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ORIGINAL ARTICLE

Mirror MoCap: Automatic and efficient
capture of dense 3D facial motion parameters

from video

Abstract In this paper, we present
an automatic and efficient approach
to the capture of dense facial motion
parameters, which extends our previ-
ous work of 3D reconstruction from
mirror-reflected multiview video.

To narrow search space and rapidly
generate 3D candidate position lists,
we apply mirrored-epipolar bands.
For automatic tracking, we utilize
spatial proximity of facial surfaces
and temporal coherence to find the
best trajectories and rectify statuses
of missing and false tracking.

More than 300 markers on a subject’s
face are tracked from video at a pro-
cess speed of 9.2 frames per second
(fps) on a regular PC. The estimated
3D facial motion trajectories have
been applied to our facial animation
system and can be used for facial
motion analysis.

Keywords Facial animation - Mo-
tion capture - Facial animation
parameters - Automatic tracking

1 Introduction

From abig smile to asubtle frown to a pursed mouth,
a face can perform various kinds of expressions to implic-
itly reveal one’s emotions and meanings. However, these
frequent expressions, which we usually take for granted,
involve highly complex internal kinematics and sophisti-
cated variations in appearance. For example, during pro-
nunciation, nonlinear transitions of a face surface depend
on preceding and successive articulations, a phenomenon
known as coarticulation effects [10].

In order to comprehend the complicated variations
of aface, recently more and more researchers have been
using motion capture techniques that simultaneously
record 3D motion of alarge number of sensors. When
sensors are placed on a subject’s face, these techniques
can extract the approximate motion of these designated
points. Today, commercial motion capture devices, such
as optical or optoelectronic systems, are able to accurately
track dozens of sensors on a face. However, these de-
vices are usually very expensive, and the expense becomes

a significant barrier for researchers intending to devote
themselves to areas related to facial analysis. Moreover,
current motion capture devices are unable to track spa-
tially dense facial sensors without interference. Not only
can a large quantity of facial motion parameters directly
provide more realistic surface deformation for facial an-
imation, but the dense facial motion data could also be
a key catalyst for further research. From the aspect of face
synthesis, in the current process of animation production,
facial motion capture data of 20 to 30 feature points are
used to drive a well-prepared synthetic head. Motion vec-
tors on the face’s uncovered areas are estimated by internal
virtual muscles, scattering functions, or surface patches.
Animators can only adjust coefficients of the muscles or
patches empirically from their observations. With dense
facial motion data as criteria, the coefficients can be auto-
matically calculated, and the results will be more faithful
to real human facial expression. Regarding facial analy-
sis, numerous hypotheses or models have been proposed
to simulate facial motion and kinematics. Most current re-
search uses only sparse facial feature points [18, 19] due to
tracking device capacities. Sizeable and dense facial mo-
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tion trajectories can provide further detailed information
for correlations of facial surface points in visual speech
analysis.

In our previous work [20], we proposed an accurate 3D
reconstruction algorithm for mirror-reflected multiview
images and a semiautomatic 3D facial motion tracking
procedure. Our previous system can track around 50 facial
markers using a single video camcorder with two mirrors
under normal light conditions. When tracking dense fa-
cial markers, we found that ambiguity in block matching
caused the tracking to degenerate dramatically. Occlu-
sion is the most critical problem: for example, when our
mouths are pouting or opened wide, the markers below the
lower lips vanish in video clips. We tried to use threshold-
ing in block matching and Kalman predictors to tackle this
problem; despite our efforts, it works satisfactorily only
for short-term marker occlusion.

Fully automatic tracking of multiple target trajecto-
ries over time is called the “multitarget tracking prob-
lem” in radar surveillance systems [8]. When only af-
fected by measurement error and false detection, this
problem is equivalent to the minimum cost network flow
(MCNF) problem. The optimal solution is efficient [9, 27].
Nevertheless, when measurement errors, missing detec-
tion (false negative), and false alarms (false positive) all
occur during tracking, time-consuming dynamic program-
ming is required to estimate approximate trajectories, and
the tracking results can degenerate seriously even if the
occurrence frequency of missing detection slightly in-
creases [28]. In our experiments, even though fluorescent
markers and blacklight lamps are used to enhance the clar-
ity of markers and to improve the steadiness of markers’
projected colors, missing and false detections are still un-
avoidable in the feature extracting process.

Fortunately, the motion of markers on a facial surface
is unlike that of targets tracked in radar systems. Targets
in the general multitarget-tracking problem move indepen-
dently, and consequently the judgement of a target’s best
trajectory can only stand on its prior trajectory. In contrast,
points on a facial surface have not only temporal conti-
nuity but also spatial coherence. Except for the mouth,
nostrils, and eyelids, a face is mostly a continuous surface,
and a facial point’s positions and movements are similar
to those of its neighbors. With this additional property, au-
tomatic diagnoses of missing and false detection become
feasible and the computation is more efficient.

Guenter et al. [14] tracked 182 dot markers painted
with fluorescent pigments for near-UV light. This research
used special markers and lights to enhance the feature de-
tection, and the researchers took into account the spatial
and temporal consistency for reliable tracking. Guenter
and his colleagues’ impressive work inspired us.

In this proposed work, we follow our previous frame-
work of estimating 3D positions from mirror-reflected
multiview video clips [20] in which two mirrors are placed
near a subject’s face and a single video camera is used

to record simultaneously frontal and mirrored facial im-
ages. Instead of normal light conditions, to improve clar-
ity, we also apply markers with UV-responsive pigments
for blacklight blue (BLB) fluorescent lights. Compared to
Guenter et al.’s work, the proposed method is more effi-
cient and versatile.

Guenter et al.’s work required subjects’ heads to be
immobile because of the limitation of markers’ vertical
orders in their marker matching routine, and therefore
head movement had to be tracked independently by other
devices. In addition, there was no explicit definition of
tracking errors in this method, and an iterative approach
was used for node matching. In contrast, our proposed
method is capable of automatically tracking both facial ex-
pressions and head motions simultaneously without syn-
chronization problems. Furthermore, we propose using
mirrored epipolar bands to rapidly generate 3D candidate
points from projections of extracted markers and forming
the tracking as a node-connection problem. Both spatial
and temporal coherence of dense markers’ motion are ap-
plied to efficiently detect and compensate missing track-
ing, false tracking, and tracking conflicts. Our system is
now able to capture more than 300 markers at a process
speed of 9.2 fps and can be extended for a regular PC to
track more than 100 markers from live video in real time.

This paper is organized as follows. In Sect. 2, we men-
tion related research in facial motion capture and face
synthesis. Section 3 describes equipment setting and gives
an overview of our proposed tracking procedure. Section 4
presents how to extract feature points from image se-
quences and explains the construction of 3D candidates. In
Sect. 5, we present a procedure to find the best trajectories
and to tackle the problem of missing and false tracking.
The experimental results and discussion are presented in
Sect. 6. Finally, we present our conclusions in Sect. 7.

2 Related work

For tracking to be fully automatic, some studies have em-
ployed a generic facial motion model. Goto et al. [13]
used separate simple tracking rules for eyes, lips, and
other facial features. Pighin et al. [23,24] proposed track-
ing animation-purposed facial motion based on linear
combination of 3D face model bases. Ahlberg [1] pro-
posed a near-real-time face tracking system without mark-
ers or initialization. In “voice puppetry” [7], Brand ap-
plied a generic head mesh with 26 feature points, where
spring tensions were assigned to each edge connection.
Such a generic facial motion model can rectify “derailing”
trajectories and is beneficial for sparse feature tracking;
however, an approximate model can also overrestrict the
feature tracking while a subject does exaggerated or un-
usual facial expressions.
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Fig. 1. Applying extracted motion parameters of 300 markers to a sythetic face. The first row is extracted 3D motion vectors where the
line segments represent displacement comparing to the neutral face; the middle row is a generic head driven by retargeting motion data;
in the third row, the retargeting motion data are applied to a personalized face

For 3D facial motion tracking from multiple cameras,
an optoelectronic system, e.g., Optotrak (www.ndigital
.com/optotrak.html), uses optoelectronic cameras
to track infrared-emitting photodiodes on a subject’s face.
This kind of instrument is highly accurate and appropriate
for analysis of facial biomechanics or coarticulation ef-
fects. However, each diode needs to be powered by wires,
which may interfere with a subject’s facial motion.

Applying passive markers can avoid this problem.
In the computer graphics industry for movies or video
games, animators usually make use of protruding spher-
ical markers with high response to a special spectrum
band, e.g., red visible light or infrared in the vicon se-
ries (www.vicon.com). The high response and spheri-
cal shape make feature extraction and shape analysis eas-
ier, but these markers do not work well for lip surface

motion tracking because people sometimes tuck in their
lips, and these markers will obstruct the motion. Besides,
the extracted motion of protruding markers is not the exact
motion on a face surface but the motion at a small distance
above the surface.

In addition to capturing stereo videos with multi-
ple cameras, Patterson et al. [22] proposed using mirrors
to acquire multiple views for facial motion recording.
They simplified the 3D reconstruction problem and as-
sumed mirrors and the camera were vertical. Basu et
al. [3] employed afront view and a mirrored view to
capture 3D lip motion. In our previous work [20], we
also applied mirrors for acquirement of facial images
with different view directions. However, our 3D recon-
struction algorithm proved simpler yet more accurate
because it conveniently uses symmetric properties of mir-
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rored objects. Readers can refer to [20] for a detailed
explanation.

Some devices and research apply other concepts to
estimate 3D motion or structure. Blanz et al. [6] used
the optical flow method for correspondence recovery be-
tween scanned facial keyframes. Structured-light-based
systems [11, 17,29] project patterns onto a face and can
therefore extract 3D shape and texture. Detailed undula-
tion on a face surface can be captured with high-resolution
cameras. Zhang et al.’s system [29] can even automati-
cally track correspondences from consecutive depth im-
ages without markers by template matching and optical
flow. However, the estimation can be unreliable for tex-
tureless regions.

3 Overview
3.1 Equipment setting

In order to enhance the distinctness of markers from others
in video clips, we utilize the fluorescent phenomenon
covering markers with fluorescent pigments. When illu-
minated by BLB lamps, the pigments are excited and
emit fluorescence. Since the fluorescence belongs to vis-
ible light, no special attachment lens is required for the

A
S

video camera. In our experiments, we found that fluor-
escent colors of our pigments could be roughly divided
into four classes, green, blue, pink, and purple. To avoid
ambiguity in the following tracking, we evenly place
four classes of markers on asubject’s face and keep
markers as far as possible from those of the same color
class.

The equipment setting of our tracking system is shown
in Fig. 2. Two mirrors and two BLB lamps are placed in
front of a digital video (DV) camcorder. The orientations
and locations of mirrors can be arbitrary, as long as the
front- and side-view images of a subject’s face are covered
by the camera’s field of view (Fig. 3).

After confirming the camera’s view field, including
the frontal and two side views, the mirrors, the cam-
era, and the intrinsic parameters of the camera have
to be fixed. We use Bouguet’s camera calibration
toolbox (www.vision.caltech.edu/bouguetj/
calib_doc) based on Heikkila et al.’s work [16] to
evaluate the intrinsic parameters (including focal lengths,
distortion, etc.). The coordinate system is then normalized
and undistorted based on the intrinsic parameters, called
the normalized camera model. After this, we estimate the
mirrors’ parameters by our previous work [20]. The nor-
malized coordinate system is applied to all the following
steps.

Fig. 2. The tracking equipment. This photo is taken under normal light. Two “Blacklight Blue”(BLB) lamps are placed in front of a sub-
ject and mirrors. The low-cost special lamps are coated with fluorescent powders, and it can emit long wave UV-A radiation to excite

luminescence
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Fig.3. A captured video clip of fluorescent markers illuminated only by BLB lamps. The fluorescence is visible in the visible light

spectrum and no special lens is required for filtering

3.2 Initialization

Initialization of the tracking procedure reconstructs the
3D positions of markers in the first frame (the neutral
face). To efficiently recover point correspondences in the
first frame, two approaches can be used for different
conditions.

The first approach is to employ 3D range scanned
data. Figure 4 shows the process of recovering point cor-
respondences. Before applying 3D scanned data, the coor-
dinate system of the data must conform to the normalized
camera model. First, markers’ projected positions are ex-
tracted (Fig. 4a), and then a user has to manually select n

(n > 3) corresponding point pairs on the nose tip, eye cor-
ners, mouth corners, etc. in the first video clip to form a
3D point set S,. After corresponding feature points in 3D
scanned data, Sp, are also designated, the affine transform-
ation between 3D scanned data and specified markers’ 3D
structure can be evaluated by a least-squares solution pro-
posed by Arun et al. [2].

While we extend the vector op;, where o is the cam-
era’s lens center and p; the extracted projected position
of marker i in the frontal view, the intersection of the
line 6p; and 3D scanned data is regarded as the 3D pos-
ition of marker i, denoted as m;. The corresponding point
p; in aside view is then recovered by mirroring m; to

d

Fig. 4. Recovering 2D point correspondences with 3D scanned data and RBF interpolation
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the mirrored space and projecting the mirrored one, m;,
back to the image plane. Due to perturbation of meas-
urement noise, within a tolerant region the nearest point
of the same color class is regarded as the corresponding
point p.

The other approach is to recover point correspondences
by evaluating a subject’s 3D face structure directly from
rigid-body motion. If an object is rigid or not deformable,
affine transformation (rotation R and translation #) re-
sulting from motion is equivalent to the inversed affine
transformation resulting from changes in the coordinate
system. Therefore, reconstructing the 3D structure from
rigid-body motion is equivalent to reconstructing the 3D
structure from multiple views [26]. A subject is required
to retain his or her face in a neutral expression and slowly
move his or her head in four directions: right-up, right-
down, left-up, and left-down. A preliminary 3D structure
of the face can be estimated from markers’ projected mo-
tion in the frontal view, and point correspondence can then
be recovered.

3.3 Overview of the tracking procedure

Figure 5 is the flow chart of the proposed tracking proced-
ure. As mentioned in the Sect. 3.1, in the first step, we have
to evaluate the parameters of the video camera and two
mirrors. Markers’ 3D positions in the neutral face are then
estimated by the methods introduced in Sect. 3.2.

For each successive frame ¢ (t =2...T,,q), feature
extraction is first applied to extract markers’ projected
positions in the frontal and mirrored views. From the pro-
jected 2D positions in real-mirrored image pairs and mir-
ror parameters, we can calculate a set of 3D positions,
which are the markers’ possible 3D positions. We call
these 3D positions “potential 3D candidates” (Fig. 8).
After this step, the tracking becomes a node-connection
problem with the possibility of missing nodes.

Since we allow a subject’s head to move naturally, we
find that the head movement dominates the markers’ mo-
tion trajectories. To avoid head motion seriously affecting
the tracking results, before the “node matching” the global

Evaluate devices’

Reconstruct markers’ 3D positions of

Head motion
parameters

parameters > the 1% frame
Feature Construct potential Evaluate and remove
extraction (— 3D candidates |—»{ head motion from
N markers’ movement
Delay i S ! l
Find 3D point
i ! correspondences
[ i (-1 to 1 frame)
« Predicted E Predicted Rectily false
thead motion | positions tracking and
i (the t+1" ! (the 1+ 1" conflict
\ frame) { [frame)
: v l \ 4
Adaptive Kalman filters Adaptive Kalman filters
E Fort=2~Tug
v

A

Refine the 3D facial
motion trajectories

Fig. 5. The flow chart of our automatic 3D motion tracking procedure for dense UV-responsive markers



Mirror MoCap: Automatic and efficient capture of dense 3D facial motion parameters from video

361

head motion has to be estimated and removed from 3D
candidates. The head motion is estimated from a set of
special markers, and adaptive Kalman filters, which work
according to previous head motion transition, are applied
to improve the stability.

After the head motion is removed from the 3D can-
didates, for each marker we take into account its previ-
ous trajectories and its neighbors’ motion distribution to
judge whether there is a most appropriate candidate or it is
a missing-node situation. Once a marker belongs to a situ-
ation of missing node, false tracking, or tracking conflict,
we apply the comprehensive information of spatial and
temporal coherence to estimate the actual motion. Again,
for each marker an individual Kalman filter is applied to
improve the tracking stability.

Details of feature extraction and the generation of 3D
candidates are described in Sect. 4. The tracking issues
about head motion estimation, finding 3D point correspon-
dences, and detection and rectification of tracking errors
are then presented in Sect. 5.

4 Constructing 3D candidates from video clips

For efficiency of tracking, we first have to narrow the
search space. This issue can be divided into two parts: ex-
tracting markers’ projected 2D positions and constructing
potential 3D candidates.

4.1 Extracting markers from video clips

As shown in the video clip (Fig.3), because we use
UV-responsive pigments and BLB lamps, markers are
conspicuous in video clips. Hence, the automatic fea-
ture extraction can be more reliable and more feasible
than under normal light conditions. We mainly follow the
methodology of connected component analysis in com-
puter vision, which is composed of thresholding, con-
nected component labeling, and region property measure-
ment, but we also slightly modify the implementation for
computational efficiency.

Since the intensity of UV-responsive markers is much
higher than that of other markers, to exclude pixels that
have less probability of marker projection, the first stage
is color thresholding. For efficiency, we skip the mathe-
matical morphology operations used by many feature ex-
traction systems. The thresholding works satisfactorily in
most cases; the most troublesome case, interlaced scan
lines, can be solved more efficiently by merging nearby
connected components.

The second stage is color labeling. In our experi-
ment, we collect six kinds of UV-responsive markers that
are painted with pink, yellow, green, white, blue, and
purple pigments. However, when illuminated by BLB
lamps, there are only four typical colors—pink, blue-

green, dark blue, and purple. Hence, we mainly cate-
gorize markers into four color classes and each color
class comprises dozens of color samples. A selection tool
is provided to select these color samples from training
videos. To classify the color of a pixel in video clips, the
nearest neighborhood method (1-NN) is applied. To re-
duce the classification error resulting from intensity varia-
tion, the matching operation works on a n(;ermalized color
space (nR,nG,nB), where nR = m, nG =
—¢ _ _ uB=—L___ and (R, G, B) is the
original color value. In general, the more color samples
in a color class, the more accurate the color classification
of apixel. For real-time or near-real-time applications,
around four color samples in each color class are suffi-
cient.

Connected component labeling is the third stage
in our feature extraction. It groups connected pixels
with the same color label number as a component, and
we adopt 8-connected neighbors. In our case, a mark-
er’s projection is smaller than aradius of five pixels,
and thus the process of connected component labeling
can be simplified much more than general connected-
component-labeling approaches. We modify the classical
algorithm [15] as partial connected component labeling
(PCCL). Unlike the classical algorithm, for each pixel
(i, j) we take a one-pass process and check only its pre-
ceding neighbors, (i —1, j—1), (i, j—1), (i+1, j—1),
and (i — 1, j). Not all 8-connected components can be la-
beled as the same group by PCCL since we do not use
a large equivalent class table for transiting label num-
bers as in the classical one. But the problem of incon-
sistent label numbers can easily be solved in our next
stage.

After the process of partial connected component la-
beling, there are still redundant connected components
caused by interlaced fields of video, incomplete connected
component labeling, or noise. The fourth stage is to refine
the connected components to make extracted components
as close as possible to the actual markers’ projection. Be-
cause markers are placed evenly on a face and the shortest
distance between two markers of the same color class
is longer than the diameter of a dot marker, nearby con-
nected components should belong to the same marker.
Therefore, the first two kinds of redundant connected com-
ponents can be simply tackled by merging components
with a distance less than the markers’ average diameter.
For the redundant components caused by noise, we sup-
press them by removing connected components less than
four pixels.

4.2 Constructing 3D candidates by mirrored epipolar
bands

If there are Ny and Ny feature points of a certain color
class extracted in the frontal and side views respectively,
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each point corresponding pair can generate a 3D candi-
date, and therefore there are a total of Ny N 3D candidates
of this color class. Guenter et al. [14] took all Ny Ny poten-
tial 3D candidates to track N,,,x markers’ motion, where
N is the amount of actual markers, Ny << Ny Nj.
However, in a two-view system, given a point p; in the
first image, its corresponding point is constrained to lie on
a line called the “epipolar line” of p;. With this constraint,
one only has to search features along the epipolar line. The
number of 3D candidates decreases substantially and the
computation is much more efficient.

We found that there is asimilar constraint in our
mirror-reflected multiview structure. Since a mirrored
view can be regarded as aflipped view from a virtual
camera, the constraint should also exist but be flipped.
We call this mirrored constraint the “mirrored epipo-
lar line.” We briefly introduce the concept of the mir-
rored epipolar line in Fig. 6. We assume that p is an
extracted feature point, o the optic center, and p’ the un-

/ i
P u = (a,b,c)
“\
~
/ \
\
\
\
\
Ma
1{4’}
mirror
image plane 1 W/

optic center O focal length f

Fig. 6. A conceptual diagram of the mirrored epipolar line. p is an

extracted feature in the frontal view and [, is the line across o and
! . . . . - .

p. l,, is the line symmetric to I, by the mirror plane. mqmy is

. . ! .
the projection segment of /,, on the mirror plane. pj, p),» the pro-

jection of m,my, on the image plane /, is the mirrored epipolar line
segment of p

known corresponding point in the mirrored view. Since
p is aprojection, the actual marker’s 3D position, m,
must lie on the line /,,. According to the mirror sym-
metry property, the mirrored marker’s 3D position, m’,
must lie on l; , which is a symmetric line of /,, with re-
spect to the mirror plane. When a finite-size mirror model
is adopted, the projection of l;p is aline segment, and

we denote it as p,p). The corresponding point p’ must

then lie on this mirrored epipolar line segment p/,p}, or
otherwise the marker m is not visible in the mirrored
view.

The mirrored epipolar line of apoint p can easily
be evaluated. In our previous work [20], we deduced an
equation between point p, p’ and a mirror’s normal u =
la, b, c]T:

0 —c b
(PH)TUp=0, where U:|:cb 0 —Oai|. 1)
— a

After we expand p and p’ by their x, y, and z compo-
nents, the equation becomes

—cyp+b
[x, v, 1]| exp—a |=0, 2)
—bx,+ay,
and the line
(—cyp+b)x),+(cxp—a)y,+ (—=bxp+ayp) =0 3)

is the mirrored epipolar line of p.

For noise tolerance capability during potential 3D can-
didate evaluation, we extend the line k pixels up and down
(k= 1.5 in our case) to form a “mirrored epipolar band”
and search corresponding points of the same color class
within the region between two constraint lines

(—cyp+Db)x, + (cxp—a)y, + (=bx, +ayy)

+(cxp—a)k=0 (3a)
and
(—cyp+ b)X;, + (exp— a)y;, + (=bx,+ayp)
—(cxp—a)k=0. (3b)

Figure 7 shows an example of potential point correspond-
ing pairs generated by the mirrored epipolar constraint;
Fig. 8 shows the 3D candidates generated from the con-
strained point correspondences.

With this step the following tracking procedure can fo-
cus mainly on the set of potential 3D candidates. However,
because there is measurement noise in extracted connected
components and some markers are even occluded, the 3D
candidates may not include all markers’ positions. There-
fore, an error-tolerant procedure has to be used for auto-
matic tracking.
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Fig. 7. Candidates of point corresponding pairs under mirrored epipolar constraints. For each extracted feature in the frontal view, each
feature point of the same color that lies within its mirrored epipolar band is regarded as a corresponding point

Fig. 8. Potential 3D candidates generated under the mirrored epipolar constraint and the distance constraint. 3D candidates are first con-
structed from candidates of point correspondences; those whose positions are out of a bounding box are removed from the list of potential

candidates

5 Reliable tracking

The 3D motion trajectories of markers comprise both fa-
cial motion and head motion. Because the moving range of
a head is larger than that of facial muscles, when a subject
enacts facial expressions and moves his or her head at the
same time, most of the markers’ motion results from head
motion. This situation could result in the Kalman predic-
tors and filters affected mainly by head motion. We adopt
separate Kalman predictors/filters for head motion and fa-
cial motion tracking, and we find that the detection and
rectification of tracking error are more reliable if head mo-
tion is removed in advance.

5.1 Head movement estimation and removal

We assume the head pose in the first frame (f = 1) is up-
right. We also define the head motion at time ¢ as the affine
transformation of the head pose at time ¢ with respect to
the head pose at t = 1. The relation can be represented as

h(t) = Rhead(®) - h(1) + Theaa(?) , “)
where h can be any point on a head irrelevant to facial mo-
tion, Rpeqq () is rotation, and Tp..q(¢) is translation. For
automatic head movement tracking, seven specific mark-

ers are pasted on locations invariant to facial motion, such
as a subject’s ears and the concave tip on the nose column.
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Adaptive Kalman filters are used to alleviate unevenness
in trajectories resulting from measurement errors.

Rieqa(t) and Tpeqq(t) both have three degrees of free-
dom. Theqa(t) = [1x (D), t,(0), 1, (D17, Rheaq(?) is a3 x 3 ma-
trix and can be parameterized in terms of (ry(?), ry(?), and
r.(¢)) in radians. Through least-squares fitting methods
comparing elements of Eq. 5, (r(?), ry(#), and r;(#)) can
be extracted from Rpeqq(2).

Rhead = Rz Ry R,

cos(r;) —sin(r;) O[ cos(r) 0 sin(ry)]['1 0 0
— | sin(r;) cos(r;) O 0 1 0 0 cos(ry) —sin(ry)

0 0 L |[—=sin(ry) 0 cos(ry) || O sin(ry) cos(ry)

c(ry)e(ry)  —s(rp)e(ry) +c(ry)s(ry)s(ry)  s(ro)s(re) +c(ry)s(ry)s(ry)
= S(}’Z)S(}’y) C(rz)c(rx)+5(rz)5(ry)5(rx)

_S(ry) C(ry)s(rx)

—c(ry)s(ry) + s(rz)s(ry)s(ry)
C(ry)c(rx)

(&)

where R;, Ry, and R, are rotation matrices along the z-,
y-, and x-axes; c() and s() are abbreviations of cos() and
sin(). Kalman filters are applied directly to these six pa-
rameters: [ry (1), ry(2), r;(1), tx (1), t,(1), t;(1)]. The process
of head motion evaluation is as follows. We use r,(t 4+ 1|f)
to represent the prediction of parameter r, at time ¢+ 1
based on previous data of 7, (1) to r,(7); similarly for other
parameters.

Step 1. Designate specific markers s; (fori =1... Ngyp,
where Ny« is the amount of specific markers,
Ny =7 in our case) for head motion tracking
from the reconstructed 3D markers of the neu-
tral face (r = 1), and denote their positions as
ms;(1). (Either a specific color is used for the spe-
cial markers or users have to designate them in the
first frame.)

Initialize parameters of adaptive Kalman filters
andsetry(1) =ry(1) =7, (1) =0,1,(1) =1,(1) =
t;(1)=0,andr = 1.

Predict the head motion parameters ry(f+ 1|t),
ry(t+110), r (¢ + 110), t(t + 1]1), t,(t + 1]1), and
t,(t+ 1]7) by Kalman predictors and then con-
struct Rpeqq(t 4 11f) and Tpeqq(t + 1|f) by Eq. 5.
Increase timestamp t =1+ 1

Generate predicted positions of specific markers
as

Step 2.

Step 3.

Step 4.

ms;(t]t = 1) = Rpeaa(t|t — 1) x ms;(1)

+ Thead(t|t - 1) (6)

and find ms;(¢) by searching the nearest potential
3D candidates of the same color. The search is re-
stricted within a distance dy,.;, from ms;(¢t|t — 1).
If no candidate is found, set the marker as invalid
at time 7.

Detect tracking error: if estimated motions are ab-
normal when compared to other specific markers,
then set the markers of odd estimation as invalid at
time f.

Step 5.

(The tracking error detection is presented in the
next subsection; we skip the details here.)
Estimate the affine transformation (R, and
Tnsr) of valid specific markers between time ¢ and
the first frame by the method proposed by Arun et
al. [2].

Extract rpg (1), rmsr_y(), and ryg (1) from
Rysr by Eq. 5 and extract ty,5 x (£), tingr_y(#), and
Imsr_z (t) from Tosr-

Take the extracted parameters as measurement in-
puts to the adaptive Kalman filter and estimate the
output [ry (1), ry(1), (1), 1 (1), ty(t)’ (D]

Step 7. If t > Tjimiz, stop; else go to Step 3.

Step 6.

Step 7.

We use a position-velocity configuration for the Kalman
filters for translation, where 3D positions are measurement
input and the internal states are positions and velocities.
The operation of the Kalman filters for rotation is similar,
but the input is a set of angles and the internal states repre-
sent angles and angular velocities. Once the head motion
at time ¢ is evaluated, an inverse affine transformation is
applied to all 3D candidates for head motion removal.

5.2 Recovering frame-to-frame 3D point correspondence
with outlier detection

In this subsection, we assume that head motion is re-
moved from potential 3D candidates, and our goal is to
track markers’ motion trajectories from a frame-by-frame
sequence of potential 3D candidates. Figure 9 is a con-
ceptual diagram of the problem statement. For clarity of
explanation, we take the situation of only one color class
of markers as examples. The methodology of processing
each color class independently can extend to cases of mul-
tiple color classes.

The number of potential 3D candidates in a frame is
around 1.2 ~ 2.3 times the number of the actual markers.
The additional 3D candidates can be regarded as false de-
tection in the multitarget tracking problem. If only false
detection occurs, the graph algorithms for minimum cost
network flow (MCNF) can evaluate the optimal solution.
In our case, we employ Kalman predictors and filters to
efficiently calculate the time-varying position variation of
each marker. However, a marker can “miss” in video clips
occasionally. The missing condition results from blocking
or occlusion due to camera views, incorrect classification
of marker colors, or noise disturbance. When the missing
and false detection occur concurrently, a simple tracking
method without evaluation of tracking error would de-
generate and the successive motion trajectories could be
disordered.

We use an example to explain the serious consequence
of tracking errors. In Fig. 10, marker B is not included
in the potential 3D candidates of the third frame, and its
actual position is denoted as B(3). Based on the previ-
ous trajectory, B’(3) is the nearest potential candidate with
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Fig. 9. A conceptual figure for the problem statement of 3D marker tracking. The markers’ 3D positions in the 1st frame are first evaluated.
The goal of 3D motion tracking is to find frame-to-frame 3D point correspondences from sequences of potential 3D candidates
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Fig. 10. An example of tracking errors resulting from missing markers

respect to the predicted position. According to this false
trajectory B(1) — B(2) — B’(3), the next position should
be B’(4). Consequently, the motion trajectory starts to “de-
rail” seriously and is difficult to recover. Furthermore,
false tracking of a marker may even interfere with track-
ing of other markers. In the example of Fig. 10, marker
C is also undetected in the fourth frame; the nearest can-
didates with respect to the predicted position is C’(4).
Unfortunately, C’(4) is actually marker D at the fourth
frame, denoted as D(4). Because each potential candidate
should be “occupied” by one marker at most, a misjudg-
ment would not only make marker C but also marker D
depart from the correct trajectories.

For detection of tracking errors, we take advantage
of the spatial coherence of face surfaces, which means
a marker’s motion is similar to that of its neighbors. Be-

fore we present our method, the terms are specified in
advance. For a marker i, its neighbors are other markers
that locate within a 3D distance ¢ from its position in the
neutral face, m;(1). For the motion of marker i at time
t, we do not use the 3D location difference between time
t — 1 and ¢ but instead use the location difference between
time ¢t and time 1. We denote v;(f) = m;(t) —m;(1); this
is because the former is easily disturbed by measurement
noise but the latter is less sensitive to noise. The mo-
tion similarity between marker i and marker j at time ¢
is defined as the Euclidean distance between two motion
vectors |[v; (1) — v (D]

A statistical approach is used to judge whether a mark-
er’s motion at time 7 is a tracking error. For each marker i,
we first calculate the similarity of each neighbor and sort
them in decreasing order. To avoid contamination of the
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judgment by unknown tracking error of neighbors, only
the first % neighbors in order of similarity are included
in the sample space £2 (¢ = 66.67 in our experiments).
This mechanism can also solve the judgment problem on
discontinuous parts (e.g., excluding motions on the upper
lips from the reference neighbor sets of motions on the
lower lips). We presume that the vectors within the sample
space §2 approximate a Gaussian distribution. The aver-
ages and standard deviations of the x, y, and z components
of v; (for all j € §2) are denoted as (fLyx, Lvy, Uvz) and
(0uxs Ouy, Oyz), TEspectively. We define that a tracked mo-
tion v;(¢) is valid if it is not far from the distribution of
most of its neighbors.

The judgment criterion of valid or invalid tracking for
the marker i is

JF(i, t) < threshold, valid tracking
N ; (N
else, invalid tracking
and the judgment function is
JFG, 1) = /S +S3+52, ®)
where S, ==, S, = %, S = "2, and

Vi (1) = (xvi» Yvis Zvi)-

Sy, Sy, and S, can be regarded as the divergence of v;
with respect to the refined neighbors £2 in the x, y, and
z directions. If the difference between v; and the aver-
age of its neighbors is within the standard deviations, the
values S are smaller than 1; on the other hand, if the diver-
gences are larger, the values increase. In Eq. 8, k is a small
user-defined number. With k in the denominators, we can
prevent unpredictable values of Sy, Sy, and S; when mark-
ers are close to their locations of the neutral face.

—— correct tracking

— — —

false tracking

.
" a
L

- ————= rectified trajectories

/ : 7"‘.’/"' (4)
B'(3 ../.
® i ® CW.

After we eliminate the invalid tracking of 3D candi-
dates, a conflicting situation can still exist. Two valid mo-
tions that do not share the same 3D candidates could have
the same extracted 2D feature points in either the frontal
view or the side view. We call this the tracking conflict.
To prevent the tracking conflict, we simply evaluate the
number of valid motions for each 2D feature point. If a 2D
feature point is “occupied” by more than one valid motion,
we only keep the motion closest to the prediction as a valid
motion.

5.3 Estimating positions of missing markers

If an invalid tracking is detected, the similarity of its
neighbors in motion can also be used to conjecture the
position or motion of the missing marker. Based on this
idea, two interpolation methods are applied to the estima-
tion. The first one is the weighted combination method.
For a missing marker i, the motion at time ¢ can be esti-
mated by a weighted combination of that of its neighbors
and it can be presented by the equation:

1 .
Vi = zj: (dij +kc>vj, for j € Neighbor(v;), 9)

where d;; is the distance between m; and m; in the neutral
face and kc is a small constant to avoid a very large weight
when the marker i and j are quite close in the neutral face.

In addition, a radial-basis-function (RBF) based data
scattering method is also appropriate for the position
estimation of missing markers. The abovementioned
weighted combination method tends to average and
smooth the motions of all the neighbors; in contrast, the

markers in the Ist frame
potential 3D candidates
estimated positions of missing markers

B(4)
B() ® .\ ®
® G, @

-« 2
T ey e .
D)@ ® @
o o e
>
t=1 t=2 t=3 t=4 Time

Fig. 11. The rectified motion trajectories. We utilize the temporal coherence of a marker’s motion and the spatial coherence between

neighbor markers to detect and rectify false tracking
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Fig. 12. The tracking results without vs. with tracking error rectification. The upper part is the result tracked without false tracking detec-
tion; the lower part is the result tracked with our rectification method. The snapshots from left to right are captured at r = 20, 100, 300

and 500

influence of nearby neighbors can be greater in RBF
interpolation in general (it depends on the radial basis
function), and, therefore, more prominent motions can be
estimated. Since the RBF interpolation is more time con-
suming, the weighted combination is adopted for real-time
or near-real-time tracking. Figure 11 shows a conceptual
diagram of rectifying false tracking; Fig. 12 shows the
tracking results by a method with Kalman filtering only
and by our method with rectification of tracking error.

6 Experimental results and discussion

Using the method proposed in this paper, we have success-
fully captured a large amount of dense facial motion data
from three subjects, including two males and one female.
On one male subject’s face we placed 320 markers 3 mm
in diameter; on the other two subjects’ faces we placed
196 markers 4 mm in diameter and 7 special markers for
head motion tracking. Due to view limitations and meas-
urement errors, a small amount of markers are not visible
in at least two views in half of the video sequence. Only
300 markers are actually tracked in the former case, 179
and 188 markers in the later ones.

In our experiments, motion that we intended to capture
consists of three parts: coarticulations of visual speech

(motion transition between phonemes), facial expressions,
and natural speech. Regarding coarticulations, each of the
subjects was required to pronounce 14 MPEG-4 basic
phonemes, also called visemes. They are “none,” “p,” “f,”
“T) “t,)” “k,)” “tS,” “s,” “n,” “1,” “A:” “e,” and “i.”” Besides
these, the subjects were also required to pronounce sev-
eral vowel-consonant, vowel-vowel words, such as “tip,”
“pop,” “void,” etc. Concerning facial expressions, subjects
were required to perform 6 MPEG-4 facial expressions
comprising “neutral,” “joy,” “sadness,” “anger,” “fear,”’
“disgust,” and “surprise.” Also, they had to perform sev-
eral exaggerated expressions, e.g., mouth pursing, mouth
twisting, cheek bulging, etc. Lastly, they were asked to
speak about three different topics. Each of these talks was
more than 1.5min (2700 frames) and accompanied with
vivid facial expressions. In the case without special mark-
ers for head motion estimation, the subjects’ head is fixed;
in the other cases, subjects can freely and naturally nod or
shake their heads while speaking.

On a 3.0-GHz Pentium 4 PC, our system can automati-
cally track motion trajectories of 300 markers at a speed of
9.2 fps. It can track 188 markers with head motion estima-
tion at a speed of 12.75 fps.

For analysis, we calculate the occurrence of tracking
errors. As we mentioned in previous sections, we divide
the tracking errors into three categories: missing nodes,
false tracking, and tracking conflicts. Since our detection
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Fig. 13. Numbers of tracking errors detected in each frame of the same video sequence of Fig. 12
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Fig. 14. The number of accumulated tracking errors while no rectification is applied
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Fig. 16. Synthetic facial expressions of pronouncing “a-i-u-e-0”

and management processes for missing nodes and false
tracking are the same, we merge them into a single state:
false tracking. Occurrence of tracking errors usually re-
sults from abrupt facial motion and is quite divergent in
different video sequences.

For instance, we take a video sequence (Fig. 12) where
a subject performed exaggerated facial expressions. As
shown in Fig. 13, the average percentage of false tracking
in each frame is about 7.45%, and the average percentage
of tracking conflicts, which excluded the false tracking,
is about 0.34%. The percentage is small, but if the track-
ing errors are not detected and rectified automatically, they

can accumulate frame by frame and the tracking results
can degenerate dramatically as time passes. The upper part
of Fig. 12 shows the disaster of tracking without rectifica-
tion. As shown in the lower part of Fig. 12, with our pro-
posed method we can retain tracking stability and accu-
racy. The number of tracking errors that occur in the upper
part of Fig. 12 is shown in Fig. 14. Without rectification,
almost one third of markers fall within the tracking errors.

The tracking results have also been applied to our real-
time facial animation system [20]; the results are shown in
Figs. 15—-17. The static images may not manifest the time
course reconstruction quality in tracking or motion retar-

Table 1. The distribution of CPU usages in our system

Operation CPU usage
DV AVI file decoding 28.2%
Image processing (labeling, connected components, etc.) 29.9%
Calculating 3D candidates 18.0%
Finding best trajectories 23.9%
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Fig. 17. Applying captured facial expressions to others’ face models

geting. Demo videos are available on our project Web site
listed in the conclusion.

As shown in Table 1, there is no obvious bottleneck
stage of the CPU usage in our system. However, the op-
erations in the stages of image processing and calculating
3D candidate points are mostly parallel, which can be fur-
ther improved by SIMD (single instruction multiple data)
or parallel computing.

7 Conclusion and future work

In this paper, we propose a new tracking procedure to au-
tomatically capture dense facial motion parameters from
mirror-reflected multiview video, employing the property
of mirror epipolar bands to rapidly generate 3D candidates
and effectively utilizing the spatial and temporal coher-
ence of dense facial markers to detect and rectify tracking
errors. Our system can efficiently track such numerous

motion trajectories in near real time. Moreover, our pro-
cedure is a general method and could also be applied to
track motion of other continuous surfaces.

All equipment used in the proposed system is off the
shelf and inexpensive. This system can significantly lower
the entry barrier for research about analysis and synthesis
of facial motion. Our demonstrations are now down-
loadable at our project website: http: //www.cmlab.
csie.ntu.edu.tw/~ichen/MFAPExt/MFAPEXt
_Intro.htm. Besides the demonstrations, an executable
software package, user instructions, and examples are also
on the Web site for users to download for their own re-
search.

Currently, the tracked motion parameters have been ap-
plied to our facial animation system. Dense facial motion
data can be further used for refining coefficients of ex-
isting facial motion models and even a criterion for face
surface analysis. In our future work, we plan to analyze the
correlations of facial surface points, for example, finding
out which marker sets are the most representative.
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Table 2. The initial values of internal states’ pa-

rameters in adaptive Kalman filters. (1 frame =  State

Variance of measurement noise

Variance of velocity change

1/29.97 sec)
Xmi
Ymi
Zmi
Ix
ry
rz
Ix
ty
I

1.69 mm?> 21.87 (mm/frame)2
1.69 mm? 78.08 (mmlframe)?
3.31 mm? 35.10 (mmlframe)?

0.684 degree®
0.858 degree?
0.985 degree?

43.77 (degreelframe)?
24.62 (degreelframe)>
2.736 (degreelframe)>

1.00 mm?> 27.00 (mm/frame)2
1.00 mm?> 27.00 (mm/frame)2
1.56 mm?> 27.00 (mm/frame)2

8 Appendix

We adapt a position-velocity configuration for the Kalman
filters. Users can refer to [4] for the detailed state tran-
sition and system equations. The noise parameters are
dynamically adaptable according to prediction errors.
The inital values of the parameters of feature point
m; = (Xmi,» Ymi» Zmi), head rotation (ry, ry, r;), and head
translation (fy, ty, t;) are defined empirically as listed
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