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Abstract

Identity verification is one of the critical issues in the sector of security and has been emerging as an active research

area. In recent years, technologies using biological features to address problems of identity verification have attracted

numerous research interests. For examples, fingerprint recognition, voice recognition and pattern of blood vessels in the

retina have spanned many commercial applications. However, special and expensive equipments such as fingerprint

readers and iris scanners are often required and people have to be in unpleasant poses occasionally. This paper presents

a study on computer vision technique and its application in face recognition to achieve identity verification. With multi-

ple facial images taken from different view angles, relative affine structures are computed and are used as measurements.

To that end, the explicit relationship between relative affine structure and the cross ratio which is a view-invariant under

perspective projection is also addressed. The proposed method neither requires camera calibration nor reconstructs 3D

models. According to simulation results, the developed approach can achieve satisfactory results given the feature

points of facial images.
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1. Introduction

Machine recognition of faces has been a very

active research topic in recent years (Belhhumeur

et al., 1997; Chellappa et al., 1995; Samal and

Iyengar, 1992; Zhang et al., 1997). Face recogni-

tion technology for still and video images has

potentially numerous commercial and law enforce-

ment applications. These applications range from
ed.
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static matching of well-formatted photographs

such as passports, credit cards, driver�s licenses,

and mug shots, to real-time matching of surveil-

lance video images presenting different constraints

in terms of various processing requirements.
Although humans seem to recognize faces in clut-

tered scene with relative ease, machine recognition

which often spans several disciplines such as image

processing, pattern recognition, computer vision,

and neural networks is a much more daunting

task. In particular, the problem can be formulated

as follows: Given still or video images of a scene,

identify one or more persons in the scene using a
stored database of faces. A complete face recogni-

tion system generally includes two main stages.

The first stage is the face detection stage that deter-

mines the existence of one or more faces in an

image. Techniques used in this stage involve seg-

mentation of faces from cluttered scenes and

extraction of features from the face region. The

challenges are mainly due to the fact that the posi-
tion, orientation and size of face regions in an arbi-

trary image are usually unknown (Rowley et al.,

1998; Yang and Huang, 1994; Jeng et al., 1998).

A survey of face detection techniques can be found

in (Kriegman et al., 2002). The second stage is the

recognition stage which deals with the identifica-

tion and matching problems. The goal is to deter-

mine the identities of the target faces obtained in
the first stage. Considering important works devel-

oped so far in the recognition stage in the engineer-

ing literature, a brief survey on the face

recognition researches in recent years is provided

in what follows.

Most of existing face recognition algorithms are

2D-based. In terms of the nature of the facial fea-

tures utilized, these 2D algorithms can generally be
divided into two major categories: structure-based

approaches and statistics-based approaches. The

class of structure-based ones uses structural facial

features, which are mostly local structures, e.g., the

shapes of mouth, nose, and eyes (Mirhosseini and

Yan, 1998; Lades et al., 1994; Kanade, 1974; Phil-

lips, 1998). In (Kanade, 1974), an automated rec-

ognition system that uses a top-down control
strategy directed by a generic model of expected

feature characteristics is developed. They proposed

an elastic graph matching model which extracts
the feature vectors from image lattices based on

a set of 2D Gabor filters. The main advantage of

a structure-based face recognition method is the

low sensibility to irrelevant data, e.g., moving hair

or background, since it only handles data of inter-
est instead of using all image data indiscriminately.

The main disadvantage of such approaches is the

high complexity in feature extraction.

The statistics-based approaches basically use

the whole 2D image as facial features (Belhhumeur

et al., 1997; Bichsel and Pentland, 1994; Lin et al.,

1997; Liao et al., 1988). In this category of ap-

proaches, the principal component analysis
(PCA) exhibits particular importance (Hotta,

2003). The principal components, e.g., Eigenface

(Turk and Pentland, 1991; Pentland and Turk,

1991), of training face images are calculated and

then used as a set of orthonormal basis. The com-

plete space can be represented effectively by a sig-

nificant small subset of these orthonormal facial

images and the dimension of the feature space of
facial images is thus reduced. Moreover, theoreti-

cal neuroscience has contributed to account for

the view-invariance perception, which is also the

underlying idea of our work for identify verifica-

tion, of universals such as the explicit perception

of featural parts and wholes in visual scenes. A

survey of recent developments in theoretical

neuroscience for machine vision can be found in
(Colombe, 2003). These unsupervised learning

methods are used to make predictive perceptual

models of the spatial and temporal statistical

structure in natural visual scenes. In particular,

given the spatio-temporal continuity of the statis-

tics of sensory input, invariant object recognition

might be implemented using a learning rule that

uses a trace of previous neural activity capturing
the same object under different transforms in the

short time scale. By first relating a modified Heb-

bian rule to error correction rules and exploring

a number of error correction rules that can be ap-

plied to invariant pattern recognition, Rolls and

Stringer (2001) developed learning rules related

to temporal difference learning. The analysis of

temporal difference learning provides a theoretical
framework for better understanding the operation

and convergence properties of rules useful for

learning invariant representations. In contrast to
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structure-based approaches, statistics-based ones

are more straightforward and simple. However, it

happens that important local features are used

with small factor of importance. As for theoretical

neuroscience, it is not yet obvious whether the full
power of learning rules is expressed in the brain,

and the practical applications in face recognition

are needed for the understanding of the perfor-

mance. The work in (Rolls and Stringer, 2001)

provides suggestions about how they might be

implemented. Although the above 2D-based face

recognition approaches produce satisfactory re-

sults under normal conditions, their performance
can deteriorate quickly by varying lighting condi-

tion or large change of the viewing geometry.

As the face recognition technology is an essen-

tial tool for law enforcement agencies� efforts to

combat crime, fake or duplicated facial images

which can easily cheat the 2D-based facial recogni-

tion systems raise problems of interest (Chellappa

et al., 1995). To avoid such problems, a few
3D model-based face recognition are proposed

wherein 3D feature points are reconstructed which

provide important information for facial recogni-

tion. In (Atick et al., 1995) a method based on

Karhonen-Loeve expansion is developed to recon-

struct 3D face features. The method is claimed to

be independent on lighting conditions. In (Ya

and Zhang, 1998), the reconstruction of face
surface is made rotation-invariant. A similar ap-

proach based on a depth map obtained from stereo

images to perform face segmentation and recogni-

tion can be found in (Lengagne et al., 1996). In

(Eriksson and Weber, 1999), a model-matching

approach is provided to reduce the computational

cost of 3D-based facial recognition algorithms.

In this paper, we propose a novel approach to
identify a person with facial images using 3D

information of facial feature points. Three refer-

ence points are first extracted to construct a

reference plane in every image. By calculating a

view-invariant relative depth, i.e., relative affine

structure with respect to the obtained reference

plane introduced in (Shashua and Navab, 1996),

for each relevant feature point, an efficient face
recognition algorithm is developed using the

robust measurement. Compared with other 3D ap-

proaches that require specific structures in Euclid-
ean space (Atick et al., 1995; Ya and Zhang, 1998),

the proposed method uses only a few facial feature

points and requires no camera calibration. In addi-

tion, iterative training is not required which leads

to the issue of convergence in the neural network
approaches. Experimental results show that the

developed approach performs satisfactorily with

an experimental facial image database.

In the following sections, we first introduce re-

lated projection geometry for one and two cam-

eras. The geometrical relationships between two

cameras such as parallax and relative affine struc-

ture are discussed in Section 3, together with the
geometrical meaning of such a structure which is

expressed in terms of the invariant under perspec-

tive projection, i.e., cross ratio. Algorithms for

face recognition using relative affine structure are

presented in Section 4. Simulation results for an

experimental facial image database are given in

Section 5. Finally, conclusion is given in Section 6.
2. Projective geometry for one and two cameras

The basic procedure of projecting 3D points

onto an image by a perspective camera can be de-

scribed as

m / PM ; ð1Þ

where / denotes the equality up to a scaling fac-

tor, P is the 3 · 4 projection matrix, M ¼
½X Y Z 1�T and m ¼ ½x y 1�T represent the homo-

geneous coordinates of a 3D world point and the

corresponding image point, respectively. In gen-

eral, the image coordinate system is defined in

terms of image pixels. The general form of the pro-
jection matrix can be represented as

P euc / KP 0T ¼
fx s px
0 fy py
0 0 1

264
375½I j0� R t

0T3 1

� �
: ð2Þ

In (2), K gives the intrinsic parameters of the cam-

era, the imaging system. As for T, it describes the

location and orientation of the camera with re-

spect to the world coordinate system. It is a 4 · 4

matrix describing the pose of the camera in terms

of a rotation R and a translation t, which give
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the extrinsic parameters. For an ideal camera

model, both K and T are identity matrices and

(2) becomes

m , P 0M : ð3Þ
Consider two cameras taking pictures of an object,
as illustrated in Fig. 1, wherein C and C 0 are the

two optical centers of the two cameras and v and

v 0 are their associated image planes, respectively.

The projection of C 0 on v, e = PC 0, observed from

C and the projection of C on v 0 observed from C 0,

e 0 = P 0C, are defined as the epipoles of the two

cameras, respectively. Without loss of generality,

we assume that the world coordinate system is
aligned with the image coordinate system of cam-

era C, thus the projection matrices for C and C 0

become

P ¼ K3�3½I3�3j0� ¼ ½Kj0�; ð4Þ

P 0 ¼ K 0
3�3½R3�3jt3�1� ¼ ½K 0RjK 0t�: ð5Þ

In addition, we have, by definition,

PC ¼ K3�3½I3�3j03�1�C4�1 ¼ 0

or

C / 0 0 0 1½ �T:

Since e 0 is the projection of C on v 0

e0 ¼ P 0C ¼ K 0t: ð6Þ
Consider a 3D point M whose depth is z with re-

spect to the camera coordinate system of camera
Fig. 1. A scene with two cameras and three 3D points.
C. Its projection on the image plane v, from (3),

is equal to

m / PM ¼ K ~M

with

M ¼
eM
1

" #
¼ zK�1m

1

" #

if m is normalized as (x, y, 1)T. The projection on

image plane v 0 is then

m0 / P 0M / K 0RK�1mþ 1

Z
K 0t: ð7Þ

With the above geometrical relationships and
coordinate transformations between two cameras,

Shashua and Navab (1996) derived the view

invariant relative affine structure. The following

section provides a brief review, together with its

explicit geometric meaning.
3. Relative affine structure and its geometric
meaning

In (Shashua and Navab, 1996), an affine frame-

work for perspective views is proposed which is

captured by a simple equation based on an invari-

ant called relative affine structure. It is shown in

(Shashua and Navab, 1996) that the framework

unifies projection tasks including Euclidean, pro-
jective and affine in a natural and simple way.

While the algebraic form of the relative affine

structure is given clearly in (Shashua and Navab,

1996), as reviewed next, the direct relationship

between the relative affine structure and a view-

invariant cross ratio under perspective projection,

is derived at the end of this section.

Given a reference plane p where the image
points m and m 0 are projections of a 3D point

Mp 2 p on image planes v and v 0, respectively.

The homography induced by p can be obtained

by Mp = H1m and Mp = H2m
0 as follows:

m0 ¼ H�1
2 Mp ¼ H�1

2 H 1m ¼ Hpm: ð8Þ
Since Hp has eight entries (nine minus a scale fac-

tor), Hp can be determined uniquely by solving a

system of linear equations obtained from three



Fig. 2. An example of parallax.M is a point which is not on the

reference plane p.

Fig. 3. The geometry of the relative affine structure. z and z0
are depths of M and M0 with respect to v, respectively.
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point correspondences in general positions on p
and the relationship e 0 = Hpe. Moreover, once Hp

is computed we can use it to determine positions

of points on p from a singe image.

The homogeneous coordinates of p can be writ-
ten as

p ¼
n3�1

dp

� �
; ð9Þ

where n and dp describe the normal vector and the
depth of p, respectively. For the projection m of

Mp on the image plane v, we have

m ¼ PMp ¼ ½Kj0�Mp:

Since the depth of Mp is unknown, we can assume

that

Mp ¼
ðK�1mÞ3�1

q

" #
: ð10Þ

On the other hand, since Mp is on p, we have

q ¼ �1

dp
nTK�1m: ð11Þ

Now, by projecting Mp on v 0, we have

m0 ¼ Hpm / P 0Mp ¼ K 0 R� tnT

dp

� �
K�1m: ð12Þ

For more general scenes wherein not all of the 3D
points are co-planar, parallax will be produced.

For instance, M is a 3D point which is not on

the plane p in Fig. 2. m00 and Hpm are projections

ofM andMp on v 0, respectively. From (7), (8), (12)

and e 0 = K 0t, we have

m00 / K 0RK�1mþ 1

z
K 0t

¼ Hpmþ znTK�1mþ dp

dpz

� �
e0: ð13Þ

For a point M ¼ ½zK�1m 1�T which is not on the

reference plane p, the distance from M to p is

equal to

d ¼ pTM ¼ znTK�1mþ dp: ð14Þ

Substituting (14) into (13), we have

m00 / Hpmþ d
dpz

� �
e0 ¼ Hpmþ be0: ð15Þ
Since the value of the parallax term b in (15) is

normalized, dp can be dropped out, as stated in

(Shashua and Navab, 1996). If we let b0 = 1 for a

reference point M0 which is not on the reference
plane (see Fig. 3), we are left with

dp ¼
d0

z0

and (15) can be rewritten as

m00 ffi Hpmþ z0
z

d
d0

� �
e0 ¼ Hpmþ ke0 ð16Þ

with k being the relative affine structure. In the fol-

lowing paragraph, we will investigate a different of
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relative affine structure and its relationship with

cross ratio.

In (16), it is not difficult to see that k is an

invariant quantity since the variables z0, z, d0, d

are governed by camera C only. Consider Fig. 3,
by extending MM 0, we can obtain two intersection

points m and Mp, which are on v and the reference

plane p, respectively. By triangular similarity, we

have

k ¼ z0
z

d
d0

¼ mM 0

mM

MMp

M0Mp

¼ CRðm;M ;M0;MpÞ: ð17Þ

This leads to a conclusion that relative affine struc-

ture is in fact a measure of cross ratio.

Algorithm 1. Computation of relative affine struc-

ture for n pairs of image points

(1) Calculate the fundamental matrix F with 8

pairs of correspondences.

(2) Derive the epipoles e and e 0 using FTe 0 = 0 and

Fe = 0.
(3) Derive the homography Hp of the reference

plane with an epipole and 3 pairs of point

correspondences.

(4) Choose a pair of correspondence m0 and m0
0

where m0 and m0
0 are image points on the left

image and the right image, respectively.

(5) Scale Hp such that m0
0 ffi Hpm0 þ e0ðk0 ¼ 1Þ.

(6) Obtain ki with m0
i ffi Hpmi þ kie0, 1 6 i 6 n � 1.
Since it is view-invariant, k can be used as a use-
ful feature to describe object points. Algorithm 1

summarizes the process to calculate the relative af-

fine structure for n pairs of image points. By calcu-

lating relative affine structures of facial features of

persons, we have developed an identity verification

system based on face recognition using k, as dis-

cussed next.
4. Face recognition using relative affine structures

With the properties of the view-invariant rela-

tive affine structure investigated in the previous

section, this section presents the proposed ap-
proach to face recognition using such invariants.

Recall that the relative affine structure of an object

point is only dependent on the configuration of the

first camera C, the position of the reference plane p
and the reference point M0. So, two facial images
are used first to derive the relative affine structure

for each feature point. The first image is denoted

as the reference image and the extracted facial fea-

tures are stored together with the obtained relative

affine structures. To verify the identity of a new

facial image, a new set of relative affine structures

are obtained by the reference facial image and the

new image. The similarity between the stored rela-
tive affine structures and the new set of relative

affine structures is evaluated. Finally, the identity

is verified by checking whether the similarity is

higher than some specified thresholds.

The extraction of essential features of two facial

images and the procedure adopted in this paper to

obtain relative affine structures using the extracted

features are explained here. To focus on the cor-
rectness of the theory, feature points are obtained

manually from facial images taken from different

points of view. On each given face image, fifteen

feature points including eye and mouth corners,

nose tip, ear lobes, etc. are extracted as shown in

Fig. 4(b). The image of the front view of person

A is labeled as Af while the upward and downward

looking facial images are labeled as Au and Ad,
respectively. In the same manner, three images

of each of other persons are also taken. For

example, Fig. 5 shows the images obtained for per-

son B.

Table 1 shows the relative affine structures ob-

tained for persons A and B with Au and Bu being

the reference images, respectively. Since the refer-

ence plane is defined by right ear lobe (point 14),
right ear lobe (point 13) and chin (point 15), as

illustrated in Fig. 6, the relative affine structure

values of these three points are all zeros. The value

of the relative affine structure of the nose tip (point

12), which is the reference point M0, is defined as 1

for normalization. Since the depth from the

camera to a person is usually several meters, z0
z in

(17) is close to 1. Thus, the values of other relative
affine structures given in (17) are close to d

d0
. From

Fig. 6, we can see that the ratio for the eye corner

is close to unity, the ratio for the mouth corner is



Fig. 4. Face images of person A. From left to right side, the images are labeled as Au, Af, and Ad, respectively.

Fig. 5. Face images of person B. From left to right side, the images are labeled as Bu, Bf, and Bd, respectively.

Table 1

Relative affine structures obtained for persons A (k1i) and B (k2i) using Au_Af and Bu_Bf, respectively

i Feature point k1i k2i

1 Right eye corner (outer) 0.9951 1.0111

2 Right eye corner (inner) 0.9050 1.0391

3 Left eye corner (inner) 0.8112 1.0400

4 Left eye corner (outer) 0.7242 1.0590

5 Mouth corner (right) 0.4358 0.4594

6 Mouth corner (left) 0.4228 0.3430

7 Upper lip 0.6663 0.6598

8 Lower lip 0.4748 0.4518

9 Nose (right) 0.7256 0.7436

10 Nose (left) 0.6808 0.7281

11 Nose (center) 0.7734 0.8849

12 Nose (tip) 1.0000 1.0000

13 Ear lobe (right) 0.0000 0.0000

14 Ear lobe (left) 0.0000 0.0000

15 Chin 0.0000 0.0000
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about 0.4, while the ratios for the upper and lower

lips are about 0.65 and 0.45, respectively.

In our experiments, we use six groups of facial

images for persons A through F (see Fig. 7 for fa-

cial images Cf through Ff). Each group consists of

three images from three different points of view.

With a personal computer equipped with a 333
MHz PentiumII processor and memory of 128

MB, the program implemented with MATLAB

6.1 under Microsoft Windows 2000 spends 0.1 sec-

ond to obtain the relative affine structure for each

data set, e.g., Au_Af with Au being the reference

image. A database is used to store such informa-

tion obtained from the facial images. The details



Fig. 6. Face image of side view of person F. The reference plane

is defined by the two ear lobes and the chin. The 2D projections

on images of these three feature points are used to calculate

relative affine structures.
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of the verification stage using this database and a
method to improve the performance of the verifi-

cation are given in the next section.
5. Experimental results

This section gives the experimental results of

face recognition. For example, given the relative
affine structures previously stored in the database

for Xu_Xf and a facial image of an unknown per-

son Y, we can investigate the identity of Y by eval-
Fig. 7. Facial images (a) Cf
uating the similarity between the relative affine

structures for Xu_Xf and that for Xu_Y. The result

of the comparison is then transformed into a score

of matching error. If the score exceeds a threshold,

the unknown person Y is identified not being the
person X.

Table 2 shows the relative affine structure val-

ues for the fifteen facial features calculated for

Au_Af and Au_Ad. Here, the dissimilarity between

two corresponding relative affine structures, say

k1i and k2i, is calculated as Dsi = max(k1i/k2i, k2i/
k1i). For feature points lie on the reference plane,

the relative affine structures are 0�s by definition
and the dissimilarity values are set to 1 (not

shown). Eventually, the overall dissimilarity be-

tween these two set of relative affine structures

are defined as the product of all Dsi�s. For this

example, person with facial image Ad will be iden-

tified as person A since the overall dissimilarity,

denoted as Ds_Au_Af_Ad, is very close to 1.

Table 3 gives results similar to that in Table 2
but using facial image Bd of person B instead

of Ad. It is readily observable that there are major

differences between quite a few corresponding

relative affine structure pairs. In particular, if

ki1 * ki2 < 0, that means the feature points are not

on the same side of the reference plane in the 3D
, (b) Df, (c) Ef, (d) Ff.



Table 2

Relative affine structures for Au_Af (k1i) and Au_Ad (k2i), and their dissimilarity Dsi = max(k1i/k2i, k2i/k1i)

i Feature point k1i k2i Dsi

1 Right eye corner (outer) 0.9951 0.9510 1.0463

2 Right eye corner (inner) 0.9050 0.8961 1.0100

3 Left eye corner (inner) 0.8112 0.8183 1.0087

4 Left eye corner (outer) 0.7242 0.7189 1.0073

5 Mouth corner (right) 0.4358 0.4271 1.0204

6 Mouth corner (left) 0.4228 0.4409 1.0428

7 Upper lip 0.6663 0.6719 1.0084

8 Lower lip 0.4748 0.4871 1.0259

9 Nose (right) 0.7256 0.7243 1.0018

10 Nose (left) 0.6808 0.6853 1.0066

11 Nose (center) 0.7734 0.7593 1.0185

12 Nose (tip) 1.0000 1.0000 1.0000

13 Ear lobe (right) 0.0000 0.0000 1.0000

14 Ear lobe (left) 0.0000 0.0000 1.0000

15 Chin 0.0000 0.0000 1.0000

Overall dissimilarity 1.2141

Table 3

Relative affine structures for Au_Af (k1i) and Au_Bd (k2i), and their dissimilarity Dsi = max(k1i/k2i, k2i/k1i)

i Feature point k1i k2i Dsi

1 Right eye corner (outer) 0.9951 1.0243 1.0293

2 Right eye corner (inner) 0.9050 2.3284 2.5727

3 Left eye corner (inner) 0.8112 3.5765 4.4088

4 Left eye corner (outer) 0.7242 4.5082 6.2254

5 Mouth corner (right) 0.4358 43.423 99.632

6 Mouth corner (left) 0.4228 �2.701 2.0000

7 Upper lip 0.6663 �3.049 2.0000

8 Lower lip 0.4748 �6.584 2.0000

9 Nose (right) 0.7256 �2.721 2.0000

10 Nose (left) 0.6808 �0.186 2.0000

11 Nose (center) 0.7734 �0.711 2.0000

12 Nose (tip) 1.0000 0.9999 1.0000

13 Ear lobe (right) 0.0000 0.0000 1.0000

14 Ear lobe (left) 0.0000 0.0000 1.0000

15 Chin 0.0000 0.0000 1.0000

Overall dissimilarity 4.63E+05

Table 4

Verification of Af using Au and Ad

Overall dissimilarity

Ds_Au_Af_Ad 1.2141

Ds_Af_Au_Ad 1.9270

Ds_Ad_Au_Af 1.6926

Composite dissimilarity 1.5821
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space, the dissimilarity value are set to 2 which

leads to a big contribution to the overall dissimi-

larity. Since the overall dissimilarity of this exam-

ple exceeds the threshold, person B is not identified

as person A.

To further improve the stability of the verifica-

tion system, each facial image can be used as the

reference image and a composite dissimilarity mea-
sure can be obtained, which is the geometric mean

of individual results. Table 4 shows the result of
the verification of Af using Au and Ad while Table

5 shows similar results by using Bf instead of Af.



Table 5

Verification of Bf using Au and Ad

Overall dissimilarity

Ds_Au_Bf_Ad 499057.33

Ds_Bf_Au_Ad 631.10

Ds_Ad_Au_Bf 1955.54

Composite dissimilarity 8508.22
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The composite dissimilarity 1.5821 in Table 4 indi-

cates that the facial image Af can be verified to be

of person A. On the other hand, it is obvious that

Bf is not a facial image of person A since the com-

posite dissimilarity in Table 5 is too high.

By using the composite dissimilarity measure, a

more robust identity verification system is devel-
Table 6

Composite dissimilarities for the verification of facial images Au thro

Af, Ad Bf, Bd Cf, Cd

Au 1.58 22925.14 1509.41

Bu 95.19 1.87 439.52

Cu 12.17 211.89 1.94

Du 4.08E+05 122.75 3055.30

Eu 7.85E+06 2861.12 38943.89

Fu 2.89E+05 2348.07 206.42

Table 7

Composite dissimilarities for verification of facial images Af through

Au, Ad Bu, Bd Cu, Cd

Af 1.58 13738.93 9625.68

Bf 8508.22 1.87 372.59

Cf 11998.25 14725.11 1.94

Df 3042.51 310.53 51170.67

Ef 6979.54 1.90E+06 171595

Ff 151.60 2.03E+06 1146.79

Table 8

Composite dissimilarity for verification of facial images Ad through F

Au, Af Bu, Bf Cu, Cf

Ad 1.58 149.81 11.38

Bd 705.13 1.87 422.78

Cd 10160.21 24.72 1.94

Dd 8318.70 1.09E+07 5.61E+05

Ed 14.15 3155.22 24.01

Fd 726.86 219.91 8222.20
oped and more experimental results are obtained.

Table 6 shows the composite dissimilarity for

the verifications of facial images Au through Fu

based on relative affine structure established

using front and downward looking facial images.
Similarly, Table 7 verifies facial images Af through

Ff and Table 8 verifies facial images Ad through

Fd, respectively. It can be seen from these results

that the threshold for similarity can be set

comfortably at 2.5 for the composite dissimilar-

ity that every person in our database can be

correctly verified with the proposed approach.

We can see easily that the developed identity
verification system successfully performs the verifi-

cation of our experimental database of facial

images.
ugh Fu

Df, Dd Ef, Ed Ff, Fd

16456.43 110.70 1995.84

1.48E+05 1.50E+06 1.23E+05

1.22E+05 351.99 86389.45

1.61 50602.31 10.73

62857.37 1.70 810.17

32115.82 1.29E+07 1.89

Ff

Du, Dd Eu, Ed Fu, Fd

26941.43 8.06E+06 1.02E+06

18755.60 1.15E+06 8985.88

2791.98 2013.52 5650.15

1.61 425738 195.46

3329.84 1.70 105005

1262.61 134511 1.89

d

Du, Df Eu, Ef Fu, Ff

2654.73 1336.72 162.89

3.18 4536.51 16885.11

34498.32 6919.54 762.24

1.61 1.75E+05 20261.21

781.89 1.70 423.75

4.88 5292.08 1.89
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As for the sensitivity of the proposed algorithm,

the relative affine structure is actually cross ratio in

a form which is quite stable numerically. 1 This

can be seen from Fig. 3 that the error of feature

detection, in terms of variance of image pixels on
the image plane, will results in minor change in

the depth of the spatial structure, e.g., z and z0,

associated with a face. From above simulation

results, it seems that differences among face

structures of different individuals are much more

significant than the differences due to the error of

feature detection of facial images of the same per-

son, which gives the robustness of the proposed
approach.
6. Conclusion

This paper presents a study on computer vision

technique and its application in face recognition to

achieve identity verification. The explicit relation-
ship between the relative affine structure and the

cross ratio—an invariant under perspective projec-

tion, is addressed. Subsequently, relative affine

structures derived from multiple images are used

for face recognition. The proposed method neither

requires camera calibration nor reconstructs 3D

models. Moreover, as long as feature points of fa-

cial images are located accurately, the orientation
and depth of the face are allowed to very more

freely. As shown in our preliminary experiments,

the proposed approach does achieve satisfactory

results given the feature points of facial images.

Slightly large scale of face database can be estab-

lished for further investigation of the performance.
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