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Abstract

Numerical solution of the Schrédinger and Poisson equations (SPEs) plays an important role in semiconductor simulation.
We in this paper present a robust iterative method to compute the self-consistent solution of the SPEs in nanoscale metal-
oxide-semiconductor (MOS) structures. Based on the global convergence of the monotone iterative (MI) method in solving
the quantum corrected nonlinear Poisson equation (PE), this iterative method is successfully implemented and tested on the
single-, double-, and surrounding-gate (SG, DG, and AG) MOS structures. Compared with other approaches, various numerical
simulations are demonstrated to show the accuracy and efficiency of the method.
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1. Introduction sion carrier density away from the interface of silicon
and silicon dioxide (Si/Sig) due to the quantum me-
Advanced process technology has allowed us to chanical (QM) effect cannot be neglectdd-3]. Thus
fabricate diverse semiconductor devices including any accurate analysis must take the QM effect into
nanoscale MOS structures. For nanoscale SG, DG, consideration. A set of the SPEs subject to an appro-
and AG MOS structures, the displacement of the inver- priate boundary condition at the interface of materials
plays an accurate way of incorporating the QM effect
mspondmg author. Postal address: PO. Box 25-178, [1-3]. Vgnous solution techniques have been proposed
Hsinchu 300, Taiwan. for solving only the SG MOS structurg¢$—3]. How-
E-mail address: ymli@mail.nctu.edu.twY. Li). ever, these methods may encounter divergence prob-
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Fig. 1. (a) The computed electron density and (b) the potential of the
three MOS structures. The inset figures, showRim 1(a), are the
cross-sectional views of the MOS structures.

lem when applied to simulate the DG and AG MOS
structures.

In this paper, we propose a robust numerical it-
erative method for solving the SPEs in the SG, DG,
and AG MOS structures shown in the insetrof. 1
This unified iterative scheme successfully integrates
the MI method[4] and the potential relaxation up-
date method1], where the effect of strong quantum
correction charge density?] is taken into consider-
ation simultaneously. First of all the nonlinear PE is
solved with the MI method instead of the Newton’s
iterative method4]. The calculated potentidlp) en-
ergy, after a relaxation update, is used in the solu-
tion of the Schrddinger equation (SE). The calculated
electron wavefunction§ ;) and eigenenergigdt ;)
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derivatives. The calculated quantum corrected elec-
tron density is feedback into the PE and we solve the
PE with the MI method. Iteration is terminated when
a self-consistent solution is obtained. Compared with
other well known approach¢s,2], application of this
method to simulate the nanoscale SG, DG, and AG
MOS structures under various testing conditions has
confirmed the robustness of the method. In Sec2ion
we state the SPEs for the SG, DG, and AG MOS struc-
tures and discuss the iterative method. In Se@jome
discuss the results. Finally, we draw conclusions.

2. The Schrédinger and Poisson equations and the
iterative method

To calculate the potential distribution and electron’s
density in the nanoscale SG, DG, and AG MOS struc-
tures, shown in the inset dfig. 1, we consider the
following SPE1-3]in a unified formation

2
d(;}&(zr) ﬂdq;(r) Z—i_(P—n—i-ND Ny @
r rour €si
and
o md
_zm—rk(@ + 7d_r>§ik(”) + Ec(r)¢ix(r)
= Eji&jk(r), @)

where Eq(1) is the PE and Eq2) is the SE in the ef-
fective mass approximation. The PE is solved in whole
MOS structure and the SE is only solved in the region
of the silicon films.n = 0 is for the SG and DG MOS
structures in the Cartesian coordinate ang- 1 is for

the AG MOS structure in the cylindrical coordinate.
n = neg + ngm, Where forn.;, we consider the Feri—
Dirac distribution and a two-dimensional electron gas
approximation is used to calculate the quantum elec-
tron densityn,,. Eq. (1) is with the Dirichlet type
boundary condition on the boundary of the simulated
structures. For Eq2), the electron wavefunction is as-
sumed to be vanished on the interface of Si/Sidll
notations used in Eq§l) and (2)are having their con-
ventional physical meaninfl—4]. We briefly outline
the proposed iterative method as follows:

(1) Solve Eq(1) using the MI method,
(2) Solve Eq(2),

are applied to estimate the electron density and its (3) Estimate the derivative af,
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(4) Solve Eq(1) with the MI method, L | DG Algorithm 1] | Algorithm 1
(5) The computed potential is relaxing updated, and T=77k| L . =300 K
(6) Return to the step (2). K l
B ~ AG
Iteration is terminated when the solution converges. | |
We note the MI method converges monotonically
when solves the nonlinear H&]|. ~ sg AG B DG SC
f(a) ] (b) ]
3. Results and discussion - 1AS, Algorithm 2| | Algorithm 2
i T=77k| |} hg T 300K
Fig. 1 shows the computed potential distribution
and electron’s density from the interface of Si/gior B B
the three MOS structures, respectively. In our calcula- n L
tion, eight subbands are computed in solving &). sG
As shown in the figure, the oxide thickne®sy, the B SG B DG
substrate dopingvs, temperaturel’, and gate volt- 1(¢) ] (d) ]
age Vi are with the same settings for all structures. s 100 [y ourmethoal L Sur mothod
The thickness of the silicon filndy; for SG is equal = l"‘\lL T=77K { a0 K
to 100 nm andZs = 20 nm for both the DG and £ 102 |- [l - )
AG MOS structuresFig. 1(a) shows the superior- ..;5104 | |
ity of the AG MOS among the MOS structures. The
higher electron, is due to good channel controllabil- 5 10* |- -
ity in AG MOS structure. To verify the robustness %400 | AG bs S | sG
of the iterative method, we have studied the conver- = pg AG
. 20 Late) o ] (N ]
gence of our method and compare with other two well 10
known algorithms: the first algorithm (Algorithm 1) 0 30 &0 90
updates the computed potential using an explicit re- Number of iteration
laxation method1] and the second one (Algorithm 2) Fig. 2. The maximum norm errors of the computed potential versus
calculates the derivative af,,, by evaluating its previ-  the number of iteration for the three algorithms applied to SG, DG,

ous computed quantitig®]. Comparison is subjectto  and AG MOS structures, respectively.
the same device configurations and settings. We have

examined the convergence behavior of these three al-relaxation update method, where the effect of strong
gorithms in terms offox, Na, T, VG, andTsi. Shown  quantum correction charge density was taken into con-
in Fig. 2 it is found that our method converges for sjderation simultaneously. The solution method has

all cases of simulation. HOWeVer, Algonthms 1land2 shown good numerical Stab|||ty and robust conver-
have suffered different divergent problems, shown in gence for different simulation cases.

Fig. 2(a)—(d), when solving the SPEs in the SG, DG,
and AG MOS structures unddtr = 300 K andT =

77 K, respectively. Acknowledgements

This work is supported in part by the National
Science Council of Taiwan under contracts NSC-93-
o . 2215-E-429-008 and NSC 93-2752-E-009-002-PAE,

We have present an effective iterative method for 4 grant of the Ministry of Economic Affairs, Tai-
the self-consistent solution of the SPEs in nanoscale wan under contract No. 93-EC-17-A-07-S1-0011, and

SG, DG, and AG MOS structures. Our method SUC- {he grant from Taiwan Semiconductor Manufacturing
cessfully integrates the MI method and the potential Company, Hsinchu, Taiwan in 2004—2005.

4. Conclusions



312 Y. Li, S-M. Yu/ Computer Physics Communications 169 (2005) 309-312

References [3] Y. Li, J.-W. Lee, T.-W. Tang, T.-S. Chao, T.-F. Lei, S. Sze,

Numerical simulation of quantum effects in higtgate dielec-
[1] F. Stern, Iteration methods for calculating self-consistent fields tric mos structures using quantum mechanical models, Comput.
in semiconductor inversion layers, J. Comp. Phys. 6 (1970) 56— Phys. Comm. 147 (2002) 214-217.

67. [4] Y. Li, A parallel monotone iterative method for the numerical
[2] J.A. Lopez-Villanueva, I. Melchor, F. Gamiz, J. Banqueri, J.A. solution of multi-dimensional semiconductor Poisson equation,

Jimenez-Tejada, A model for the quantized accumulation layer Comput. Phys. Comm. 153 (2003) 359-372.

in metal-insulator-semiconductor structures, Solid-State Elec-

tron. 38 (1995) 203-210.



	A numerical iterative method for solving Schrödinger and Poisson equations in nanoscale single, double and surrounding gate metal-oxide-semiconductor structures
	Introduction
	The Schrödinger and Poisson equations and the iterative method
	Results and discussion
	Conclusions
	Acknowledgements
	References


