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ew Nonlinear Algorithms for Estimating 
uppressing Narrowband Interference 

in DS Spread Spectrum Systems 
Wen-Rong Wu, Member, 

Abstract-It has been shown that the narrow-band (NB) inter- 
ference suppression capability of a direct-sequence @S) spread 
spectrum system can be enhanced considerably by processing 
the received signal via a prediction error filter. The conventional 
approach to this problem makes use of a linear filter. However, 
the binary DS signal, that acts as noise in the prediction process, 
is highly non-Gaussian. Thus, linear filtering is not optimal. 
Vijayan and Poor [ll] first proposed using a nonlinear approx- 
imate conditional mean (ACM) filter of the Masreliez type and 
obtained significant results. This paper proposes a number of 
new nonlinear algorithms. Our work consists of three parts. 1) 
We develop a decision-directed Kalman (DDK) filter, that has the 
same performance as the ACM filter but a simpler structure. 2) 
Using the nonlinear function in the ACM and the DDK filters, 
we develop other nonlinear least mean square (LMS) filters with 
improved performance. 3) We further use the nonlinear functions 
to develop nonlinear recursive least squares (RLS) filters that can 
be used independently as predictors or as interference identifiers 
so that the ACM or the DDK filter can be applied. Simulations 
show that our nonlinear algorithms outperform conventiond 
ones. 

I. INTRODUCTION 
PREAD-SPECTRUM techniques provide an effective way 
to cope with narrow-band (NB) interference in communi- 

cation systems [l]. The basic idea behind these techniques is 
to spread the bandwidths of transmitting signals so that they 
are much greater than the information rate. In a direct se- 
quence (DS) spread spectrum system, bandwidth spreading is 
realized by modulating the transmitting signal with a pseudo- 
noise (PN) signal. At the receiver, the signal is de-spread by 
correlating it with the same PN sequence. This system can 
reject interference whose bandwidth is small compared to the 
spread signal. It has been shown [2]-[ 111 that the capability 
of the DS spread spectrum systems to reject NB interference 
can be further improved by processing the received signal. 
This is because there exists strong correlation in the NB 
signals. Thus, the interference can be predicted from its past 
values. However, the spread signal is white and cannot be 
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predicted. Once the prediction of the interference is obtained, 
an error signal is computed by subtracting the estimate from 
the received signal. This error signal is then used as the input 
of the correlator. 

In [2]-[5], Hsu and Giodano, Keltchum and Proalus, Iltis 
and Milstein applied linear transversal filters to the problem of 
NB interference rejection. Masry gave closed-form expressions 
for the signal-to-noise ratio (SNR) improvement [6], [7]. 
Linear least mean square (LMS) estimation techniques offer 
an adaptive way of prediction. One distinct advantage of the 
LMS algorithm is its simplicity. Li and Milstein [SI applied 
the algorithm to the NB interference rejection problem. Iltis 
and Milstein then analyzed the performance in [9]. Though 
the linear filtering approach has yielded fruitful results, one 
problem has been overlooked. In the prediction of interfer- 
ence, the DS signal acts as noise. Since noise degrades the 
performance of the LMS algorithm, direct use of the algorithm 
cannot produce optimal results. To remedy this problem, we 
can filter the received signal before it enters the transversal 
filter. This approach will be elaborated in this paper. 

Another approach is to obtain the state-space representa- 
tion of the system so the well-known Kalman filter can be 
applied. Since the DS sequence, which can be modeled as an 
independent, identically distributed (i.i.d.) binary sequence, is 
non-Gaussian, the Kalman filter is not optimal. The optimal 
filter in this case is nonlinear. To solve this problem, Vijayan 
and Poor Ell] modeled the NB interference as an AR process 
and applied a Masreliez-type approximate conditional mean 
(ACM) filter. The performance of this approach is significantly 
better than the Kalman filter. However, the problem with this 
approach is the difficulty of identifying the AR parameters. 
Since the poles of the AR model are close to the unit 
circle, standard recursive identification schemes cannot work 
satisfactorily. Therefore, Vijayan and Poor used the nonlinear 
function in the ACM filter to develop adaptive nonlinear LMS 
type of algorithms that do not need the system model. They 
showed that nonlinear LMS algorithms perform appreciably 
better than linear ones. These algorithms were extended by 
Rusch and Poor [12] to suppress NB interfercncc in CDMA 
spread spectrum systems. 

In this paper, we propose new nonlinear algorithms to 
suppress NB interference. Our contribution has three parts. 
First, to simplify the computational complexity of the non- 
linear functions in the ACM filter, we propose a decision- 
directed Kalman (DDK) filter. While the DDK filter retains the 
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performance of the ACM filtering, it requires less computation. 
Second, we develop nonlinear LMS types of algorithms by 
employing estimation theory. As mentioned above, the input 
to the LMS algorithm is contaminated by non-Gaussian noise. 
Better results can be obtained by filtering the noisy input. 
Since the noise is non-Gaussian, the LMS algorithm becomes 
nonlinear. This concept of “input filtering” can be applied 
to the recursive least squares (RLS) algorithm, resulting in 
nonlinear RLS algorithms. This leads to the third part of our 
work. We propose to employ the nonlinear RLS algorithm 
to identify the AR parameters of interference and then apply 
the ACM or the DDK algorithm to perform filtering in the 
state space domain. We show that nonlinear IUS algorithms 
perform well even when the poles of the AR model are close 
to the unit circle. 

The organization of this paper is as follows. Section 11 
provides a brief review of the LMS algorithm and related 
nonlinear algorithms in [ l l ]  and [12]. In Section 111, new 
nonlinear filters are derived. Simulations are described in 
Section IV. Section V presents our concluding remarks. 

IT. LMS AND ACM FILTERING 

A. System Model 
We follow the model described in [ I l l .  The low-pass 

equivalent of a DS spread spectrum modulation waveform is 
given by 

N,-1 

m(t) = 1 C k 4 ( t  - kTc) (1) 
k=O 

where N,  is the number of PN chips per message bit, T~ is the 
chip interval, C k  is the kth chip of the PN sequence, and q ( t )  
is a rectangular pulse of duration T ~ .  The transmitted signal 
is expressed as 

s ( t )  = b”t - kTb) 
k 

where { b k }  is the binary information sequence and Tb = M,r, 
is the bit duration. The received signal is defined by 

Z ( t )  = as(t  - T )  + n(t) + i( t)  (3) 

where a is an attenuation factor, T is a delay offset, n(t) is 
wideband Gaussian noise, and i ( t )  is narrow-band interference. 
Here, we assume that n(t) is bandlimited and becomes white 
after sampling. For simplicity, let T be zero and a = 1. 
Suppose that the received signal is chip-matched and sampled 
at the chip rate of the PN sequence. We thus have 

z k  = sk f nk + ik (4) 

where { s k ) ,  { n k } ,  and { i k }  are the discrete-time sequences 
from { s ( t ) } ,  {n( t ) } ,  and { i ( t ) } ,  respectively. { s k } ,  { n k } ,  and 
{ i k }  are assumed to be mutually independent. Since the PN 
sequence is random, we can consider { S A }  to be a sequence of 
i.i.d. random variables taking values of + 1 or - 1 with equal 
probability. 

B. LMS Algorithm 
Let the tap weights of a transversal filter be (al, . . . , ah}. 

The tap-weight update equations of the LMS algorithm can 
be expressed as 

01, = ek-1 + / / k k X k  ( 5 )  

where Ok = [ u l , k  u 2 , k  .. . UL,~]‘ is the estimated tap 
weight at time k ,  Xk = [ z k - l  Z k - 2  . . .  Z I , - L ] ~  is the 
input vector, and ck = z k  - X f 0 k - l  is the prediction 
error. For the suppression of NB interference, it has been 
shown that better results can be obtained by using a two- 
sided LMS filter. For this filter, 0 k  and X I ,  are changed 

X k  = [ z ~ + N  Z ~ + N - I  z1,+1 z k - 1  ‘ . .  X L - N ] .  To make 
the step size invariant with respect to the input power, a 
normalized LMS algorithm is frequently used. This algorithm 
is defined as 

(6) 

A 

A 

a to 01, = [U - iv ,k  U - N + I , ~  ‘ 0 .  a - l , k  ~ 1 , k  . . .  U N , ~ ] ~  and 
A 

P 
@ k + l  = 01, + - E k X k  

rk 

where Tk is an estimate of the input power, that can be obtained 
by 

r k  = prk- l+ (1 - P)Z~. (7) 

,@, 0 < p < I, is a forgetting factor chosen to yield a 
compromise between the prediction accuracy and the tracking 
capability. 

C. Approximate Conditional Mean (ACM) Filter 

process of order p ,  i.e., 
Assume that the NB interference { i k }  is a Gaussian AR 

P 

i k  = 4 3 i k - 3  + dk (8) 
3=l 

where the AR parameters (41, . . . , &} are known to the re- 
ceiver and (&} is a white Gaussian process of zero mean and 
variance a:, i.e., pek (x) N Nup (x), where Nu2(x) = 1 / 6 0  
exp{-x2/2a2}. From (8), we can construct a state space 
representation for the received signal and the interference 

XI, = @ X k - l f  W k  (9) 
X k  = H X k  $. Vk (10) 

where X k  = [ i k  i k - 1  . . .  i k - p + l ] T ,  wk = [ d k  0 . . .  O I T ,  
N = [I 0 . * .  01, ~k = s k  + n k ,  and 

0 
0 

1 0 

$ l , k  4 2 , k  ” ’  + p - l , k  &,k : 1. (11) c p =  1 0  1 . . .  
1 0 . . .  

. . .  . . .  . . .  . . .  . . .  
0 0 . . .  

The estimate of Xk based on observations until time k is 
referred to as the filtering problem, and the estimate of X I ,  
based on observations until time k - 1 is referred to as 
the prediction problem. It is known that the optimums of 
such estimates, in the minimum mean square error sense, are 
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the conditional expectations X k  = E{XkIZk}  and x, = 
E{XklZ"'}, where Z k  = (21 2 2  . . .  ~ k } .  When {wk} 

be recursively obtained from the well-known Kdman filter. 
However, uk is the sum of two independent random variables; 
one is Gaussian distributed and the other takes on values f l  
or -1 with equal probability, Le., 

weights of the transversal filter be [ a l ,  a2, . . .  , a1;IT. The 
aIgorithm is described as follows: 

(21) 
and {wk} are Gaussian processes, the optimal estimates can P A  

O k  = Ok-1 + - E k X k  
rli 

where 
T 

O k  [ Q , k  U 2 , k  . . .  U L , k I  

Such a sequence is highly non-Gaussian. The optimal filter z k  = C&, R-12k-z 

for such a sequence is nonlinear. In [14], Masreliez developed 
an ACM filter to estimate the state of a linear system with 
non-Gaussian observation noise. If we assume that the state = a 2 , k - 1 [ z k - z  + P ( E k - z ) l .  (24) 
prediction density p ( X k  12"') is Gaussian with mean x k  and 

2=1 
L 

z=1 

Ek  = Zk - zk, and T k  

nodinear function of fk defined by 
covariance MA, the conditional mean X k  and its covariance 
Pk can be recursively calculated as 

plrk-l  + (1 - p1).,2. P ( , )  is a 

Mk+i = @PkaT + Qk (15) and can be estimated by 
Xk+l = @ x k  (16) 
- 

32 = A, - 1 (26) 

where Ak is a sample estimate of the prediction error variance 
that can be obtained by Ak = P z A k - 1  + (1 - @,)E;. p1 and 

S k ( Z k )  = [y(~klZ"-')]-l (17) ,& are forgetting factors with values between zero and one. In 
[12], Rusch and Poor modified (21) into 

where 

[ zli 

(27) 
P 

T k  
Ok = O k - l  + - P ( € k ) X k  (18) 

and Qlc = E{wkwZ}. The function g( . )  is called the score 
function. Vijayan and Poor employed this algorithm to solve 
the NB interference suppression problem in the DS spread 
spectrum system [ 113. By the model in (9) and (lo), the score 
function and its derivative turn out to be 

% k ( Z k )  
G k ( Z k )  = ___ 

showing that (27) can provide better results. 

III. NEW NONLINEAR ALGORITHMS 

A. Decision-Directed Kalman (DDK) Filter 

From the last section, we know that the performance of 
the ACM filter will be nearly optimal. The computation of 
the score function and its derivative, (19) and (20), however, ( H M ~ H T  + $)] (19) involves the W(.) and sech (.) functions which are not 
efficient. To improve the computational efficiency, we now 
propose a DDK filter. The density of the observation noise is 
a Gaussian mixture, ;.e., 

1 
HMk HT + g: g k ( Z k )  

Zk - Hzk 

1 
HA4kHT + 0: 

1 
(WMkHT + 0:) 

and 

- G k ( Z k )  = 

P(v~) = ;[No? (uk - 1) + No; (nk 4 I)]. (28) 
(20) 

We can construct hypotheses equivalent to (28) as follows: 
It can be seen that the ACM filter has a structure similar to 
that of the standard Kalman filter. The time update equations 
(15) and (16) are identical to those in the Kalman filter. The 
measurement update in (13) involves the correction of the 
predicted value by a nonlinear score function. The nature of 
the nonlinearity is determined by the density function of the 

P ( ~ o )  = p ( ~ l )  ~ 0.5. Given H~ or H~,  the optimal state 
estimator is just the ~~l~~ filter, Let 

observation noise. P ( Z k  Izk-I) = N M k  ( Z k  - :k) (31) 

where 51, is the mean of p ( z k l 2 " ' ) .  We then have 
D. Adaptive Nonlinear LMS Prediction Filter 

Vijayan and Poor also developed an adaptive nonlinear LMS 2 k  = Zk + MkHt(HMkHt + d1-l (2k - Hzk - 1) (32) 
algorithm based on the ACM filtering algorithm. Let the tap P k  = Mk - MkHt(HMkHt  + a;)-'HMk (33)  
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if HO is given and 

if H I  is given. Note that the error covariance matrix is the 
same in both cases. If we can determine which hypothesis 
is true, we can apply the corresponding Kalman filter. This 
is the standard hypotheses testing problem. Thus, we have to 
evaluate ~ ( H ~ I z ~ )  

where i = 0 or 1. Since p(H0)  = p(H1) = 0.5 and 
p ( z k l ~ k - 1 )  is a constant, P(H;JZ') is proportional to 
p(zklzk, Hi). It is simple to show that 

Thus, the optimal decision rule is 

Observing (37) and (38), we find the decision is simple to 
carry out, i.e., 

If z k  - HBk 2 0,  Choose Ho. (41) 
If z k  - HTk < 0, Choose HI. (42) 

Summarizing the results developed above, we have obtained 
the DDK filter described as follows: 

xk = X k  + M ~ H ~ ( H M ~ H ~  + 
. [ zk  - H x k  - sgn ( z k  - H;i?k)] 

Xk+l =@X.k (45) 
Mk+i = @PkaT + Q k  

(43) 
Pk = Mk - A!ikHT(HA!ikHT + a;)-'HA!ik (44) 

- 

(46) 

where 

Except for (43), the other equations are the same as the 
standard Kalman equations. The measurement update in (43) 
is a nonlinear function of %k - H x k .  The nonlinearity is 
determined only by the sign of the prediction error. The com- 
putational complexity is then greatly reduced. It is interesting 
to consider the sgn(.) function as an approximation of the 
tanh(.) function. From the simulation results in Section IV, 
we find that the performance of the DDK filter is almost the 
same as that of the ACM filter. 

B. Nonlinear Adaptive LMS Filters 

The performance of the LMS algorithm will be degraded if 
noise is present. For the NB interference suppression problem, 
the only information we have is the noisy observation Zk. The 
noise consists of the binary DS signal and Gaussian noise. 
Most previous work ignored this fact and directly used Zk 
as the desired signal. In 1111, Vijayan and Poor first pointed 
out this problem and used a nonlinear processing strategy. 
However, it is not clear how their algorithm is derived and 
what it means. Here, we approach this problem with the 
concept of input filtering and use estimation theory to solve it. 
Given the observations Z k ,  we assume that p ( i k ( 2 " ' )  N 

Nu;(ik - pk). Without knowledge of the AR coefficients, 
computation of b k  and 0; is difficult. For the time being, 
let us assume that at time k - 1, the tap-weight vector Ok-l 

represents the true AR coefficients, then, from (S), we have 

pk = E{iklZ"-l} 
= E { [ i k - I ,  i k - 2 ,  * " ,  ik-L,]Ok-1+dklZk-l} 
= [E{ik-112"'}, . * .  , E{ik-LJZ"-l}]O&l. (47) 

Since i k  is an NB signal, it is then reasonable to make the 
following approximation: 

[E{ik-'Izk-1}, . . . , E{ik&iJZ"-l}] 
M [E{i&1IZ"-l}, . . . , E{il,-LJZ"-L}] 
= [ i k - l ,  i k - 2 ,  - .  . , i k 4 ]  

= x;. (48) 

From (47) and (48), we find that if X k  is available at time k 
and is used as the i\put to the LMS predictor, the output of 
the predictor i k  = XrOk-1 will be &. We can also show 
that the prediction error variance 0: will be 0;. We then have 

(49) 

A 

P(iklZ"1) N & ( i k  - Q. 

From (4), we have 

Zk = i k  + 'Uk and U k  = ??,1; + S k .  (50) 

The prediction error is then 

where f ? k  is the prediction error in the absence of the non- 
Gaussian noise vk, i.e., 

p ( e k ~ ~ " - l )  = Nug(ek) .  (51) 

Note that e k  is independent of 'Uk. Thus, the prediction error 
signal ~k used in the LMS contains the noise v k ,  that will 
degrade the performance. We can remedy this problem by 
filtering Q. From the Baye's law, we have 
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where p(zklZ'-l)  is a normalized constant. The optimal 
estimate & from E ,  based on observations until time k is 
the approximate conditional mean. One can show that 

f?k =E{ekJZk} 

- -.," [ E k -  tanh (&)I. (53) 
0," + 0: 

We can also use the decision-duected algorithm and obtain 
the estimate 

[a - sgn ( E k ) ] .  e k  = ___ (54) Fig. 1. The structure of the LMS algorithm with filtered input. 
4 

g; + fl: 
Since a; is usually much larger than a:, o,"/(o," + 0:) M 1, 
(53)  is reduced to 

and (54) is 

e k  " P Z ( E k )  

= € k  - sgn(€k). (56) 

P I ( . )  and p2(.) correspond to the nonlinear functions in the 
ACM and the DDK filter, respectively. Now, an optimal 
estimate of the input ik can be easily obtained 

A -  

ik = ik + 
' i k  + P % ( E k )  (57) 

where i = 1 or 2. Since zk  is the input to the LMS predictor, 
using (57), we obtain nonlinear transversal filters for the 
prediction of i k  

j=1 

L 

= aJ,k--1[2k--3 + P&k--3)1. (58)  
3=1 

Thus, the weight-update algorithm for the LMS filter is 

(59) 
Ek 

Tk 
Ok = p, - x, 

where E ,  is the prediction error and T k  is an estimate of the 
input power obtained as in (7). Furthermore, we can use the 
filtered error signal p l ( t k )  or , o z ( E ~ )  in the weight-update 
equation and, thus, obtain 

Note that only when X k  is noiseless (i.e., Xr = 
[ i k - l ,  . . . , z k - ~ ] ) ,  will (59) and (60) converge to the true AR 
coefficients. On the other hand, only when Ok-1 represents the 
true AR coefficients, will a, in (58)  be p k .  When k is small, 
these assumptions are not true. Through the two-step iteration 
scheme; ineut-filtering and weight-updating, however, as 5 
increases, X ,  will become less and less noisy and 01, will 
approach the true AR coefficients. 

Fig. 2. The structure of the LMS algonthm with filtered input and filtered 
error signal. 

In summary, we have the following results. For tap weight 
updating, we can use (59) or (60). For prediction, we can use 
(58). This results in four nonlinear LMS filters. Figs. 1 and 2 
show the structures of the filters. For convenience, we shall 
use the following abbreviations in the sequel: 

FiZterALMSl: Use (58)  and (59) with i = 1. 
FiZterALMS2: Use (58)  and (60) with i = 1. 
Filter DLMSI: Use (58)  and (59) with i = 2. 
Filter DLMs2: Use (58)  and (60) with z = 2. 
The ALMS1 filter is just the nonlinear LMS filter proposed \ 

by Vijayan and Poor in [Ill and the ALMS2 filter is the 
modified filter proposed by Rusch and Poor in [12]. However, 
they did not give the derivation of the filters. Equation (53) 
is the closed form solution that did not appear in [ 111 either. 
(0; + 0:) in (55) is the term denoted by a: in (26) that can 
be recursively estimated. From (56), we see that despite the 
simple sign operation, the decision-directed algorithm provides 
another advantage, i.e., computation of (0," + 0:) is not 
required. Note that the ALMS2 and the DLMS2 filters do 
not increase the computational complexity at all. This is clear 
from Figs. 1 and 2. 

C. Suppression of Unknown Intetjierence 
Using ACMDDK Filter 

As described in Section 11, we see that the interference 
and the received signal can be formulated in a state space 
representation and the ACM or the DDK filter can be applied. 
However, the AR parameters of interference have to be known. 
In real applications, we cannot determine the parameters 
in advance. One possible solution is to perform parameter 
estimation first and then apply the ACM or DDK filter. 
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Vijayan and Poor mentioned this method in [ll]. Since the 
poles of the AR model are close to the unit circle, standard 
recursive identification schemes such as recursive maximum 
likelihood (RML) algorithm [ 151-[ 171 converge rather slowly. 
In addition, the performance of the ACM filter is sensitive 
to parameter variation. Consequently, this method was not 
successfully implemented in [ 111. Here, we propose to use 
the RLS method to identify the AR parameters. It is well- 
known that the RLS algorithm converges faster than the LMS 
algorithm. However, when the observations contain noise, 
the performance of the standard IUS algorithm is seriously 
degraded. We shall use the concept of “input filtering” to 
combat this problem. Because the filtering mechanism is 
similar to that of the LMS algorithm, the results developed 
above are directly applicable here. The standard RLS algorithm 
is given as 

Ek = Zk - OT k - l x k  

PI, =A-‘Pk-l - A-‘KkX,TPk-l (64) 

(62) 
01, = O I , - ~ +  K k ~ k  (63) 

where 01, is the tap weight vector of the filter, X is the 
forgetting factor, and xk = [ ~ k - l  ... zk-LlT is the input. 
Thus, X I ,  can be replaced by its filtered version XI, as defined 
in (48) and (57). The error signal Ek in (63) can also be 
replaced by p ; ( ~ k ) .  Then, we have the four nonlinear RLS 
algorithms described below 

Ck = Z k  - @ z - l x k  (66) 
Ok =@&I + K k f ( € k )  (67) 
Pk = A- lPk-1  - A - l K k X , T P k - l .  (68) 

FilterARLSl: Use P I ( . )  in X k  and ~ ( E I , )  = ~ k .  

Filter ARLS2: Use p~ (.) in XI. and f ( ~ k )  = p1  ( ~ g ) .  

Filter DRLSl: Use p2(.) in Xk and f ( ~ )  = ~ k .  
Filter DRLS2: Use p2(.) in X k  and f ( ~ )  = p2(~k). 
ARLS2 and DRLS2 will be selected to perform the identifi- 

cation since they have better performance. It will be shown that 
both algorithms can adapt quickly to an unknown environment. 
For convenience, in the simulations reported below, we refer 
to the scheme with the ARLS2 algorithm and ACM filter as 
AR2A and the scheme with the DRLS2 algorithm and DDK 
filter as DR2D. 

IV. SIMULATIONS 
In this section, we report on simulations carried out to 

evaluate the performance of the proposed algorithms. We 
follow the examples studied in [ll].  We first define our 
performance measure, which is the commonly used SNR 
improvement. We define this as follows: 

Output SNR 2 lolog [ E(,E:(!:k,2)] dB (70) 

where ~ k :  is the prediction error. Therefore 

The SNR at the input was varied by changing the power of 
the interfering signal. The variance of the background thermal 
noise was kept constant at uz = 0.01. All results were obtained 
based on 20 trials, and for each trial, 5000 data points were 
computed. The number of filter taps was 10. Two kinds of NB 
interference were considered: AR and sinusoidal interference. 
We first considered the AR interference. The AR interfering 
signal was obtained by passing white noise through a second- 
order IIR filter with two poles at x = 0.99, i.e., 

ik = 1.98ik-1 - 0.98Olik-2 + d k  (72) 

where { d k }  is white Gaussian noise. Four sets of simulations 
conducted: 
The AR parameters were assumed to be known; three 
filters were compared, namely, Kalman, ACM, and 
DDK. 
The AR parameters were assumed to be unknown; five 
types of LMS filters were compared, namely, normalized 
two-sided LMS (TS-LMS), ALMS1, ALMS2, DLMS1, 
and DLMS2. 
The AR parameters were assumed to be unknown; 
five types of RLS filters are compared, namely, RLS, 
ARIS1, ARLS2, DRLS1, and DRLS2. 
The AR parameters were assumed to be unknown; two 
schemes were compared, namely, AR2A and DR2D. 

Table I summarizes the results (predictions) of the four sets 
of simulations. It can be seen that adaptive nonlinear filtering 
techniques offer considerable advantages over conventional 
linear filters. The performance of the decision-directed al- 
gorithms is almost as good as that of ACM. In the known 
interference case, the linear Kalman filter performs poorly. 
The ACM and the DDK have the same results. This is 
due to the precise state prediction, by which the error is 
very close to f l  or -1. In this case, the sign function is 
almost equal to the tanh(.) function. For LMS filters, we 
can see that ALMS2DLMS2 perform the best, with an SNR 
improvement significantly higher than that of the TS-LMS 
algorithm. The performance of ALMSlDLMSl is between 
that of TS-LMS and ALMS2DLMS2. From part three of 
Table 1, we find that the standard IUS algorithm is greatly 
affected by the non-Gaussian DS signal. Its performance is 
even worse than that of TS-LMS. The reason for this is as 
follows. The vector Kk in (63) can be viewed as a product 
of the step size and the input vector. The step size in the 
LMS algorithm is constant. However, it keeps decreasing in 
the RLS algorithm. The rate of decrease must be synchronized 
with the rate of convergence. When X I ,  is noisy, KI, is not 
correctly evaluated and this synchronization is destroyed. This 
is why the RLS performs poorly in a noisy environment. The 
influence of ~k is not that crucial, since KI, is small when the 
filter converges. Thus, the difference in the performance of 
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Input SNR (dB) -20 -15 -10 
Kalman 26.73 23.51 20.27 

ACM 36.87 32.57 28.10 
DDM 36.87 32.57 28.10 
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-5 
16.95 
23.50 
23.50 

TABLE I 
SNR IMPROVEMENT FOR AR INTERFERENCE 

\ I  

Kalman 
ACM 
DDK 

I 

39.76 34.79 29.80 24.80 
39.66 34.89 29.91 24.91 
38.44 34.25 29.68 24.74 

I I 

DLMS2 
RLS 

ARLSl 

I 

36.41 32.07 27.50 22.92 
24.48 20.90 16.85 12.32 
36.31 31.84 27.15 22.41 

DRLSl 
ARLS2 
DRLS2 
AR2A 
DR2D 

ARLSlDRLSl and ARLSZ/DRLS2 is not significant. Finally, 
we see that AR2AlDRZD perform satisfactorily. This indicates 
that ARLS2DRLS2 did identify the interference properly. One 
point worth noting is that the performances of ACM, DDK, 
ALMS2, DLMS2, ARLS2, DRLS2, AR2A, and DR2D are all 
very similar, regardless of whether the interference parameters 
are known. It seems that the performance bound is reached 
and the state space formulation cannot provide additional 
improvement. 

Another case we considered was that of sinusoidal interfer- 
ence. The frequency of the sinusoidal interference signal was 
kept constant at 0.15 radians, i.e., 

(73) 

where A is the amplitude and 8 is a random phase with 
uniform distribution. Table I1 shows the simulation results. 
From the figure, we see that the performance is similar to that 
in the AR interference case. One difference is that since the 
interference in this case is deterministic, the performance of 
the Kalman filter is not affected by noise (only convergence 
speed is affected). 

On the basis of the simulation results, we conclude that the 
nonlinear algorithms developed in this paper indeed provide 
good performance. We particularly recommend the DLMS2 
filter, that typically provides the best performance at a com- 
putational cost as low as that of the LMS filter. For fast 
convergence, the DRLS2 filter is a good choice; while its 
convergence speed and performance are equivalent to those 
of the ACM filter, it is simpler to implement. 

i ( t )  = A COS (0.15t + 8) 

36.28 31.84 27.15 22.41 
36.85 32.49 27.86 23.18 
36.85 32.49 27.86 23.18 
36.99 32.68 28.15 23.44 
36.99 32.68 28.15 23.44 

TABLE I1 
SNR IMPROVEMENT FOR SINUSOIDAL INTERFERENCE 

_ _ _  ~ 

DRLS2 
AR2A 
DR2D 

Inout SNR (dB) I -20 1 -15 I -10 I -5 

I 

38.01 33.24 28.37 23.35 
38.52 33.63 28.72 23.77 
38.52 33.63 28.72 23.77 

, 

ALMS2 

RLS 23.74 I 18.72 
ARLSl I 37.79 1 32.95 

-3” 
13.83 1 9.224 

I 

28.08 I 23.09 
I I I 

DRLSl I 37.66 I 32.86 I 28.01 I 22.96 
ARLS2 I 37.97 I 33.21 1 28.43 1 23.47 

received signal contains a highly non-Gaussian signal. The 
input to the predictor is noisy. Better performance can be 
obtained by properly filtering the input. Since the noise is 
non-Gaussian, the optimal filter is nonlinear. In this paper, we 
have proposed nonlinear algorithms, described as follows: 

1) We have developed a DDK filter for known interference. 
The DDK filter is computationally simpler than the 
previously proposed ACM filter, but provides the same 
level of performance. 

2) We have developed nonlinear LMS filters that result in 
better performance and less computation. 

3)  We have developed nonlinear RLS algorithms that can 
be used independently, or as interference identifiers so 
that the ACM or the DDK filters can be applied. 

Simulations show that our nonlinear filters perform signif- 
icantly better than conventional ones. Among the proposed 
filters, DLMSZ and DlUS2 are the most useful. The proposed 
DLMS2 filter performs as well as filters formulated in state 
space, such as the ACM filter, but has a structure as simple 
as that of an LMS filter. The proposed DRLS2 filter offers 
fast convergence without involving the system model. It is 
mentioned in [ 1 11 that the nonlinear function of the ACM filter 
will become a hard limiter when 0-2 -+ 0. This is different from 
our scheme. We derive the decision-directed algorithms based 
on the formulation of hypotheses testing and we do not assume 
CT; = 0. In fact, 02 will not be zero. That’s why Vijayan 
and Poor used the tanh(.) function as a soft limiter. Finally, 
our results show that the state space approach cannot provide 
better results in the NB interference suppression problem. 
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