
NORTH- HOLLAND

Informatics and
Computer Science

Some Properties of Optimal Cartesian Product Files
for Orthogonal Range Queries

ANNIE Y. H. CHOU
WEI-PANG YANG

Department of Computer and Information Science, National Chiao Tung University,
Hsinchu, Taiwan 300, Republic of China

and

CHIN-CHEN CHANG

Department of Computer Science and Information Engineering, National Chung Cheng
Universi~. Hsinchu, Taiwan 621, Republic of China

ABSTRACT

Cartesian product file (CPF) has been proposed as a good multi-attribute file
structure. Although designing an optimal CPF for partial match queries (PMQs) has
been proven to be NP-hard, some useful properties have been studied for PMQs to help
the work. However, a good CPF for PMQs may not be beneficial for orthogonal range
queries (ORQs). Therefore, in this paper, we intend to study properties that help the
design of a good CPF for ORQs. We found that the problem of designing the optimal
CPF for ORQs is related to the problem of finding a minimal-f N-tuple. We will also
show some theories of minimal-f N-tuples and develop a method for generating a
minimal-f N-tuple. Finally, we will present some properties of the optimal CPF for
ORQs from the theories of minimal-f N-tuples.

1. I N T R O D U C T I O N

The need for efficient retrieval methods in large databases has in-
creased recently. Files that store large amounts of data are often used in
many applications. In such applications, the size of data is usually too large
to be wholly stored in primary memory. In practice, files are usually
divided into buckets and then stored in a disk. Therefore, the distribution
of a file over multiple buckets directly influences the performance of
retrieval.

INFORMATION SCIENCES 90, 91-107 (1996)
© Elsevier Science Inc. 1996
655 Avenue of the Americas, New York, NY 10010

0020-0255/96/$15.00
SSDI 0020-0255(95)00284-7

92 A . Y . H . CHOU ET AL.

A multi-attribute file (MAF) is a collection of records characterized by
more than one attribute. An orthogonal range query (ORQ) is a query of
the following form: retrieve all records satisfying (x~, x 2 XN), where x i
is either a range [l~,ui] contained in the domain of the ith attribute, or is
unspecified (denoted by *). For instance, in a two-attribute file system
{a, b} × {1,2,3,4}, (*,[1,3]) denotes an ORQ which retrieves all records
with the first attribute being either "a" or "b" and the second attribute
being in the range [1,3]. If l~=u i for all specified x~, then the ORQ
reduces to a partial match query (PMQ).

Since each time the disk is accessed, an entire bucket is brought into
primary memory, we can simply measure the retrieval performance of a
file structure by counting the average number of buckets (ANB) to be
examined over all possible queries. Therefore, the optimal MAF system
design problem can be stated as follows: given a set of multi-attribute
records, and a fixed number of buckets, arrange the records into buckets
such that the ANB to be examined over all possible queries will be as small
as possible [3].

In prior research work, great progress has been achieved on designing
optimal MAF systems for PMQs. Tang, Buehrer, and Lee [14] showed that
this problem is NP-hard, and many heuristic methods have been proposed
to solve it, for example, the string homomorphism hashing (SHH) method
by Rivest [12], the multi-key hashing (MKH) method by Rothnie and
I_ozano [13], the multi-dimensional directory (MDD) method by Liou and
Yao [11], the optimal Cartesian product file (CPF) design method by
Chang, Du, and Lee [4], the Greedy File design method proposed by Chou,
Yang, and Chang [9], and so on. Recently, the optimal disk allocation for
PMQs was also proposed by Abdel-Ghaffar and E1 Abbadi [1]. However,
the study of that for ORQs is far less progressive [6-8].

In our work, we paid particular attention to the design of Cartesian
product files (CPFs) for ORQs. The CPF is a hashed file in essence, and
the choice of hash functions (i.e., partition forms) determines the perfor-
mance of retrieval. Chou et al. have derived the performance formula of
CPFs for ORQs in [8]. However, as we should see, the performance
formula is too complicated to apply. In this paper, we intend to find some
properties to determine which partition form is better, instead of directly
calculating their performance.

Chang et al. [3] presented some properties of CPFs for PMQs and
showed that the problem of designing the optimal CPF for PMQs is
related to the problem of finding a minimal N-tuple, where the N-tuple
exactly corresponds to the partition size form of a CPF. In this paper, we
intend to study whether the problem of designing the optimal CPF for
ORQs is also related to the problem of finding a minimal N-tuple.

O R T H O G O N A L R A N G E QUERIES 93

Fortunately, we are able to show that the answer is yes, although the
N-tuple now corresponds to the partition fo rm of a CPF. Besides, there
exist exceptions in which the minimal N-tuple is not always the optimal
partition form of a CPF for ORQs. Therefore, we define a new term,
min ima l - f N-tuple, to cover minimal N-tuples that describe the properties
of optimal CPFs for ORQs. Then, we will also show some theories of
minimal-f N-tuples and develop a method for generating a minimal-f
N-tuple. Finally, we will present some properties of the optimal CPF from
the theories of minimal-f N-tuples.

In the next section, we will review the CPF concept and its performance
formula for ORQs. In Section 3, we will define a minimal-f N-tuple, then
derive some theories of minimal-f N-tuples and propose an algorithm for
finding a minimal-f N-tuple. In Section 4, the problem of designing the
optimal CPF for ORQs is shown to be related to the problem of finding a
minimal N-tuple with reverse order (defined later) or finding a minimal-f
N-tuple. Finally, conclusions are given in Section 5.

2. A REVIEW OF CPFS FOR ORQS

The CPF concept was originally proposed by Lin, Lee, and Du [10].
They also pointed out that file systems designed using the SHH, MKH,
and MDD methods are all CPFs. The CPFs are defined as follows.

DEFINITION 2.1 [10]. An N-attribute CPF is a file in which each domain
D i is divided into m i equal-sized subdomains DipDi2 Dim,, and all
records in each bucket are of the form Dxs ' XD2s2X " " XDNsN, where
l<~si<~m ~ and l < ~ i ~ N . The partition form of this CPF is denoted as
(m l , m 2 m N), where m i is the number of partitions in the ith domain.
The partition size fo rm of this CPF is denoted as (z 1, z 2 zN), where
z i = [Di l /m i is ith subdomain size and is an integer.

To measure the performance of CPFs for ORQs, we have derived the
following formula to directly evaluate the ANB of a CPF over all possible
ORQs in [8]. Let F be an N-attribute CPF with partition form
(m l , m 2 m N) and d~ be the domain size of the ith attribute. If the
probabilities of all occurring queries are equal, then the ANB of this CPF
over all possible ORQs is as follows.

IltN ((d)2) _ i + 3d i 3d~ +dZ i + 6
A N B (O R Q) = ~ i=, ~ mi + mi '

94 A . Y . H . CHOU ET AL.

where NB is the number of buckets=FIU=lmi, and NOQ is the total
number of ORQs = (½)NFIN l(d 2 +d i + 2).

EXAMPLE 2.1. Consider a two-attribute file with D 1 = {a,b} and D 2 =

{1, 2, 3, 4, 5, 6}. Suppose we have six buckets, and each can hold two records.
If Dll={a,b}, D2l={1}, D22={2}, D23={3},
D26 = {6}. Then the following file F is a CPF.

Bucket 1:

Bucket 2:

Bucket 3:

Bucket 4:

Bucket 5:

Bucket 6:

Oil XD21 = {(a,1)

D11 XD22 = {(a,2)

Oil XD23 = {(a,3)

D11 ×D24 = {(a,4)

O11 ×925 = {(a,5)

Oll ×D26 = {(a,6)

D24 = {4}, 025 = {5}, and

(b,1)},

(b ,2)},

(b ,3)},

(b ,4)},

(b ,5)} ,

(b ,6)}.

According to our formula, the corresponding ANB(ORQ) of this CPF is
2.82 and its partition form (m 1, m 2) is (1, 6). However, if Dll = {a},D12 =
{b}, D21 ={1,2}, D22 ={3,4}, and D23 ={5,6}. Then the following file F ' is
also a CPF.

Bucke t l : D , , x O 2 , = { (a , 1) , (a , 2) } ,

Bucket 2: D11xD22={(a,3),(a,4)},

Bucket 3: D 1 1 x D 2 3 = { (a , 5) , (a , 6) } ,

Bucket 4 : D 1 2 XD21= { (b ,1) , (b ,2)} ,

Bucket 5: D12xD2:={(b,3) , (b ,4)} ,

Bucket 6: D12XDz3={(b,5),(b,6)}.

F ' has partition form (2,3) and the corresponding ANB(ORQ) is 2.73.
Since there are only two CPF partition forms (1, 6) and (2, 3), we know F '
is the optimal CPF with partition form (2,3).

In summary, the problem of designing an optimal CPF for ORQs can be
formally stated as follows: given a set of integers dl, d 2 d s and NB,

O R T H O G O N A L R A N G E QUERIES 95

our work is to find N integers m l , m 2 m N that satisfy the following
conditions:

(1) FIiU=lmi=NB,
(2) d i / m i is an integer for i = 1, 2 N, and
(3) A N B (O R Q) is minimal, or lift= 1(- (d i /m i) 2 + 3d i /mi + 3d2i/mi +

d~ + 6) is minimal.

Since an integer can be factored into a finite number of different
N-tuples, there are a finite number of feasible solutions, and we can
conduct an exhaustive search. That is, given m l , m 2 , . . . , m N, we can
calculate

N((12 3d, 3d +d +6)
i~=1 - mi] + mi + ml

We then choose the mi's that minimize the above formula. However, we
shall show that an exhaustive search through all possible solutions can be
avoided. Consider Example 2.1 again. The first solution of the problem is
(1, 6). (l , 6) can be transformed into (2, 3) without affecting the feasibility
of the solution. However, this transformation decreases the value of
172= l(-(di /mi)2 + 3 d J m i + 3dZ/mi +d2 + 6). Let us now consider the
following problem: given two N-tuples (m p m 2 m N) and
(dl, d2, . . . ,dN) , where mi, d i ~ a n d mildi, for] ~< i ~<N, can we transform
(m l , m 2 m u) into another N-tuple m'l,m ~ m' u) such that m'i~_.~

r N and mi)d i, for l<~i<~N, and I-liN=lmi=FIi=lmi, but the value of
FIN- 1(-- (d i / m ' Y + 3dJm'i + 3dZ/m'~ + d~ + 6) is smaller than the value of
FIN 1 (- (d J m i) 2 + 3 d J m i + 3d~/m~ + d~ + 6). 9 In the next section, we will
develop some theories to answer this problem.

3. SOME T H E O R I E S OF MINIMAL-f N-TUPLES

In the rest of this paper, whenever we mention an N-tuple
(a 1, a 2 aN), we shall assume that ai is an integer.

DEFINrrION 3.1 [3]. An N-tuple (a), a e a N) is called an N-tuple of C
if 1-I~ lai = C.

DEFINITION 3.2. An N-tuple (al ,a 2 a N) is called a factor of
(d l , d z d N) if aildi, for 1 <~i <~N.

DEFINmON 3.3. A 2-tuple (a~,a 2) is called a minimal 2-tuple with
respect to (d 1, d 2) if (a 1, a 2) is a factor of (d 1, d e) and for all other factors
(a'p a~) with a'la' z =ala2, a I + a 2 <a ' 1 +a~.

96 A . Y . H . CHOU ET AL.

DEFINITION 3.4. An N-tuple (al, a 2 , a n) is called a minimal N-tuple
of C with respect to (d l , d 2 , d N) if I-I N i = l a i = C and for l ~ i , j<~N,
(a i, aj) is a minimal 2-tuple with respect to (d i, dj).

EXAMPLE 3.1. The 3-tuple (2,12,3) is not a minimal 3-tuple of 72 with
respect to (12,24,6), because (2,12) and (12,3) are not minimal 2-tuples
with respect to the corresponding 2-tuples (12, 24) and (24, 6), respectively.
The 3-tuple (3, 4, 6) is a minimal 3-tuple with respect to (12, 24, 6), because
each pair of this 3-tuple is a minimal 2-tuple.

DEFINITION 3.5. Let S = (al, a 2 aN) be a factor of R =
(d~, d: tiN); we define

(S) = , ~ - a , + a, a i

When S is not a factor of R, we define f R (S) = ~.

DEFINITION 3.6. A 2-tuple S = (a~, a 2) is called a minimal- f 2-tuple with
respect to R if S is a factor of R and for all other factors T = (a'l, a~) with

a'la' 2 = ala 2, fR(S) <fR(T).

DEFINITION 3.7. An N-tuple (a l ,a 2 a N) is called a minimal-f N-
tuple of C with respect to (d l ,d2 d N) if l - l N l a i = C and for 1 ~<i,
j ~<N, (a i, aj) is a minimal-f 2-tuple with respect to (d i, dj).

3.1 MINIMAL-]" 2-TUPLES

Before discussing the general theories, we shall first discuss the theories
for minimal-f 2-tuples. For example, is a minimal 2-tuple (a l ,a 2) with
respect to (dl, d 2) also a minimal-f 2-tuple? In the following, we will show
the answer is yes except when a l a 2 = 4 or min{dl,d 2} ~< 8.

THEOREM 3.1. For a 2-tuple R, and its two factors S = (a l , a 2) and
T=(a'l ,a'2), if ala2=a'la'2 4:4 and al + a2 <a'l + a' 2, then fR(S) < fR(T) .

Proof. We defer the proof until Appendix A.

COROLLARY 3.1. I f S = (a l , a 2) , ala2 4=4, is a minimal 2-tuple with re-
spect to R, then fR(S) is the smallest among all fR(T) , where T = (a' 1 , a'2) is a
2-tuple o f ala 2 and a 1 + a 2 <a ' 1 +a ' 2.

DEFINITION 3.8. We say (al, a 2 a N) is in reverse order with respect
to (d 1, d 2, dN) if (a i - aj)(d i - dj) < 0 for all 1 ~< i, j ~< N.

O R T H O G O N A L R A N G E Q U E R I E S 97

DEFINITION 3.9. Let S = (a 1, a2). We define S-1 = (a2, al) as the inverse
of S.

THEOREM 3.2. I f a 2-tuple S is a factor of R = (d I , d 2) and in reverse order
with respect to R, and min{d 1, d 2} >~ 9, then fn(S) <fn(S 1).

Proof. I~t S=(al ,a2) . If S -1 = (a 2 , a 1) is not a factor of R, then the
theorem obviously holds. Let us consider the case in which S 1 is a factor
of R. Since S is in reverse order with respect to R, we can set a~ > a 2,
9<~d I <d~, d 1 =px l, and d 2 =px2, where p=lcm(a l ,a 2) and x 1 < x 2. Let
integers l I = p / a I and l 2 = p / a 2. By a 1 > a2, we have 11 < l 2. Then

and

where

fR(S) = (--I~,X~ + 3l l~ + 311 p ~ +p~x~ + 6)

--12X 2 + 312X 2 + 312px 2 +p2x 2 + 6), X(2 2

fR(S ') = (-12xZ + 312x, + 312px~ +p2xl +6)

× (--l?x 2 + 31lx 2 + 311px; - +p-x 5 + 6),

fR(S)--fR(S ~) =3(t,--t2)(X~--Xl)E,

E=ll l2XlX 2 + 2(lj +12)(x , +x2) +p2xlx 2 - 6 (1 +p(x , +Xe)).

Since l 1 </2 and x 2 > x l , E ~ . 0 holds if and only if fR (S)< fn (S - l) . We
now prove E > 0 as follows.

(1) Let us consider the case in which xj = 1.

E = l~I~_~ +2(1, +12)(1 +~2) + p ~ : - 6(1 +p(1 +x~))

= lj~x2 + 2(l, +l~)(1 + ~) - 6 + p ((p - 6) x ~ - 6)

> 0 ~ 0

> 0 , by l <~ll <12, x2>~2 and p = d l / x ~ >~9.

98 A . Y . H . CHOU ET AL.

(2) Let us consider the case in which x~ >~ 2.

E = l , 1 2 x , x 2 + 2(l 1 + 12)(x I +x2) +pZx~x 2 - 6 (1 +P(Xl +x2))

= 1,12x,x 2 + 2(l, + 12)(x ~ +x2) -- 42 + (d 1 - 6) (d 2 - 6)

>~0 > 0

>0, byl~<l t<12, 2<<.x l < x 2 and 9~<d l < d 2.

By (1) and (2), we complete the proof. []

COROLtARY 3.2. I f S = (a l , a 2) , ala2 4:4, is a minimal 2-tuple and in
reverse order with respect to R =(d l ,d2) , and min{dl,d 2} >/9, then fR(S) is
the smallest among all fR(T), where T is a 2-tuple of ala 2. Furthermore, S is a
minimal-f 2-tuple with respect to R.

Proof. This follows directly from Corollary 3.1 and Theorem 3.2. []
We can find a minimal-f 2-tuple by employing a minimal 2-tuple.

Although Corollary 3.1 holds only when ala 2 4:4, the unsatisfied cases
simply include (1,4), (4, 1) and (2,2). Hence, when ala2 =4, we can get a
minimal-f 2-tuple by directly calculating the value of fR(S). As for the
deficiency of Theorem 3.2, we can also directly calculate the value of fR(S)
and fn(S- 1) as min{dl, d2} ~< 8. Therefore, we have the following algorithm
to generate a minimal-f 2-tuple.

ALGORITHM 1. An algorithm to find a minimal-f 2-tuple of C with
respect to (dl, d2).

Input: C and a 2-tuple R = (d , , d 2) .
Output: A minimal-f 2-tuple of C with respect to (d,, d2).

STEP 1. If C = 4, then make comparisons to obtain the 2-tuple S* with
the smallest fR(S') , where all possible 2-tuples S' include (2, 2), (1, 4), and
(4,1), and go to Step 6.

STEP 2. Find (p, q), where pq = C and (p, q) is a minimal 2-tuple with
respect to (dl, d2).

STEP 3. If d 1 = d 2 or (q ,p) is not a factor of (dl,d2), then set S* = (p , q)
and go to Step 6.

STEP 4. If (p , q) is in reverse order with respect to (d l ,d 2) and
min{d 1, d 2} >~ 9, then set S* = (p, q) and go to Step 6.

O R T H O G O N A L R A N G E QUERIES 99

STEP 5. Set S = (p , q) . Compare S with S -~ by evaluating fR(S) and
fR(S-1) , and set S* to be the 2-tuple with the smallest fR(S'), where
S' ~ { S , S 1}.

STEP 6. S* is a minimal-f 2-tuple with respect to R.

3.2 M I N I M A L - f N-TUPLES

For an N-tuple (dl , d 2 , . . . , d N) , we can transform an N-tuple
N a N minimal-f N-tuple with respect (a l ,a 2 a N) with FIi=l ilFli=ldi into a

to (d l , d 2 d N) by employing Algorithm 1. The detailed process is
described in the following algorithm.

ALGORITHM 2. An algorithm that transforms an N-tuple (a I, a 2 a N)

into a minimal-fN-tuple with respect to (d~,d 2 t iN).

Input: Two N-tuples (a 1, a 2 , a N) and (d l, d 2 dN) , where
N N

I~i= lailI-[i= ldi •
Output: A minimal-f N-tuple of l-IN= lai with respect to (d~, d 2 dN).

STEP l. If (a l ,a 2 a s) is a factor of (d l , d 2 dN), then set a~=aj,
for j = 1,2 N, and go to Step 3.

l a i / l -] i = l a i) , for STEP 2. Set a' 1 =gcd(dl , l-INi=lai) and aj' =gcd(di , l-lU= j - l ,
j = 2 , 3 ,N, to obtain a factor (a'l,a' 2 a' N) of (d l , d 2 dN).

(11 2 .-" N) i ~ N , and j ~ N - 1 . STEP 3. 7r 0 ~ 2 ... N '

STEP 4. C = a~a' i. Find (p, q) by Algorithm l, where pq = C and (p, q) is
a minimal-f 2-tuple with respect to (d=o~j), d~,,~i)).

STEP 5. If (p , q) = (a~, a'i), then go to Step 8.

STEP 6. Reorder (a'l,a' 2 p , q a' N) to obtain a new N-tuple
¢ ! ! t t (a~,a2,. . a'u) such that ' and where 7r 1 is a permu- • , ak I <~ak ak=a~r;~(k),

tation of {1,2,..., N}.

STEP 7. 7r 0 ~ rr 1 • rr 0, and return to Step 4.

STEp 8. If j 4: 1, then j ~ j - 1, and return to Step 4.

STEP 9. If i 4: 2, then i ~ i - 1, j ~ N, and return to Step 4.

STEp 10. (a'l,a'2 a'N) is a minimal-f N-tuple with respect to
(d=o~o,d~o~2) d,Q~N)). Let a* =a 'o~ i). Thus, (a~,a~ ,a* N) is a mini-
mal-fN-tuple of lift__ lai with respect to (d l , d 2 dN).

100 A . Y . H . C H O U E T AL.

E X A M P L E 3.2. Consider (al , a2, a3) = (2, 12, 3) and (d l, d2, d 3) = (8,12, 6).
Then, the process of Algori thm 2 is as follows.

1. Since (2, 12,3) is a factor of (8, 12, 6), set (a'l, a' 2, a~)= (2, 12,3).
(1 2 3) i = 3 , and j = 2 . 2. Go to Step 3. 7r 0= 1 2 3 '

3. C -- a' a' = 2 3 12 × 3 = 36. We find (6,6) as the minimal-f 2-tuple with
respect to (d.,,~2~, d~,,~3)) = (d2, d 3) by Algori thm 1.

4. Reorder . We obtain (2, 6, 6) and 1r i = 1 ~ 3 "

(I 2 3) , a n d r e t u r n t o S t e p 4 . 5 . 7r 0 = 7rl "7"/'(I = 2 3

6. C = a'za'3 = 6 × 6 = 36. We find (6, 6) as the minimal-f 2-tuple with
respect to (dTr0{2) , dTrd3)) + (d2, d3) by Algori thm 1.

7. Go to Step 8. Since j = 2 v~ 1, j ,--- 1 and return to Step 4.
8. C =a'la'3 = 2 x 6 = 12. We find (4,3) as the minimal-f 2-tuple with

respect to (d,,,(l), d~,,o)) = (dl, d 3) by Algori thm 1.

9. Reorder . We obtain (3,4,6) and ~-t = 3 i "

10. ~ '0=~'1"7r0= 3 1 2 "

11. Since every 2-tuple in (3,4,6) is a minimal-f 2-tuple, (3,4,6) is a
minimal-f 3-tuple with respect to (d,~,,(1), d~o(a), d~r~,(3)) = (d3, dl, d2). That
is, (4, 6, 3) is a minimal-f 3-tuple with respect to (d~, d2, d3)"

DEFINITION 3.10 [3]. Let S = (a l , a 2 aN), T=(a ' l ,a ' 2 a'N), R =
= I 1 u ' and both S and T be factors of R. If (d l , d 2 dN), IqiN lai i=lai,

there exists an i such that a i = p q and a' i =q, and a j such that a)=paj ,
and for all k, k ~ i, j, a~, = a k, then T is a pq-tramformation of S for R.

DEFINITION 3.11. Let T be a pq- t ransformat ion of S for R. If f R (T) <
fR(S) , then T is an effectit,e pq-transformation of S for R.

Recall that in Example 3.2, the 3-tuple (2,12,3) is t ransformed as
follows.

(2, 12,3) --* (2 , 6 , 6) ~ (4 , 6 , 3) .

Thei r corresponding fR(S) 's are 2436480, 2249856, and 2150400, respec-
tively. That is, each t ransformat ion gradually reduces the corresponding
fR(S) . We show that such t ransformat ion is an effective pq- t ransformat ion
as follows.

LEMMA 3.1. Let S = (a l , a 2 , . . . ,aN), T = (a'l,a' 2 a'u), and R =
(dl , d 2 dN). Let T be a pq-transformation o f S for R. I f in this pq-trans-

t~

m

t~

o []

A

×

~
D

~

t

b~

+ sN

+ + +

I I

b~

+ + + +

~
J

LI
f

~

I

rJ

+ + + +

x

~ ,
~

 I + + + +

I I + + + + I

r
i.~

+ + + +

i
I

II I + + +

~
.t

~
 + t + + + +

I

~,.
.~

~

~
.~

,

%

i

A I + + + +

J

I

-_
._

_%

+ + + -F

0 Z;

,H

m

0 c"
)

0 Z >.

©

m

102 A . Y . H . CHOU ET AL.

THEOREM 3.3. Let S = (a I, a 2 , . . . , aN), R = (d 1, 6 2 dN), and
N N Hi= lailFIi= ldi • I f S is not a minimal-f N-tuple with respect to R, then S can

be converted into S* such that S* is a minimal-f N-tuple of I-I N lai with
respect to R and fR(S*) < fR(S).

Proof. Note that in Algorithm 2, the algorithm always terminates and
produces an N-tuple in which every pair (a i, a j) is a minimal-f 2-tuple with
respect to (d i, dj). According to Lemma 3.1, every transformation executed
in the algorithm is an effective pq-transformation. Therefore, we can apply
a sequence of effective pq-transformations to S to transform S into S*
such that S* is a minimal-f N-tuple with respect to R. Assume that
Algorithm 2 takes m steps to finish. Let S o = S and after the execution of
the mth step, the N-tuple becomes S m. We now have S o, S~ Sin, where
S O = S and S m = S*. According to I_~mma 3.1, fR(Sk) <fR(Sk _ 1). In particu-
lar, fR(S*) =fR(Sm) <fR(So) =fR(S)" This completes the proof. []

Chang et al. [3] showed that there exist few exceptions such that
minimal N-tuples are not unique. For instance, among all integers from 1
to 1000 for N = 3, integer 360 is the only case with two minimal 3-tuples,
namely (6, 6,10) and (5, 8, 9). Besides, a minimal-f N-tuple (al, a 2 a N)
with respect to (d~,d 2 d N) is a minimal N-tuple except when there
exists one pair a~ and aj such that aia j = 4, or min 1 ~< i ~ Ndi ~< 8. Therefore,
there exists only one minimal-f N-tuple in most cases, and the minimal-f
N-tuple is the N-tuple such that fR(S) is the minimum. Furthermore, we
obtain the following corollary.

COROLLARY 3.3. Let S be an N-tuple of C and a factor of N-tuple R. I f
there is only one minimal-f N-tuple of C with respect to R, fR(S) is the
smallest among all possible N-tuples of C with respect to R if and only if S is
the only minimal-f N-tuple with respect to R.

4. T H E APPLICATION OF N-TUPLE T H E O R I E S TO T H E DESIGN
OF CPFs

In Section 2, we found that the problem of designing an optimal CPF
can be reduced to the problem of dividing each domain D i into m i
subsets. The values of m l ,m 2 , . . . ,m N should satisfy the following condi-
tions:

1. m l m 2 . . , m N = NB = the number of buckets,
2. d i / m ~ is an integer, and
3. FI~_ ~(- (d i / m i)2 + 3 d J m i + 3dZ/mi + d 2 + 6) is minimal.

Applying Corollary 3.3, we obtain the following theorem.

THEOREM 4.1. Let all records be N-attribute, d i be the domain size of the
ith attribute, and NB be the number of buckets. Then a CPF F is the optimal

ORTHOGONAL RANGE QUERIES 103

CPF for ORQs if its partition form (m l , m 2 m N) satisfies the following
conditions:

(1) FIN_lmi=NB, and
(2) (m l , m 2 m N) is the only minimal-f N-tuple of NB with respect to

(d l , d 2 , d u) .

To obtain a set of mi's that satisfy conditions (1) and (2), we simply
apply Algorithm 2 to the N-tuple (1,1 NB). If the resulting N-tuple
(ml, m 2 m N) is the only minimal-f N-tuple with respect to
(d 1, d 2 d N) , then an optimal CPF has been obtained.

EXAMPLE 4.1. Consider ID1]= 8, fD 2] = 4,]D 3] = 6, and NB = 32. Apply-
ing Algorithm 2 to (1, 1, 32), we obtain (4, 2, 4) as a minimal-f 3-tuple with
respect to (]DI[,]D2] ,]O3]). Since (4,2,4) is the only minimal 3-tuple of 32, it is
the only minimal-f 3-tuple of 32. Therefore, D 1 should be equally partitioned
into four subsets, D 2 into two subsets, and D 3 into four subsets to produce an
optimal CPF.

THEOREM 4.2. Let all records be N-attribute, d i be the domain size of the
i-th attribute, and NB be the number of buckets. Then a CPF F is the optimal
CPF for ORQs if its partition form { m t , m 2 m N) satisfies the following
conditions:

(1) V I N l m i = N B ,
(2) each pair (mi, mj) satisfies mira j 4: 4,
(3) (m l , m 2 m N) is the only minimal N-tuple of NB with respect to

(dl,d2 dN),
(4) (m~,m 2 m N) is in ret~erse order with respect to (d l ,d 2 dN),

and
(5) all di >19.

Proof. According to Corollary 3.2, each pair (mi, m j) is a minimal-f
2-tuple with respect to (di, dr). This yields (ml, mE m N) as a minimal-f
N-tuple of NB with respect to (d i ,d 2 dN). Besides, (ml ,m 2 m N) is
the only minimal N-tuple of NB. Thus (m l , m 2 m N) is the only
minimal-f N-tuple of NB with respect to (d~, d 2 dN). From Theorem
4.1, we conclude that (m~,m 2 m N) is the optimal CPF partition form
and F is the optimal CPF. []

5. CONCLUSIONS

In this paper, we have studied properties that help in designing a good
CPF for ORQs. We have shown the problem of designing an optimal CPF
for ORQs to be related to the problem of finding a minimal N-tuple,

104 A.Y.H. CHOU ET AL.

which corresponds to the partition form of a CPF, with few exceptions.
Because of these exceptions, we defined a new term, minimal-fN-tuple, to
cover minimal N-tuples that describe the properties of optimal CPFs for
ORQs. We have also shown some theories of minimal-]" N-tuples. By
employing the theories of minimal-f N-tuples, we have developed a method
for generating a minimal-f N-tuple and derived some properties of the
optimal CPF for ORQs. Intuitively, these properties will provide a guide-
line to solve the problem of the optimal CPF for ORQs in a distributed
system, and design a good search tree structure for ORQs in the near
future.

APPENDIX A

THEOREM 3.L For a 2-tuple R, and its two factors S = (a l , a 2) and
T = (a'l,a'2), if ala 2 =a'la' 2 -¢4 and a 1 + a 2 < a' I + a' 2, then fR(S) <fR(T).

Proof. By alaz=a'la'2, we can assume (a l , a z) = (m p , q) and (a'l,a'2) =
(m,pq) . Since al +a2 <a'l +a' 2, m p + q < m + p q or (p - 1) (q - m) > O .
Hence p > 1 and q > m. Let R =(dl , d2). Because R is a common multiple
of S and T, we set d~ = mpx 1 and d 2 =pqx 2. Then

JR(S) = (-x~ + 3x, + 3mpx~ +m2p2x~ +6)

× (-pZx~ + 3px 2 + 3p2qx 2 +p2qZx~ +6),

JR(T) = (- p 2 x 2 + 3px, + 3mp x[+m2p2x~ +6)

X(-x~ + 3x 2 + 3pqx~ +p2q2x~ +6),

and

fR(S) --fR(T) = (1 - p) (A + B + C) ,

where

A =pZ(q_m)x~xZ(3mpq_ (q + m) (p + 1) - 3) ,

B = 3 (x 2 - x l) (p x , x 2 + 2 (p + 1) (x 2 + x ,) - 6) - 18p(qx 2 - m x ~) , and

C = 3pZxa Xz(qZx 2 - mZxl).

O R T H O G O N A L R A N G E Q U E R I E S 105

Since 1 <p , A + B + C > 0 holds if and only if fR(S) <fR(T). Besides, by
ala 2 4= 4, we know the case of m = 1 and p = q = 2 does not exist. Thus, we
need to show A + B + C > 0 holds except for m = l and p = q = 2 . We
distinguish this into three cases: (1) m = 1, p > 2, and q >3 , (2) m = 1,
p > 3 , and q = 2 , and (3) m > 2 , p > 2 , and q > m + 1.

CASE 1. {m = 1, p >~ 2, and q > 3}.
Here

A = p 2 (q _ 1) x ~ x 2 (3 p q _ (q + l) (p + 1) - 3) ,

B = 3 (x 2 - x l) (p x l x 2 + 2 (p + l) (x2 +x l) - 6) - 1 8 p (q x 2 - x 2) , and

C = 3p2x, x2(q2x2 --X 1).

Since

A > ~ 3 (q - 1) p 2 x ~ x 2, b y p > 2 and q > 3 , and

B > 3 (x 2 -x~)px~x 2 - 1 8 p q x 2, b y p > 2 ,

hence A + B + C > 3 (q - 1)p2xZ~x~ + 3(x 2 -x~)px~x 2 - 18pqx 2 + C =
3px 2 D, where D = ((q - 1)x~x 2 + q2x 2 -x~)x~ p + (x 2 - x 1)x 1 - 6qx 2. Simi-
larly, by substituting p > 2, q > 3, xl > 1, and x 2 >1 1 into equation D to
eliminate the corresponding variables, we obtain D > 0. This yields A + B
+ C > 0 .

CASE 2. {m = 1, p >I 3, and q = 2}.
Here

A=.~p x F x ~ t p - 2) ~ , 2 * >~.~p'x~xS, b y p > 3 .

Define a' - 3 p 2 x Z x 2. We further distinguish the following two cases.

(i) x I > x 2.

Let x~ = kx 2, where k > 1. Then, a ' = 3p2k2x 4 and C = 3p2kx2(4x2
- kx2).

B = - 3 (k - 1) x2(pkx22 + 2(p + 1) (k + 1)x 2 - 6) - 18p(2 - k 2) x~

> - 3 p (k - 1) t e c 3 + 9 p k 2 x 2 - 3 O p x 2, byp>~3 and k > l .

106 A . Y . H . C H O U ET AL.

Let b' =- - 3 p (k - 1)kx 3 + 9pk2x~ - 30px~. Hence A + B + C > a ' + b ' +
C = 3px~D, where D =pkZx~ - (k - 1)kx 2 + 3k 2 - 10 + 4pkx 2 - p k Z x 2 . Sim-
ilarly, by substituting p >/3, x 2 >t 1, and k > 1 into equation D to eliminate
the corresponding variables, we obtain D > 0. That yields A + B + C > 0.

(i i) x 1 ~<x~.
Let x 2 =kx l, where k>~ 1. Then, a' = 3 p 2 k Z x 4 and C = 3p2kx~(4kxl

--X1).

B = 3 (k - 1) x l (p k x ~ + 2 (p + 1) (k + 1) x ~ - 6) - 18p(2k 2 - 1)x(

> ~ - 3 6 p k 2 x ~ , b y p / > 3 and k > t l .

Let b' - - 36pkZx~. Hence A + B + C > a ' + b ' + C = 3pkx~D, where D =
4pkx~ - 12k +pkx~ - p x t . Similarly, by substituting p >/3, x~ >t 1, and k >/1
into equation D to eliminate the corresponding variables, we obtain
D >/0. That yields .4 + B + C > 0.

CASE 3. {m>~2, p>~2, and q > ~ m + 1}.
Here

A = p 2 (q _ m) x ~ x ~ (3 m p q - (q + m) (p + 1) - 3),

B = - 3 (x 2 - x l) (p x , x 2 + 2 (p + 1) (x z + x ,) - 6) - 1 8 p (q x ~ - m x () , and

C = 3pZx lx2(q2x2 - m 2 x l) .

Since

A > ~ 3 (m - 1) p 3 q (q - m) x ~ x ~ , byp> ~ 2 and q > ~ m + l , and

B > 3 (x 2 - x l) p x ~ x 2 - 1 8 p q x 2, byp> ~ 2 and xz>~l ,

hence A + B + C > 3(m - 1)p3q(q - m)x~x22 + 3(x 2 - x l) p x l x 2 - 18pqx 2 +
C = 3px2D, where D = ((m - 1)p2x2x2 +px~xz)q 2 - (m (m - 1)p2x21x 2 +
6x2) q - m2px21 + (x 2 - x l) x P Similarly, by substituting q >/m + 1, p >/2,
m >12, x l >~ 1, and x 2 >I-1 into equation D to eliminate the corresponding
variables, we obtain D > O. That yields A + B + C > O.

These cases complete the proof. [3

This research was supported by the National Science Council, Taiwan, R.O.C., under
contract NSC 83-0408-E009-15.

O R T H O G O N A L R A N G E Q U E R I E S 107

R E F E R E N C E S

1. K. A. S. Abdel-Ghaffar and A. E1 Abbadi, Optimal disk allocation for partial match
queries, ACM Trans. Database Syst. 18(1):132-156 (1993).

2. A. V. Aho and J. D. Ullman, Optimal partial match retrieval when fields are
independently specified. ACM Trans. Database Syst. 4(2):168-179 (1979).

3. C. C. Chang, R. C. T. Lee, and H. C. Du, Some properties of Cartesian product
files, Proc. ACM S1GMOD--Int. Conf. Management of Data, Santa Monica, 1980,
pp. 157-168.

4. C. C. Chang, M. W. Du, and R. C. T. Lee, Performance analyses of Cartesian
product files and random files, IEEE Trans. Software Eng. SE-10:88-99 (1984).

5. C. C. Chang, Optimal information retrieval when queries are not random, Inform.
Sci. 34(3):199-223 (1984).

6. C. C. Chang, C. Y. Chert, and S. S. Chang, Optimality properties of binary Cartesian
product file systems, Policy Inf. 13(1):115-125 (1989).

7. C. Y. Chen, C. C. Chang, and R. C. T. Lee, Optimal MMI file systems for
orthogonal range retrieval, Inf. Syst. 18(1):37-54 (1993).

8. A. Y. H. Chou, The design of a good multi-attribute file system for queries, M. S.
thesis, National Chiao Tung University, Taiwan, ROC, 1988.

9. A. Y. H. Chou, W. P. Yang, and C. C. Chang, Greedy file--A new data organization
concept for partial matcha retrieval, Comput. J. 35:403-408 (1992).

10. W. C. Lin, R. C. T. Lee, and H. C. Du, Common properties of some multi-attribute
file systems, IEEE Trans. Software Eng. SE-5:160-174 (1979).

11. J. H. Liou and S. B. Yao, Multi-dimensional clustering for data base organizations,
Inf. Syst. 2:187-198 (1977).

12. R. L. Rivest, Partial-match retrieval algorithms, SIAM J. Comput. 14(1):19-50
(1976).

13. J. B. Rothnie and T. Lozano, Attribute based file organization in paged memory
environment, Commun. ACM 17(2):63-69 (1974).

14. T. Y. Tang, D. J. Buehrer, and R. C. T. Lee, On the complexity of some
multi-attribute file design problem, Inf. Syst. 10(1):21-25 (1985).

Received 1 January 1995; revised 30 August 1995

