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A dynamical approach to ballistic transport in mesoscopic graphene samples of �nite length L
and contact potential di¤erence with leads U is developed. It is shown that at ballistic times shorter
than both relevant time scales, tL = L=vg (vg - Fermi velocity) and tU = ~=(eU), the major e¤ect
of electric �eld is to creates the electron - hole pairs, namely causes interband transitions. At
ballistic times lager than the two scales the mechanism is very di¤erent. The conductivity has
its "nonrelativistic" or intraband value equal to the one obtained within the Landauer-Butticker
approach for the barrier U resulting from evanescent waves tunneling through the barrier.

PACS numbers: 72.80.Vp 73.20.Mf 12.20.-m

I. INTRODUCTION

Electronic mobility in graphene, especially one sus-
pended on leads, is extremely large [1], so that a graphene
sheet is one of the purest electronic systems with the
transport being considered ballistic [2, 3]. The ballistic
�ight time in these samples can be estimated as

tL = L=vg ; (1)

where vg ' 106m=s is the graphene velocity characteriz-
ing the massless "ultrarelativistic" spectrum of graphene
near Dirac points, "k = vg jkj, and L is the length of the
sample that can exceed several �m [4]. The extraordi-
nary physics appears right at the Dirac point at which
the density of states vanishes. At this point graphene
exhibits a quasi - Ohmic behaviour, J = �E, even in the
purely ballistic regime.
Determination of the value of the minimal DC con-

ductivity at Dirac point in the limit of zero temperature
has undergone a period of experimental and theoretical
uncertainty. Several di¤erent values for the DC conduc-
tivity appeared. The value

�1 =
4

�

e2

h
(2)

had been considered as the "standard" one for several
years [6, 7] and appeared as a zero disorder limit of the
self-consistent harmonic approximation [8]. It was de-
rived for the in�nite sample and this implies the assump-
tion that the potential di¤erence U at the contacts be-
tween the metallic leads and the graphene �ake is unim-
portant. An alternative and independent approach to
ballistic transport in mesoscopic graphene samples of �-
nite length L [14] with a large contact barrier U was
pioneered in [15] following ideas in [16]. They applied
the Landauer - Büttiker formula for conductance derived
for transport in (quasi) one-dimensional channels.

The value

�2 =
�

2

e2

h
(3)

was obtained in the dynamical approach to an in�nite
sample [17] and is equal to the AC value calculated under
the condition ! >> T=~ at �nite temperatures [18�20].
The ballistic evolution of the current density in time after
a sudden or gradual switching on of the electric �eld E
was evaluated and approaches the large times limit �2E.
The electric �eld creates electron - hole excitations in the
vicinity of the Dirac points similar to the Landau - Zener
tunneling e¤ect in narrow gap semiconductors [23]. Im-
portantly, in graphene the energy gap is zero, thus the
pair creation is possible at zero temperature and arbi-
trary small E; even within linear response. Although the
absolute value of the quasiparticle velocity vg cannot be
altered by the electric �eld due to the "ultrarelativistic"
dispersion relation, the orientation of the velocity can
be in�uenced by the applied �eld. The electric current,
ev, proportional to the projection of the velocity v onto
the direction of the electric �eld is increased by the �eld.
These two sources of current, namely creation of moving
charges by the electric �eld (polarization) and their re-
orientation (acceleration) are responsible for the creation
of a stable current [17, 22, 26]. The result within linear
response is that the current settles very fast, on the mi-
croscopic time scale of t
 = ~=
 ' 0:24 fs (
 being the
hopping energy), on the asymptotic value.
A deeper analysis of the "quasi - Ohmic" graphene

system beyond the leading order in perturbation theory
in electric �eld revealed [27] that on the time scale

tnl =

s
~

eEvg
; (4)

the linear response breaks down due to intensive Landau-
Zener-Schwinger�s (LZS) pair creation [28]. At times
larger than tnl the result is consistent with the WKB

26th International Conference on Low Temperature Physics (LT26) IOP Publishing
Journal of Physics: Conference Series 400 (2012) 042038 doi:10.1088/1742-6596/400/4/042038

Published under licence by IOP Publishing Ltd 1



2

approximation [26, 29]. This is in contrast to dissipative
systems, in which the linear response limit can be taken
directly at in�nite time. This perhaps is the origin of
the "regularization" ambiguities in graphene, since large
time and small �eld limits are di¤erent.
In contrast, the Landauer - Büttiker (LB) approach

hinges on the description of the leads in terms of a po-
tential barrier of a certain non-zero barrier height U (r)
[10]. The barrier potential provides an additional time
scale

tU = ~=U: (5)

In this note we rigorously apply the dynamical ap-
proach to study transport in mesoscopic samples. We
demonstrate that the physics behind the two values of
the DC conductivity is quite di¤erent despite the fact
that numerically �2 = 1:57e2=h is just 24% higher than
�1 = 1:27e

2=h for the stripe geometry. These two phys-
ical processes governing the ballistic transport are quite
distinct. One is fast and homogeneous: the interband
channel, namely the electron - hole creation, sometimes
referred to as Landau - Zener tunneling, or, in particle
physics, the Schwinger�s pair creation[35]. It is unique
to graphene and has certain surprising features. For ex-
ample, this channel of conduction "dries out" or is de-
pleted for any �nite sample. The second mechanism,
the intraband transition, despite constituting a peculiar
"relativistic" kind of electron acceleration, is much more
common. It is important for transport only for a su¢ -
ciently large contact potential between the leads and the
graphene sample and unlike the interband channel, is a
long time phenomenon.
We use the dynamical approach to determine what

process is dominant for the evolution of the I-V curve of
a �nite graphene sample directly at the neutrality point,
with the contact barrier taken into account. The physics
depends essentially on the relation of a time scale t with
respect to the three physical time scales tL; tU and tnl.
The analysis (the details of the calculation are given in
[34]) shows that for a �nite barrier potential and �nite
length the in�nite time limit coincides in linear response
with a generalization of the LB calculation in [15].

II. SMALL CONTACT BARRIER: DYNAMICAL
APPROACH TO THE ELECTRON - HOLE

CHANNEL OF THE BALLISTIC TRANSPORT

A. The in�nite sample

The electron - hole channel in the in�nite sample was
analyzed in [17] employing the "�rst quantized" Hamil-
tonian

H = �i� �
�
r+e

c
A
�
. (6)

A =(0;�cEt) is the vector potential describing the elec-
tric �eld which is switched on at t = 0; oriented along the
y axis and, importantly, is coordinate independent. We
employ units in which ~ = vg = 1. In momentum basis,

 r =
1p
WD

X
k

eik�r k; where D is an infrared cuto¤ and

W is the width that also will be treated as large.
The spectrum before the electric �eld is switched on is

divided into positive and negative energy parts describing
the valence and conduction band:

(� � k)uk = �"kuk; (� � k) vk = "kvk; (7)

uk =
1p
2

�
1
�zk

�
; vk =

1p
2

�
1
zk

�
; (8)

where zk = (kx + iky) ="k is a phase and "k = jkj. The
solution to the matrix Schrödinger equation in sublattice
space i@t k = � �

�
k+ e

cA
�
 k is is a "spinor" in the

sublattice space

 k (t) =

�
 1k (t)

 2k (t)

�
, (9)

The initial condition corresponding to a second quantized
state at zero temperature in which all the negative energy
states are occupied and all the positive energy states are
empty is  k (t = 0) = uk.

The evolution of the current density, Ĵ = �4e ̂
y
r� ̂r

of a state in terms of this amplitude is

jy (t) = �4e
X

k:"k<0

 yk (t)�y k (t) , (10)

was calculated for arbitrary E in ref. [28]. The fac-
tor 4 is due to spin and valley degeneracies of the Weyl
fermions. To leading order in the DC electric �eld one
obtains [17] � = �2, Eq.(3). Corrections to the conduc-
tivity were computed in [27] and reveal that the linear
response breaks down at tnl and is perhaps a source of
the "regularization ambiguity" in linear response.
The simple method of calculation used here hinges on

the translational invariance of both the sample and the
electric �eld.

B. Linear response in a �nite sample

To model the perturbing bias voltage we assume that
electric �eld is homogeneous in the segment �L=2 < y <
L=2, and therefore can be described by a scalar potential
V , see the dashed line in Fig.1, (andA = 0). The current,
to leading order in perturbation V is:

Iy (t) = �4W
X
l;p

1� e�i("p+"l)t
"p + "l

hul jV j vpi hvp jJyjuli+cc.

(11)
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FIG. 1: Potential barrier U(y) (green line) describes contacts
of a sample with leads, while the bias electric potential V(y)
(blue dashed line) describes the nearly homogeneous applied
electric sample.

As explained in detail in section IV of ref. [27], the
current within the Weyl model has an ultraviolet diver-
gence that should be removed in a chiral invariant man-
ner. Since the present case is not di¤erent in this respect
from the in�nite range �eld, the details are omitted. Af-
ter some algebra the conductivity (for large W so that
continuum momentum can be used) takes the form

� (t) =
e2

�3

Z 1

k=�1

Z 1

p;l=0

(12)

sin [(p� l)L=2] (l"kp � p"kl)
(p� l)2 "kl"kp

sin [t ("kp + "kl)]

"kp + "kl
,

where k = lx = px; l = ly; p = py. This function is
given as the red line Fig.2a of ref.([34]). Before t = tL=2,
� (t) = e2=4, therefore in physical units one recovers the
"dynamical" value �2 = �

2
e2

h =
e2

4~ :This is just the result
of pseudo-relativistic invariance (maximal velocity vg) of
the Weyl model. The e¤ect of the �nite extent of the
electric �eld has no time to propagate to the center of
the sample where the current is de�ned. Then the current
drops fast and settles at tL into a power decrease

� (t) = �2
L

�t
. (13)

Until now the linear response approximation was used.
Hence, for a �nite range of the electric �eld (�nite dis-
tance between the electrodes) a stationary �ow state is
only possible beyond linear response.

C. Electron-hole conductance beyond linear response

There are two characteristic times beyond linear re-
sponse, tL and tnl. Analytic and numerical solu-
tions of the tight binding model[28], as well as of the
Dirac model describing the physics near the Dirac point
demonstrated[26, 27] that at tnl the creation of electron
- hole pairs become dominant and is well described by

an adaptation of the well - known (non-analytic in E)
Schwinger electron - positron pair creation rate d

dtN /
(eE)

3=2. The polarization current is J (t) = �2evgN (t)
and therefore Schwinger�s creation rate at asymptoti-
cally long times leads to a linear increase with time:
� (t) = �2 (eE)

1=2
t. The physics of pair creation is highly

non-perturbative and non-linear in nature. The rate can
be intuitively understood using the much simpler instan-
ton approach[25, 26].
Adaptation of the instanton approach to �nite length

sample is quite cumbersome, however the long time limit
is simple, as was shown in ref.[30]. The result for the
conductivity is presented for the possibilities tL >> tnl,
tL << tnl or tL � tnl in Fig. 2 of ref.[34].

III. CONTACT BARRIER: STATIONARY
PROPERTIES AND THE LANDAUER -

BÜTTIKER APPROACH.

A. Phenomenological description of contacts.
Symmetry of the Hamiltonian.

One models the e¤ect of coupling to leads by a �nite
(and sometimes very large [15]) potential energy barrier.
The simplest model is the square barrier, see Fig.1.
The "�rst quantized" operator H1Q now contains the

barrier potential U (y):

H1Q = �i� � r+ U (y) : (14)

The barrier breaks the translational symmetry, however,
for the simple form of the symmetric barrier we adopted
the operator H1Q is invariant under re�ection, P : y !
�y, supplemented by the spinor rotation,

S = P�x; [H1Q; S] = 0: (15)

B. T - matrix

The LB approach utilizes the notion of a transmission
coe¢ cient through the channel n; Tn � jtnj2, where tn is
its amplitude [23]. The conductance is

G =
e2

h

X
n

Tn: (16)

Therefore one should solve the "classical" Weyl equation
with a barrier

H1Q = [�i� � r+ U (y)] = " . (17)

With periodic boundary conditions the momentum in the
direction perpendicular to the �eld is px � k = 2�

W nx.
Despite the lack translational symmetry in the �eld di-
rection y due to the barrier, one can still use the momen-
tum py � p as a good quantum number for scattering
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FIG. 2: Kinematics of scattering states of the �rst quantized
Weyl equation with potential barrier. The red line corre-
sponds to p; l =

p
U2 � k2, the green to p; l =

p
U (U + 2k),

and the blue to p; l =
p
U (U � 2k). The lines separate kine-

matical regions for the intraband transitions. Here U = 1:

states. The sign of energy determines the wave function
in the leads, namely distinguishes between the u and the
v spinors. The re�ection symmetry converts left movers
into right movers

Svk;pe
ipy = zpvk;�pe

�ipy; Suk;pe
ipy = �zpuk;�pe�ipy:

(18)
where we suppressed the index k in zkp = (k + ip) ="k.
The "out of barrier" equation is just the free Weyl

equation with negative and positive energy solutions,
 = ukpe

i(kx+py) (hole) and  = vkpe
i(kx+py) (electron).

It should be matched with the "in barrier" solution. Sev-
eral distinct kinematic possibilities exist which are sum-
marized in Fig.2.
1. Energies above the barrier, " > U . Both inside and

outside one has electron v- states with di¤erent momenta.
Outside the barrier p =

p
"2 � k2, while inside the barrier

the momentum in the �eld direction is

q =

q
("� U)2 � k2: (19)

One has a wave (real q) inside for p > p2 �p
(U + 2 jkj)U , while there is an evanescent particle

state inside for
p
U2 � k2 � pU (k) < p < p2:

2. Positive energy states below the barrier, 0 < " < U .
One has the v spinor (electron) outside the barrier, while
the u spinor (hole) inside. For momenta p in the rangep

(U � 2 jkj)U � p1 < p < pU ; (20)

the states are evanescent hole states. At yet lower ener-
gies, p < p1; one has a propagating state, but this time
a hole. This relativistic feature is the cause of the Klein
paradox.
3. Negative energy states, " < 0. Outside the barrier

now one has " = �
p
p2 + k2. This is another purely "rel-

ativistic" possibility in which one has holes both outside
and hence inside the barrier.

The Schrödinger equation above the barrier " > U is
solved by the scattering states for right movers, p > 0,

�kp (y) =
1p
DW

8<: vkpe
ipy + rkpvk;�pe

�ipy; y < �L=2
Akpvkqe

iqy +Bkpvk;�qe
�iqy;�L=2 < y < L=2

tkpvkpe
ipy; L=2 < y

.

(21)
which together with the matching conditions determine
the T-matrix and are easily solved. The electron v states
have to be replaced with u states in the case of a hole,
so in the second energy region in the barrier part v !
u, while in the third energy region in all parts v ! u.
For example, for evanescent modes below the barrier one
obtains

tkp =

�
z2p � 1

� �
z2q � 1

�
e�iqL (1� zpzq)2 � eiqL (zp � zq)2

. (22)

Let us �rst consider, following ref.[15], only evanescent
states contributions under the barrier. Substituting the
transmission coe¢ cient of Eq.(22), one obtains the fol-
lowing limiting value of conductivity for a large barrier
"strength" UL � 
 = tL=tU :

�LB (
 >> 1) =
2e2


�2

Z U

k=0

cosh�2 (kL) =
2e2

�2
= �1.

(23)
One therefore can apply the dynamical approach to try

to understand the crossover from the short ballistic time,
the electron - hole "bulk" dynamics, to the long ballistic
time, the barrier re�ection dominated dynamics.

IV. EVOLUTION OF THE CURRENT IN
GRAPHENE WITH BARRIER

A. The current in linear response

In linear response one obtains two contributions with
completely di¤erent physical interpretations. In the �rst
term the summation is over electron states above � = U
(in this note Ugate = 0) and electron states below the
Fermi level,

Iee (t) = �W
X
k

X
p:"kp>U

X
l:"kl<U

1� e�i("kp�"kl)t
"kp � "kl

V++STk;lp j++TSk;pl + cc. (24)

where V++STk;lp =
R
y
V (y)�Sykl (y)�

T
kp (y) and j++TSk;pl =

�4e�Tykp (y = 0)�y�
S
kl (y = 0) :The summation over T; S;

which denote symmetric and antisymmetric states, is un-
derstood. The second contribution sums over electrons
above � and all the hole states below.
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Ieh (t) = �W
X
k;l

X
p:"kp>U

1� e�i("kp+"kl)t

"kp + "kl
V�+STk;lp j+�TSk;pl + cc.

(25)
where V�+STk;lp =

R
y
V (y)'Sykl (y)�

T
kp (y) and j+�TSk;pl =

�4e�Tykp (0)�y'Skl (0) : The hole�s momentum has no re-
striction since its energy is always negative. The �rst
contribution is the "one-particle" type (the intraband
channel), very much like in more common manybody
electronic systems. The second contribution, to the con-
trary, is purely ultrarelativistic (the interband channel)
and describes the electron-hole pair creation, very much
like in the in�nitely long �ake discussed in Section II.

B. The intraband contribution

The one-particle (electron - electron) contribution to
the conductivity is shown in Fig. 3 as red curves for
various values of 
 as a function of time. At times
shorter than both tL and tU it rises linearly, oscillates for

 > 1 and approaches the LB result.

Short time asymptotics

The short time limit of the electron - electron contri-
bution to the conductivity leads to a small conductivity
raising linearly shown in Fig. 3 (red lines). For the case

 . 1 (tL < tU ), represented in Fig.3 by 
 = �=16,
�=4, the intraband contribution is positive and increases
monotonically. However, when 
 > 1 (tL > tU ) repre-
sented in Fig.4 by 
 = �, 2�, it becomes negative.

Long time asymptotics

Due to the oscillating functions in Eq.(25) the long
time asymptotics is due solely to the region of the three
dimensional integral when "kp � "kl ! 0. Consequently,
in view of the discussion of the various kinematical re-
gions in subsection III B, summarized in Fig.2, the limit
is dominated by integrating over the transitions from
evanescent states above the barrier (region 1) to evanes-
cent states below the barrier (region 2). At large times
t > tU , one obtains

�ee (
 >> 1) = 4
e2


�3
�

2

Z 1

k=0

1

cosh2
�
k

� = e2

2�

4

�
. (26)

This is one of the main results of the paper. The elec-
tron - electron contribution, starting from the dynamical
approach, converges at large times to �1; Eq.(2).
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FIG. 3: Conductivity of �nite length samples for 
 =
UL=~vg = �=16; �=4; �; 2�. The intraband contribution is
the red line, interband contribution - blue lines. The total
conductivity - the black lines. The time is given in units of
tL = L=vg, while unit of conductivity is e2=~.

C. The interband contribution

The expression for conductivity �eh (U;L; t) is UV di-
vergent like the conductivity of the in�nite sample biased
in the region of length L that was studied in subsection
II B (and which is solely due to the electron - hole pairs).
Their di¤erence ��eh however is �nite. The results are
given in Fig.3 for several 
 as blue lines. At small times
it starts with the ultrarelativistic value �2 = 1

4
e2

~ and at
relatively large times (tU >> t > tL) it decays as 1

4�t
.

This short time value �2 does not change when U > 0
provided the time is smaller than tL=2. This follows from
the fact that in relativistic graphene information about
barrier cannot arrive at the center of the sample before
that time. The long time behaviour of the electron - hole
contribution is dominated, due to oscillations, by the re-
gion "kp + "kl ! 0:In this limit it is simple to calculate
��eh for special values of 
. One can �t the long time
asymptotics as ��eh~ cos (
) =4�t.

V. DISCUSSION AND CONCLUSIONS

Two di¤erent kinds of ballistic behaviour occur in un-
doped graphene at zero temperature. One is a very
unusual "ultra - relativistic" interband physics. Elec-
tron - hole pairs are copiously created via Landau-Zener-
Schwinger�s mechanism by an applied electric �eld. It
is not dependent on leads and �nite size e¤ects of the
graphene sample. To the contrary, the intraband physics
is mostly sensitive to �nite size e¤ects and contacts. The
�rst mechanism results within linear response in the uni-
versal bulk value �2 of conductivity, while the second is
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characterized by a shape dependent linear response with
the e¤ective conductivity �1 for large aspect ratio rec-
tangular �akes.
Now we recapitulate under what conditions either of

these two processes is dominant in experiments on a time
scale 1=! in an AC electric �eld E (or in a pulse of du-
ration 1=!) for a graphene �ake of length L and a con-
tact barrier potential U . Here we classify various practi-
cally important ranges of sample (U;L) and experimental
(!;E) parameters.

A. "Unintrusive" experiments, U = 0

In re�ectance and transmission experiments in visible
to mid IR or even microwave range [40] there are no
leads, hence no potential barrier, U = 0. The inter-
band (Landau - Zener - Schwinger) process is dominant
for any practically length and electric �eld E. However,
the transport can be either linear or highly nonlinear.
(i) For 1=! < tnl =

p
~=eEvg one has linear response,

J = �2E, with the interband value of conductivity �2 =
�
2
e2

h . In this case the nonlinear Schwinger�s pair creation
regime is not yet reached.
(ii) For 1=! > tnl and tnl < tL = L=vg the transport is

still dominated by electron - hole channel, but is nonlin-
ear. The electron - hole pairs are e¢ ciently created due
to the LZS mechanism with rate proportional to E3=2.
This results in the I - V curve

J =
eL

�2

�
eE

~

�3=2
. (27)

(iii) For 1=! > tnl and tnl > tL the transport is
still dominated by electron - hole channel and the LZS
process but since the electric �eld is applied in the lim-
ited space (length L which is not large enough) and the
current is much smaller:

J =
2eL2

�2vg

�
eE

~

�2
. (28)

B. Large barrier

In samples on substrate with metallic leads the work
function of the graphene and the metal is typically dif-
ferent and as a result the contact potential di¤erence is
of order U = 0:1�1eV , see calculations in [13] and refer-
ences therein. In this case the corresponding time scale
tU = ~=U < 7fs and typically smaller than any of the
other scales tL = L=vg; tnl =

p
~=eEvg. This leads to an

e¤ective suppression of the electron - hole channel for all

the frequencies in the infrared range and smaller (includ-
ing DC) and the physics is dominated by the electron -
electron channel.

(i) 1=! > tU . The DC conductance is given by the
Landauer - Bütticker formula and is more sensitive to
the properties of the leads than those of graphene. When
graphene is "nominally" at Dirac point, namely, when the
chemical potential of the lead is on the barrier, graphene
is still contaminated by charges tunneling into the stripe
from the leads. These electrons are accelerated and lead
to the mesoscopic type of conductance. For a large as-
pect ratio the e¤ective conductivity is �1 = 4

�
e2

h . The
assumption of an "in�nite" barrier was made early on
in [15] in order to develop the mesoscopic approach to
transport in graphene.

(ii) 1=! < tU . The high frequencies (microwave and
above) experiments are done without leads. However if
one had a set-up with leads it could not signi�cantly alter
the pseudo-Ohmic behaviour with � = �2 since the con-
taminated regions constitute only a small fraction of the
sample. There is no e¤ect of ballistic acceleration across
the sample for large frequencies or short pulses.
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