs. We have also shown some theories of minimal-]" N-tuples. By 
employing the theories of minimal-f N-tuples, we have developed a method 
for generating a minimal-f N-tuple and derived some properties of the 
optimal CPF for ORQs. Intuitively, these properties will provide a guide- 
line to solve the problem of the optimal CPF for ORQs in a distributed 
system, and design a good search tree structure for ORQs in the near 
future. 

APPENDIX A 

THEOREM 3.L For a 2-tuple R, and its two factors S = ( a l , a  2) and 
T =  (a'l,a'2 ), if ala 2 =a'la' 2 -¢4 and a 1 + a 2 < a' I + a' 2, then fR(S)  <fR(T). 

Proof. By alaz=a'la'2, we can assume ( a l , a z ) = ( m p ,  q) and (a'l,a'2) = 
(m,pq) .  Since al +a2 <a'l +a' 2, m p + q < m + p q  or ( p - 1 ) ( q - m ) > O .  
Hence p > 1 and q > m. Let R =(dl ,  d2). Because R is a common multiple 
of S and T, we set d~ = mpx 1 and d 2 =pqx 2. Then 

JR(S) = ( -x~  + 3x, + 3mpx~ +m2p2x~ +6) 

× (-pZx~ + 3px 2 + 3p2qx 2 +p2qZx~ +6),  

JR(T)  = ( - p 2 x 2  + 3px, + 3mp x[ +m2p2x~ +6)  

X(-x~ + 3x 2 + 3pqx~ +p2q2x~ +6),  

and 

fR( S)  --fR( T )  = ( 1 - p ) ( A  + B + C) ,  

where 

A =pZ(q_m)x~xZ(3mpq_ ( q + m ) ( p +  1) - 3 ) ,  

B = 3 ( x 2 - x l ) ( p x , x 2 +  2 ( p +  1 ) ( x 2 + x , ) - 6 ) -  18p(qx 2 - m x ~ ) ,  and 

C = 3pZxa Xz(qZx 2 - mZxl ). 
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Since 1 <p ,  A + B + C > 0 holds if and only if fR(S)  <fR(T).  Besides, by 
ala 2 4= 4, we know the case of m = 1 and p = q  = 2 does not exist. Thus, we 
need to show A + B + C > 0  holds except for m = l  and p = q = 2 .  We 
distinguish this into three cases: (1) m = 1, p >  2, and q >3 ,  (2) m = 1, 
p > 3 ,  and q = 2 ,  and (3) m > 2 ,  p > 2 ,  and q > m +  1. 

CASE 1. {m = 1, p >~ 2, and q > 3}. 
Here  

A = p 2 ( q _  1 ) x ~ x 2 ( 3 p q _ ( q +  l ) ( p +  1) - 3 ) ,  

B = 3 (  x 2 - x l ) ( p x l x 2  + 2 ( p +  l ) ( x2  +x l )  - 6 ) - 1 8 p ( q x 2 - x 2 ) ,  and 

C = 3p2x, x2(q2x2 --X 1 ). 

Since 

A > ~ 3 ( q - 1 ) p 2 x ~ x  2, b y p > 2  and q > 3 ,  and 

B > 3 ( x  2 -x~)px~x  2 - 1 8 p q x  2, b y p > 2 ,  

hence A + B + C > 3 ( q -  1)p2xZ~x~ + 3(x 2 -x~)px~x  2 -  18pqx 2 + C =  
3px 2 D, where D = ((q - 1)x~x 2 + q2x 2 -x~ )x~ p + (x 2 - x  1 )x 1 - 6qx 2. Simi- 
larly, by substituting p > 2, q > 3, xl > 1, and x 2 >1 1 into equation D to 
eliminate the corresponding variables, we obtain D > 0. This yields A + B 
+ C > 0 .  

CASE 2. {m = 1, p >I 3, and q = 2}. 
Here  

A=.~p  x F x ~ t p - 2  ) ~ , 2 * >~.~p'x~xS, b y p > 3 .  

Define a' - 3 p 2 x Z x  2. We further distinguish the following two cases. 

( i )  x I > x  2. 

Let x~ = kx 2, where k > 1. Then, a ' =  3p2k2x 4 and C = 3p2kx2(4x2 
- kx2). 

B = - 3 ( k  - 1) x2(pkx22 + 2( p + 1) (k  + 1)x 2 - 6) - 18p(2 - k 2) x~ 

> - 3 p ( k - 1 ) t e c 3 + 9 p k 2 x 2 - 3 O p x  2, byp>~3  and k > l .  
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Let b'  =- - 3 p ( k  - 1)kx 3 + 9pk2x~ - 30px~. Hence A + B + C > a '  + b '  + 
C = 3px~D,  where D =pkZx~ - (k  - 1)kx 2 + 3k 2 - 10 + 4pkx 2 - p k Z x 2 .  Sim- 
ilarly, by substituting p >/3, x 2 >t 1, and k > 1 into equation D to eliminate 
the corresponding variables, we obtain D > 0. That  yields A + B + C > 0. 

( i i )  x 1 ~<x~. 
Let x 2 =kx  l, where k>~ 1. Then, a' = 3 p 2 k Z x  4 and C =  3p2kx~(4kxl 

--X1). 

B = 3 ( k - 1 ) x l ( p k x  ~ + 2 ( p +  1 ) ( k +  1 ) x ~ - 6 ) -  18p(2k  2 -  1)x(  

> ~ - 3 6 p k 2 x ~ ,  b y p / > 3  and k > t l .  

Let  b'  - - 36pkZx~. Hence A + B + C > a '  + b '  + C = 3pkx~D, where D = 
4pkx~ - 12k +pkx~ - p x t .  Similarly, by substituting p >/3, x~ >t 1, and k >/1 
into equation D to eliminate the corresponding variables, we obtain 
D >/0. That  yields .4 + B + C > 0. 

CASE 3. {m>~2, p>~2, and q > ~ m +  1}. 
Here  

A = p 2 ( q  _ m ) x ~ x ~ ( 3 m p q -  (q  + m ) ( p  + 1) - 3), 

B = - 3 ( x 2 - x l ) ( p x , x 2 +  2 ( p +  1 ) ( x z + x , )  - 6 )  - 1 8 p ( q x ~ - m x ( ) ,  and 

C = 3pZx lx2(q2x2  - m 2 x l ) .  

Since 

A > ~ 3 ( m - 1 ) p 3 q ( q - m ) x ~ x ~ ,  byp> ~ 2  and q > ~ m + l ,  and 

B > 3 ( x 2 - x l ) p x ~ x 2 - 1 8 p q x  2, byp> ~ 2  and xz>~l ,  

hence A + B  + C > 3(m - 1)p3q(q - m)x~x22 + 3(x 2 - x l ) p x l x 2  - 18pqx 2 + 
C = 3px2D,  where D = ((m - 1)p2x2x2 +px~xz )q  2 - ( m ( m  - 1)p2x21x 2 + 
6x2) q - m2px21 + (x 2 - x l ) x  P Similarly, by substituting q >/m + 1, p >/2, 
m >12, x l >~ 1, and x 2 >I-1 into equation D to eliminate the corresponding 
variables, we obtain D > O. That yields A + B + C > O. 

These cases complete the proof. [3 
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