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Abstract—In this paper, an observer-based direct adaptive
fuzzy-neural control scheme is presented for nonaffine nonlinear
systems in the presence of unknown structure of nonlinearities. A
direct adaptive fuzzy-neural controller and a class of generalized
nonlinear systems, which are called nonaffine nonlinear systems,
are instead of the indirect one and affine nonlinear systems given
by Leu et al. By using implicit function theorem and Taylor series
expansion, the observer-based control law and the weight update
law of the fuzzy-neural controller are derived for the nonaffine
nonlinear systems. Based on strictly-positive-real (SPR) Lyapunov
theory, the stability of the closed-loop system can be verified.
Moreover, the overall adaptive scheme guarantees that all signals
involved are bounded and the output of the closed-loop system will
asymptotically track the desired output trajectory. To demonstrate
the effectiveness of the proposed method, simulation results are
illustrated in this paper.

Index Terms—Direct adaptive control, fuzzy-neural control,
nonaffine nonlinear systems, output feedback control.

I. INTRODUCTION

ADAPTIVE control theory has been an active area of re-
search for at least a quarter of a century [1]–[11]. For linear

systems, there have been some researches on stability analysis
of adaptive control systems, design of adaptive observers, and
adaptive control of plants [2], [3]. Also, many researchers focus
on robust adaptive control that guarantees signal boundedness
in the presence of modeling errors and bounded disturbances
[4]–[6]. For nonlinear systems, some adaptive control schemes
via feedback linearization have been reported [7]–[11]. The fun-
damental ideal of feedback linearization is to transform a non-
linear system into a linear one. Then, linear control techniques
are employed to acquire desired performance.

Recently, since neural networks [12] and fuzzy logic [13] are
universal approximators, some adaptive control schemes of non-
linear systems via fuzzy logic and/or neural networks [14]–[19],
[27]–[29], [37]–[40] have been proposed. Likewise, for a class
of nonlinear continuous-time systems, adaptive control using
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neural networks has been proposed in [20] by feedback lin-
earization. A dynamic recurrent neural-network-based adaptive
observer for a class of nonlinear systems has been presented in
[21]. In [22], [23], and [37], the output feedback controllers have
been developed based on a high-gain observer used to estimate
the time derivatives of the system output by using neural net-
works. By using the high gain observer, the closed system may
exhibit a peaking phenomenon in the transient behavior [23],
[37]. The controller saturates to prevent peaking [23], [37]. In
this paper, an observer-based adaptive fuzzy-neural controller
is proposed and derived for avoiding the high gain observer and
preventing the peaking phenomenon in the transient behavior.

More recently, applications of fuzzy logic incorporated
into neural networks in function approximation, decision sys-
tems and nonlinear control systems have been proposed in
[24]–[31], [34]–[36]. In [28], the observer-based indirect adap-
tive fuzzy-neural controller for affine nonlinear systems has
been proposed. Most of them deal with the control problem of
the affine nonlinear systems. However, in practice, the control
methods of affine nonlinear systems do not always hold and
the control methods of the nonaffine nonlinear systems are nec-
essary. In [28], the adaptive fuzzy-neural control systems are
derived from the indirect adaptive control method, which uses
fuzzy-neural networks as function approximators to estimate
nonlinear functions of the nonlinear systems. Since nonlinear
functions in nonaffine nonlinear systems are implicit functions
with respect to the controller, the indirect adaptive control
method in [28], which uses fuzzy-neural networks to estimate
the nonlinear functions, cannot be employed to the nonaffine
nonlinear systems again. On the other hand, direct adaptive
fuzzy-neural controllers, in which fuzzy-neural networks are
used to directly be controllers rather than to be nonlinear
functions, are suitable for the nonaffine nonlinear systems.
Theoretical justification on the use of the direct adaptive fuzzy
controllers in [14] using a state feedback approach is valid if
all of the system states are available for measurement. In prac-
tice, however, the state feedback control does not always hold
because system states are not always available. Estimations
of states from the system output for output feedback control
design of the direct adaptive fuzzy-neural controller is required.

The goal of this paper is to develop an observer-based
adaptive fuzzy-neural control scheme that extends the design
method in [28] by using direct adaptive control instead of
indirect is presented for the nonaffine nonlinear system in the
presence of unknown structure of nonlinearities. By using
implicit function theorem, and Taylor series expansion, the
output feedback control law and the update laws are derived.
Moreover, the overall adaptive scheme guarantees that all
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signals involved are bounded and the output of the closed-loop
system will asymptotically track the desired output trajectory.

The paper is organized as follows. In Section II, the problem
is formulated and a brief description of fuzzy-neural networks
is presented. Design methodology of the direct adaptive fuzzy-
neural controller is included in Section III. In Section IV, simu-
lation results are presented to confirm the effectiveness and ap-
plicability of the proposed method. Finally, Section V concludes
the paper.

II. PROBLEM FORMULATION AND FUZZY-NEURAL NETWORK

Consider the single-input–single-output (SISO) nonaffine
nonlinear system of the form

(1)

where is a vector of states, and and are the
control input and system output, respectively. and
are unknown smooth vector functions. In nonaffine systems, the
nonlinear functions are implicit functions with respect to
the controller .

Suppose that the nonaffine nonlinear system possesses a
strong relative degree. Then, the system can be transformed
into the following form [23]:

(2)

where

...

...

is a vector
of the transformed states, and is a smooth function. Here,
we assume that the structure of is unknown. Without
losing generality, we also assume that . In
addition, only the system output is assumed to be measurable.
The control objective is to design an observer-based direct
adaptive fuzzy-neural controller such that the system output

follows a given bounded smooth signal , and all signals
involved are bounded.

First, define the reference vector

, the output tracking
error , the tracking error vector , and

, where is

the feedback gain vector, chosen such that the characteristic
polynomial of is Hurwitz because is
controllable. Next, we describe the existence of the control
solution for the system (1). According to implicit function
theorem [32], there exists a unique ideal implicit feedback
control for the system (1). Equation (2) can be rewritten as

(3)

From the definitions of and , we obtain

(4)

By the assumption of for all
and the fact 0, we have

(5)

for all , where .
According to implicit function theorem [32], for each there
exists a unique solution such that 0.Under
the control , (4) can be rewritten as

(6)

Because the characteristic polynomial of is Hur-
witz, we have

(7)

By using Taylor series expansion of the nonlinear system (2)
around , we obtain

(8)

where , and stands for higher
order term. Suppose a control input is

(9)

where is designed to approximate the control , and the
control term is employed to compensate the modeling error.
From (4), (8), and (9), we have

(10)

where , and denotes
the estimate of . According to (10), the control objective is to
design a state observer for estimating the state vector in (10)
in order to regulate to zero.

In addition, the configuration of the fuzzy-neural net-
work shown in Fig. 1 consists of fuzzy logic and neural
network. The fuzzy logic system can be divided into two
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Fig. 1. Configuration of a fuzzy-neural approximator.

parts: some fuzzy IF–THEN rules and a fuzzy inference en-
gine. The fuzzy inference engine uses the fuzzy IF–THEN

rules to perform a mapping form an input linguistic vector
to an

output linguistic variable . The th fuzzy IF–THEN rule
is written as

If is and and is and is

and and is

and is then is (11)

where and are fuzzy sets [14], [15]. By
using product inference, center-average and singleton fuzzifier,
the output of the fuzzy-neural network can be expressed as

(12)

where is the membership function value of the fuzzy

variable, is the total number of the IF-THEN rules, is the
point at which 1, is an
adjustable parameter vector, and is
a fuzzy basis vector, where is defined as

(13)

When the inputs are given into the fuzzy-neural network
shown in Fig. 1. The truth value (layer III) of the antecedent
part of the th implication is calculated by (13). Among the
commonly used deffuzzification strategies, the output (layer
IV) of the fuzzy-neural network is expressed as (12). The
fuzzy logic approximator based on the neural network can be
established [25], [27]. Fig. 1 shows the configuration of the
fuzzy-neural function approximator. The approximator has

four layers. At layer I, nodes, which are input ones, stand for
the input linguistic variables. At layer II, nodes represent the
values of the membership function value. At layer III, nodes are
the values of the fuzzy basis vector . Each node of layer III
performs a fuzzy rule. The links between layer III and layer IV
are full connected by the weighting vector. , i.e., the adjusted
parameters. At layer IV, the output stands for the value of .

III. DESIGN OF DIRECT ADAPTIVE FUZZY-NEURAL

CONTROLLER VIA OUTPUT FEEDBACK

In this section, our primary task is to design an observer that
estimates the state vector in (10), to use the fuzzy-neural net-
work to approximate the control and to the develop direct
adaptive output-feedback update law to adjust the parameters
of the fuzzy-neural network in order to achieve the control ob-
jective.

First, we replace in (9) by the output of the fuzzy-neural
network, in (12), i.e.

(14)

where .
Next, consider the following observer that estimates the state

vector in (10):

(15)

where is the observer gain vector,
chosen such that the characteristic polynomial of is
strictly Hurwitz because is observable. The control term

is employed to compensate the modeling error.
Although the state observer (15) includes the unknown func-

tion , a significant part of our design is that in Theorems
1 and 2, and so we can eliminate the unknown function from
the state observer (15). Therefore, the proposed state observer
(28) in Theorem 2 of this paper does not require the function ,
which is assumed as an unknown function.

Define the observation errors as and .
Subtracting (15) from (10), we have

(16)

where . Besides, the output error dynamics of (16)
can be given as

(17)

where is the Laplace variable, and
is the transfer function of (16).

In order to derive the direct adaptive output feedback update
law, the following assumption must be required.

Assumption 1 [33]: Let and belong to compact
sets and

, respectively, where
denotes the estimate of and and are the upper bounds
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of and , respectively. It is known that the optimal parameter
vector

lies in some convex region ,
where the radius is a design parameter.

According to Assumption 1, (16) can be rewritten as

(18)

where is an approximation error.
According to (14), (18) can be rewritten as

(19)

where . Since only the output in (19) is assumed to
be measurable, we use the strictly-positive-real (SPR) Lyapunov
design approach to analyze the stability of (19) and generate the
direct adaptive output-feedback update law for . Equation (19)
can be rewritten as

(20)

where is a known stable
transfer function. In order to employ the SPR-Lyapunov design
approach, (20) can be written as

(21)

where ,

, and . is chosen
so that is a proper stable transfer function and

is a proper SPR transfer function. Suppose that
, where ,

such that is a proper SPR transfer function. The
state–space realization of (21) can be written as

(22)

where ,
and .

For the purpose of stability analysis of the observer-based direct
adaptive fuzzy-neural controller, the following assumptions
and lemma must be required.

Lemma 1 [14], [27]: Suppose that the adaptive laws are
chosen as (23), shown at the bottom of the page, where the
projection operator [14] is given as

Then and .
Assumption 2: The unknown function is bounded by

(24)

where and positive constants.
Assumption 3: is assumed to satisfy

(25)

where is a positive constant.
Remark 1: Due to (6) and (7), and the existence of in

[32], the assumption of boundedness of in

Assumption 1 is reasonable. Since denotes

the estimation of , the assumption of boundedness of is also
reasonable. The boundedness of

follows that of (or ). The would be dif-
ferentiable, if we choose differentiable functions, for example,
exponential functions, to be the fuzzy membership functions.
From Lemma 1, the vector is adjustable and differentiable.

Therefore, is differentiable. Since is bounded,
is bounded. Therefore, Assumption 3 is reasonable. The goal of
this paper is to develop a controller , where is
designed to approximate the controller in [32] and the con-
trol term is employed to compensate the modeling error, to
guarantee that all signals involved are bounded and the output
of the closed-loop system will asymptotically track the desired
output trajectory.

On the basis of the previous discussions, the following theo-
rems can be obtained.

Theorem 1: Consider the system (22) that satisfies Assump-
tions 1–3. Let be adjusted by the update law (23), and let be
given as

if
if

(26)

where . Then converges to zero as .
Proof: Given in the Appendix.

Theorem 2: Consider the nonlinear system (1) that satisfies
Assumptions 1–3. Suppose that the control law is

(27)

if or and

if and
(23)
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with the adaptive law (23). Let . The state observer (15)
becomes

(28)

Then all signals in the closed-loop system are bounded, and
converges to zero as .

Proof: Given in the Appendix.
According to the previous theorems, the design algorithm of

the direct adaptive fuzzy-neural controller is described as the
following.

Design Algorithm

Step 1) Select the feedback and observer
gain vectors , such that
the matrices and
are Hurwitz matrices, respec-
tively.

Step 2) Choose appropriate values in
(26), and in (23). In order
to remedy the control chattering,
(26) can be modified as

if and ,
if and ,
if

where is a positive constant.
Step 3) Solve the state observer in (28).
Step 4) Construct fuzzy sets for .

From (13), compute the fuzzy
basis vector .

Step 5) Obtain the control law (27), and
the update law (23).

Remark 2: The initial values of should be determined
before solving the adaptive laws in (23). The value of in (23)
is obtained by trial and error according to the values of . In
addition to compute the controller in (27), we need
to decide . The chosen value of is obtained by trial and error
such that and based on Assumptions 2–3, without
using any adaptive tuning procedure in this paper. Larger re-
sults in larger control input according to (27). From (26), we
see that the absolute value of the control term is the value of

. The control term is employed to compensate for external
disturbance and modeling error.

Remark 3: Regarding Step 4) of the design algorithm,
the number of fuzzy rules depends on the number of inputs
and the number of fuzzy sets of each input. For example,
we can generate fuzzy rules for inputs,
in which each input has fuzzy sets. The input vector is

. The member-
ship function of each fuzzy set can be a bell-shaped form or
others. Then, we can compute the values of the fuzzy bases
from (13).

Fig. 2. Overall scheme of the proposed direct adaptive fuzzy-neural control.

To summarize, Fig. 2 shows the overall scheme of the ob-
server-based direct adaptive fuzzy-neural control proposed in
this paper.

IV. ILLUSTRATIVE EXAMPLES

This section presents the simulation results of the proposed
direct adaptive fuzzy-neural controller to illustrate that the sta-
bility of the closed-loop system is guaranteed, and all signal in-
volved are bounded.

Example 1: Consider the nonlinear system

(29)

The control objective is to control the state of the system
to track the reference trajectory (case 1) and

(case 2). The design parameters are se-
lected as , 5, and . The feed-
back and observer gain vectors are given as
and , respectively. The filter is given
as . The membership functions for ,

are given as

The initial states are chosen to be (case 1),
(case 2), (case 1),

and (case 2). The computer simulation
results are shown in Figs. 3–8. From Figs. 4 and 7, it is observed
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Fig. 3. Trajectories of y(t) and y (t) (case 1) in Example 1.

Fig. 4. Trajectories of x (t) and x̂ (t) (case 1) in Example 1.

Fig. 5. Control input u(t) (case 1) in Example 1.

the state observer can generate the estimated state very fast and
correct. Moreover, as shown in Figs. 3 and 6, it is observed that
the tracking error is small, and the convergence of tracking error
is fast and well. The control signals for two cases are shown in
Figs. 5 and 8. The computer simulation results show that the
observer-based direct adaptive fuzzy-neural controller can per-
form successful control and achieve desired performance for the
nonaffine nonlinear systems.

Example 2: Consider the nonlinear system [23]

(30)

Fig. 6. Trajectories of y(t) and y (t) (case 2) in Example 1.

Fig. 7. Trajectories of x (t) and x̂ (t) (case 2) in Example 1.

Fig. 8. Control input u(t) (case 2) in Example 1.

The control objective is to control the state of the system
to track the reference trajectory . The
design parameters are selected as , 5, and

. The feedback and observer gain vectors are
given as and , respec-
tively. The filter is given as . The
membership functions for , are the same as
those in Example 1. The initial states are chosen to be

and . The computer sim-
ulation results are shown in Figs. 9–11. From the simulation
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Fig. 9. Trajectories of y(t) and y (t) in Example 2.

Fig. 10. Trajectories of x (t) and x̂ (t) in Example 2.

Fig. 11. Control input u(t) in Example 2.

results, it is observed that the state observer can generate the
estimated state very fast and correct. Moreover, it is also ob-
served that the tracking error is small, and the convergence of

tracking error is fast and well. In comparison with the control
input in [23], using the high gain observer and saturation method
to overcome the peaking phenomenon in the transient behavior,
the proposed control input shown in Fig. 11 is without satura-
tion and smoother than that in [23], especially during the tran-
sient period.

V. CONCLUSION

In this paper, an observer-based direct adaptive fuzzy-neural
control scheme is presented for nonaffine nonlinear systems in
the presence of unknown structure of nonlinearities. To design
the output feedback control law, no exact knowledge of struc-
ture of system nonlinearities is needed. In addition, the prelim-
inary offline tuning of the weighting factors of the fuzzy-neural
controller is not required. The overall adaptive scheme guar-
antees that all signals involved are bounded and the output of
the closed-loop system asymptotically tracks the desired output
trajectory. Finally, this method has been applied to control the
nonaffine nonlinear system to track a reference trajectory. The
computer simulation results show that the observer-based direct
adaptive fuzzy-neural controller can perform successful control
and achieve desired performance. In the future, investigation
on the adaptive tuning of the design parameters and designing
multi-input–multi-output (MIMO) systems will be interesting
research topics in this field.

APPENDIX

A. Proof of Theorem 1

Consider the Lyapunov-like function candidate

(A.1)

where . Differentiating (A.1) with respect to time
and inserting (22) in the previous equation yield

(A.2)

Because is SPR, there exists such that

(A.3)

where . By using (A.3), (A.2) becomes

(A.4)

By using Assumptions 2–3, (26) and the fact
, where , we have

(A.5)
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Inserting (23) of Lemma 1 in (A.5) and after some manipulation
yields

(A.6)

Equations (26) and (A.6) only guarantee that and
, but do not guarantee the convergence. Because all

variables in the right-hand side of (22) are bounded, is
bounded, i.e., . Integrating both side of (A.6) and
after some manipulation yields

(A.7)

Since the right side of (A.7) is bounded, so . Using
Barbalat’s lemma [3], we have 0. This com-
pletes the proof.

B. Proof of Theorem 2

First, from Theorem 1, we have 0 and
. Using (15) and the fact , we obtain

(B.1)

Similarly, because is a Hurwitz matrix and is
bounded, is bounded. From , it follows that

and as . From , it
follows that . The boundedness of follows
that of and . This completes the proof.
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