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We give a simplified method to generate two types of zero-norm states in the old covari-
ant first quantized (OCFQ) spectrum of open bosonic string. Zero-norm states up to the
fourth massive level and general formulas of some zero-norm tensor states at arbitrary mass
levels are calculated. On-shell Ward identities generated by zero-norm states and the factor-
ization property of stringy vertex operators can then be used to argue that the string-tree
scattering amplitudes of the degenerate lower spin propagating states are fixed by those of
higher spin propagating states at each fixed mass level. This decoupling phenomenon is, in
contrast to Gross’s high-energy symmetries, valid to all energies. As examples, we explic-
itly demonstrate this stringy phenomenon up to the fourth massive level (spin-five), which
justifies the calculation of two other previous approaches based on the massive worldsheet
sigma-model and Witten’s string field theory (WSFT).

§1. Introduction

The theory of string, as a consistent quantum theory, has no free parameter and
an infinite number of states. It is thus conceivable that there exists huge hidden
symmetry group which is responsible for the ultraviolet finiteness of the theory. In
fact, it was conjectured by Gross1) more than a decade ago that an infinite broken
gauge symmetries get restored at energy much higher than the Planck energy. More-
over, he conjectured that, for the closed string, there existed an infinite number of
linear relations among the scattering amplitudes of different string states that are
valid order by order and are of the identical form in string perturbation theory as
α′ goes to infinity. As a result, the scattering amplitudes of all string states can be
expressed in terms of, say, the dilaton amplitudes. A similar result was presented in
Ref. 2) for the open string case.

Soon after, it was discovered that3) the equations of motion for massive back-
ground fields of the degenerate positive-norm propagating states can be expressed
in terms of those of higher spin propagating states at each fixed mass level. This
decoupling phenomenon was argued to be arisen from the existence of two types of
zero-norm states with the same Young representations as those of the degenerate
positive-norm states in the OCFQ spectrum. This was demonstrated by using mas-
sive worldsheet sigma-model approach in the lowest order weak field approximation
but valid to all orders in α′, and thus was, in contrast to Gross’s result, valid to
all energies. To compare with the usual sigma-model loop (α′) approximation, this
result was argued to be a sigma-model n+1 loop result for the n-th massive level
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260 J. C. Lee

(spin-n+1).3)–5) This calculation applies to both open and closed string cases. In a
recent paper,6) the same decoupling phenomenon was demonstrated by using WSFT
for the open string case up to the spin-five level. It was shown that the background
fields of these degenerate positive-norm states can be gauged to the higher rank fields
at the same mass level.

In this paper, we will derive this interesting stringy decoupling phenomenon
from the third and a more direct method, namely, the S-matrix approach. The key
was to explicitly calculate both types of zero-norm states7) in the OCFQ spectrum.
An infinite number of nonlinear relations between string scattering amplitudes of
different string states with the same momenta at each fixed mass level can then be
written down.8) By nonlinearity, one means that the coefficients among scattering
amplitudes of different string states depend on the center of mass scattering angle
φCM through the dependence of momentum k.9) These relations, or stringy on-shell
Ward identities are, as in Gross’s case, valid order by order and are of the identi-
cal form in string perturbation theory since zero-norm states should be decoupled
from the string amplitudes at each order of string perturbation theory. These Ward
identities, together with the factorization property of stringy vertex operators, will
be used in this paper to express the scattering amplitudes of the degenerate lower
spin propagating states in terms of those of higher spin propagating states, and thus
reduce the number of independent scattering amplitudes at each fixed mass level.
These Ward identities and the resulting decoupling phenomenon are, in contrast
to Gross’s high-energy symmetries, valid to all energies. However, these nonlinear
Ward identities, which are valid to all energies, are difficult to solve. The high-energy
limit of these stringy Ward identities are recently9) used to explicitly prove Gross’s
conjecture on linear relations among high-energy scattering amplitudes of different
string states with the same momenta. It was shown that these stringy Ward identi-
ties get simplied as α′ → ∞, and the number of independent scattering amplitudes
reduces further. As a result, there is only one independent component of high energy
scattering amplitude at each fixed mass level. All other components of high energy
scattering amplitudes are proportional to it. Moreover, the proportionality constants
between scattering amplitudes of different string states are calculated. These pro-
portionality constants were found to be independent of the scattering angle φCM and
the loop order χ of string perturbation theory as conjectured by Gross.1),2) For the
case of string-tree amplitudes, a general formula can even be given9) to determine all
high energy stringy scattering amplitudes for arbitrary mass levels in terms of those
of tachyons – another conjecture by Gross.1)

It is now clear that zero-norm states are of crucial importance to uncover the
fundamental symmetries of string theory.9) The power of zero-norm states and their
direct relation to spacetime w∞ symmetry and Ward identities10) of toy 2D string
model were stressed in Ref. 11). A general formula of 2D zero-norm states at an
arbitrary mass levels with Polyakov’s momentum was given in terms of Schur Poly-
nomials. These zero-norm states were shown to carry the charges of w∞ symmetry,
which was used to determine the tachyon scattering amplitudes without any integra-
tion. In §2 of this paper, with the help of a simplified method to construct D=26
stringy positive-norm vertex operators,12) we will first tabulate Young diagrams of
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Calculation of Zero-Norm States 261

D=26 zero-norm states at each mass level given Young diagrams of positive-norm
states at the same mass level. A consistent check of counting of number of zero-norm
states by using the background ghost fields in WSFT was given in Ref. 6). Here
we go one step further and invent a simplified method to explicitly construct D=26
stringy zero-norm states. As examples, we calculate all relevant zero-norm states up
to the spin-five level. General formulas of some zero-norm tensor states at an arbi-
trary mass levels will also be given. In §3, we then use these zero-norm states and
their corresponding stringy Ward identities, together with the factorization property
of stringy vertex operators, to explicitly show the reduction of string-tree scattering
amplitudes of degenerate positive-norm propagating states up to the spin-five level.
This calculation justifies two previous independent calculations based on the massive
worldsheet sigma-model approach3) and WSFT approach.6)

§2. Calculation of zero-norm states

The vertex operator of a physical state of open bosonic string

|Ψ〉 =
∑

Cµ1...µm
α

µ1−n1
...α

µm−nm
|0; k〉 , [αµ

m, αν
n] = mηµνδm+n (1)

is given by13)

Ψ(z) =
∑

Cµ1...µm
Nm :

∏
(∂nj

z xµj )eik·X(z) :, (2)

where Nm = im
∏
{(nj − 1)!}−1. In the OCFQ spectrum, physical states in Eq. (1)

are subject to the following Virasoro conditions

(L0 − 1) |Ψ〉 = 0, L1 |Ψ〉 = L2 |Ψ〉 = 0, (3a,b)

where

Lm =
1
2

∞∑
−∞

: αm−n · αn : (4)

and α0 ≡ k. The solutions of Eqs. (3a,b) include positive-norm propagating states
and two types of zero-norm states. The latter are14)

Type I : L−1 |x〉 , where L1 |x〉 = L2 |x〉 = 0, L0 |x〉 = 0; (5)

Type II :
(
L−2 +

3
2
L2
−1

)
|x̃〉 , where L1 |x̃〉 = L2 |x̃〉 = 0, (L0 + 1) |x̃〉 = 0. (6)

Equations (5) and (6) can be derived from Kac determinant in conformal field the-
ory. While type I states have zero-norm at any spacetime dimension, type II states
have zero-norm only at D=26. The existence of type II zero-norm states signals
the importance of zero-norm states in the structure of the theory of string. It is
straightforward to solve positive-norm state solutions of Eq. (3a, b) for some low-
lying states, but soon becomes practically unmanageable. The authors of Ref. 12)
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262 J. C. Lee

gave a simple prescription to solve the positive-norm state solutions of Eqs. (3a, b).
The strategy is to apply the Virasoro conditions only to purely transverse states, so
that the zero-norm states will be got rid of at the very beginning. This prescription
simplified a lot of computation although some complexities remained for low spin
states at higher levels. Our aim here, on the contrary, is to generate zero-norm states
in Eqs. (5) and (6), so that all physical state solutions of Eq. (3) will be completed.

Let us first assume we are given positive-norm state solutions of some mass level
n. The number of positive-norm degree of freedom at mass level n (M2 = 2(n− 1))
is given by N24(n), where15)

ND(n) =
1

2πi

∮
dx

xn+1

( ∞∏
k=1

1
1 − xk

)D
. (7)

On the other hand, the number of physical state degree of freedom is given by N25(n)
in view of the constraints in Eq. (3a,b). The discrepancy is of course due to physical
zero-norm states given by solutions of Eqs. (5) and (6). That is, among 25 chains
of αµ

m oscillators one chain forms zero-norm states. Thus we can easily tabulate
Young diagrams of zero-norm states at each mass level given Young diagrams of
positive-norm states at the same mass level calculated by the simplified prescription
in.12) For example, positive-norm state at mass level n = 4 gives zero-norm
states + + + • , posive-norm state gives zero-norm states + +
and positive-norm state gives zero-norm states + •. This completes the zero-
norm states at mass level n = 4. Young diagrams of zero-norm states up to mass
level M2 = 10, together with positive-norm states calculated in Ref. 12), are listed in
Appendix A. A consistent check of counting of zero-norm states by using background
ghost fields in WSFT was given in Ref. 6).

To explicitly calculate zero-norm states is another issue. Suppose we are given
some low-lying positive-norm state solutions. It is interesting to see the similarity
between Eqs. (3a, b) and Eqs. (5) and (6) for |x〉 and |x̃〉. The only difference is
the “mass shift” of L0 equations. As is well-known, the L1 and L2 equations give
the transverse and traceless conditions on the spin polarization. It turns out that,
in many cases, the L1 and L2 equations will not refer to the L0 equation or on-
mass-shell condition. In these cases, a positive-norm state solution for |Ψ〉 at mass
level n will give a zero-norm state solution L−1 |x〉 at mass level n + 1 simply by
taking |x〉 = |Ψ〉 and shifting k2 by one unit. Similarly, one can easily get a type
II zero-norm state (L−2 + 3

2L2−1) |x̃〉 at mass level n + 2 simply by taking |x̃〉 = |Ψ〉
and shifting k2 by two units. For those cases where L1 and L2 equations do refer
to L0 equation, our prescription needs to be modified. We will give some examples
to illustrate this method. Note that once we generate a zero-norm state, it soon
becomes a candidate of physical state |Ψ〉 to generate two new zero-norm states at
even higher levels.

1. The first zero-norm state begin at k2 = 0. This state is suggested from the
positive-norm tachyon state |0, k〉 with k2 = 2. Taking |x〉 = |0, k〉 and shifting k2

by one unit to k2 = 0, we get a type I zero-norm state.
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Calculation of Zero-Norm States 263

L−1 |x〉 = k · α−1 |0, k〉 ; |x〉 = |0, k〉 ,−k2 = M2 = 0. (8)

2. At the first massive level k2 = −2, tachyon suggests a type II zero-norm state

(
L−2+

3
2
L2
−1

)
|x̃〉 =

[1
2
α−1 ·α−1+

5
2
k ·α−2+

3
2
(k ·α−1)2

]
|0, k〉 ; |x̃〉 = |0, k〉 ,−k2 = 2.

(9)
Positive-norm massless vector state suggests a type I zero-norm state

L−1 |x〉 = [θ·α−2+(k ·α−1)(θ·α−1)] |0, k〉 ; |x〉 = θ·α−1 |0, k〉 ,−k2 = 2, θ·k = 0. (10)

However, massless singlet zero-norm state (8) does not give a type I zero-norm state
at the first massive level k2 = −2 since L1 equation on state (8) refers to L0 equation,
k2 = 0. This means that L1 will not annihilate state (8) if one shifts the mass to
k2 = −2.

3. At the second massive level k2 = −4, positive-norm massless vector state
suggests a type II zero-norm state

(
L−2 +

3
2
L2
−1

)
|x̃〉 =

{
4θ · α−3 +

1
2
(α−1 · α−1)(θ · α−1) +

5
2
(k · α−2)(θ · α−1)

+
3
2
(k · α−1)2(θ · α−1) + 3(k · α−1)(θ · α−2)

}
|0, k〉 ;

|x̃〉 = θ · α−1 |0, k〉 ,−k2 = 4, k · θ = 0. (11)

However, massless singlet zero-norm state (8) does not give a type II zero-norm
state at mass level k2 = −4 for the same reason stated after Eq. (10). Positive-norm
spin-two state at k2 = −2 suggests a type I zero-norm state

L−1 |x〉 = [2θµνα
µ
−1α

ν
−2 + kλθµναλµν

−1 ] |0, k〉 ; |x〉 = θµναµν
−1 |0, k〉 ,−k2 = 4,

k · θ = ηµνθµν = 0, θµν = θνµ, (12)

where αλµν
−1 ≡ αλ−1α

µ
−1α

ν−1. Similar notations will be used in the rest of this paper.
Vector zero-norm state with k2 = −2 in Eq. (10) does not give a type I zero-norm
state for the same reason stated after Eq. (10). In this case, however, one can modify
|x〉 to be

Ansatz: |x〉 = [aθ · α−2 + b(k · α−1)(θ · α−1)] |0, k〉 ;−k2 = 4, θ · k = 0, (13)

where a, b are undetermined constants. L0 equation is then trivially satisfied and
L1, L2 equations give a : b = 2 : 1. This gives a type I zero-norm state

L−1 |x〉 =
[1
2
(k · α−1)2(θ · α−1) + 2θ · α−3 +

3
2
(k · α−1)(θ · α−2)

+
1
2
(k · α−2)(θ · α−1)

]
|0, k〉 ;−k2 = 4, θ · k = 0. (14)
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264 J. C. Lee

Similarly, we modify the singlet zero-norm state with k2 = −2 in Eq. (9) to be

Ansatz: |x〉 =
[5
2
ak · α−2 +

1
2
bα−1 · α−1 +

3
2
c(k · α−1)2

]
|0, k〉 ;−k2 = 4, (15)

where a, b and c are undetermined constants. L1 and L2 equations give

5a + b + 3k2c = 0, 5k2a + 13b +
3
2
k2c = 0. (16)

For k2 = −4, we have a : b : c = 5 : 9 : 17
6 . This gives a type I zero-norm state

L−1 |x〉 =
[17

4
(k · α−1)3 +

9
2
(k · α−1)(α−1 · α−1) + 9(α−1 · α−2)

+21(k · α−1)(k · α−2) + 25(k · α−3)
]
|0, k〉 ; (17)

−k2 = 4.

This completes the four zero-norm states at the second massive level. Note that state
(17) was calculated in Ref. 7) without modification. The coefficients there thus need
to be corrected although the main results remain valid. It is interesting to note that
the Young tableau of zero-norm states at level M2 = 4 are the sum of those of all
physical states at two lower levels, M2 = 2 and M2 = 0, except the singlet zero-norm
state due to the dependence of L1 and L2 equations on L0 condition in state (8). For
those cases that L1 and L2 equations not referring to L0 condition, our construction
gives us a very simple way to calculate zero-norm states at any mass level n given
those of positive-norm states at lower levels constructed by the simplified method
in Ref. 12). When the modified method was needed to calculate a higher mass level
zero-norm state from a lower mass level physical state like Eq. (8), an inconsistency
may result and one gets no zero-norm state. This explains the discrepancy of singlet
zero-norm states at levels M2 = 2, 4,8 and a vector zero-norm state at level M2 = 10.

4. Similar method can be used to calculate zero-norm states at level M2 = 6. We
will just list those which are relevant for the discussion in section III. They are (from
now on, unless otherwise stated, each spin polarization is assumed to be transverse,
traceless and is symmetric with respect to each group of indices as in Ref. 12))

L−1 |x〉 = θµνλ(kβαµνλβ
−1 + 3αµν

−1α
λ
−2) |0, k〉 ; |x〉 = θµνλαµνλ

−1 |0, k〉 , (18)

L−1 |x〉 = [kλθµνα
µλ−1α

ν
−2 + 2θµνα

µ
−1α

ν
−3 |0, k〉 ; |x〉] = θµναµ

−1α
ν
−2 |0, k〉 ,

where θµν = −θνµ, (19)

L−1 |x〉 =
[
2θµναµν

−2 + 4θµνα
µ
−1α

ν
−3 + 2(kλθµν + k(λθµν))α

λµ
−1α

ν
−2

+
2
3
kλkβθµνα

µνλβ
−1

]
|0, k〉 ;

|x〉 =
[
2θµναµ

−1α
ν
−2 +

2
3
kλθµναµνλ

−1

]
|0, k〉 (20)
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Calculation of Zero-Norm States 265

and

(
L−2 +

3
2
L2
−1

)
|x̃〉 =

[
3θµναµν

−2 + 8θµνα
µ
−1α

ν
−3 +

(
kλθµν +

15
2

k(λθµν)

)
αλµ
−1α

ν
−2

+
(1

2
ηλβθµν +

3
2
kλkβθµν

)
αµνλβ
−1

]
|0, k〉 ;

|x̃〉 = θµνα
µν
−1 |0, k〉 . (21)

Note that |x〉 in Eq. (20) has been modified as we did for Eq. (13). To further
illustrate our method, we calculate the type I singlet zero-norm state from Eq. (17)
as following

Ansatz : |x〉 = [a(k · α−1)3 + b(k · α−1)(α−1 · α−1) + c(k · α−1)(k · α−2)
+d(α−1 · α−2) + f(k · α−3)] |0, k〉 ;

−k2 = 6. (22)

The L1 and L2 equations can be easily used to determine a : b : c : d : f = 37 : 72 :
261 : 216 : 450. This gives the type I singlet zero-norm state

L−1 |x〉 = [a(k · α−1)4 + b(k · α−1)2(α−1 · α−1) + (2b + d)(k · α−1)(α−1 · α−2)
+(c + 3a)(k · α−1)2(k · α−2) + c(k · α−2)2

+d(α−2 · α−2) + b(k · α−2)(α−1 · α−1)
+(2c + f)(k · α−3)(k · α−1) + 2d(α−1 · α−3) + 3f(k · α−4)] |0, k〉 ,

−k2 = 6. (23)

5. We list relevant zero-norm states at level M2 = 8 from the known positive-
norm states and zero-norm states at level M2 = 4, 6. They are

L−1 |x〉 = (kβθµνλγαµνλγβ
−1 + 4θµνλγαµνλ

−1 αγ
−2) |0, k〉 ;

|x〉 = θµνλγαµνλγ
−1 |0, k〉 , (24)

L−1 |x〉 = θµνλ

[3
4
kβkγαµνλγβ

−1 + 3kβαµνβ
−1 αλ

−2 + 3kβα
(µνλ
−1 α

β)
−2

+6α
(µ
−1α

νλ)
−2 + 6α

(µν
−1 α

λ)
−3

]
|0, k〉 ;

|x〉 = θµνλ

(3
4
kβαµνλβ

−1 + 3αµν
−1α

λ
−2

)
|0, k〉 , (25)

(
L−2 +

3
2
L2
−1

)
|x̃〉 = θµνλ

[(3
2
kβkγ +

1
2
ηγβ

)
αµνλβγ
−1 + kγ

(1
2
αµνλ
−1 αγ

−2 + 8α
(µνλ
−1 α

γ)
−2

)
+3α

(µ
−1α

νλ)
−2 + 6α

(µν
−1 α

λ)
−3

]
|0, k〉 ;

|x̃〉 = θµνλαµνλ
−1 |0, k〉 , (26)
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266 J. C. Lee

L−1 |x〉 = θµν,λ(kγαγµν
−1 αλ

−2 + 2αµ
−1α

νλ
−2 + 2αµν

−1α
λ
−3) |0, k〉 ;

|x〉 = θµν,λαµν
−1α

λ
−2 |0, k〉 , where θµν,λ is mixed symmetric, (27)

L−1 |x〉 = θµν

(3
4
kβkλαβλµ

−1 αν
−2 + 4kλαλµ

−1α
ν
−3 +

3
4
kλαµ

−1α
νλ
−2 + 2αµ

−2α
ν
−3

+6αµ
−1α

ν
−4

)
|0, k〉 ;

|x〉 =
(3

4
kλαλµ

−1α
ν
−2 + 2αµ

−1α
ν
−3

)
|0, k〉 , where θµν = −θνµ, (28)

and

(
L−2 +

3
2
L2
−1

)
|x̃〉 = θµν

[(3
2
kγkλ +

1
2
ηγλ

)
αγλµ
−1 αν

−2 + 6kλαλµ
−1α

ν
−3

+
5
2
kλαµ

−1α
νλ
−2 + 2αµ

−2α
ν
−3 + αµ

−1α
ν
−4

]
|0, k〉 , |x̃〉 = θµνα

µ
−1α

ν
−2 |0, k〉 ,

where θµν = −θνµ. (29)

Note that the modified method was used in Eqs. (25) and (28).
6. Finally, we calculate general formulas of some zero-norm tensor states at

arbitrary mass levels by making use of general formulas of some positive-norm states
listed in Ref. 12).

a.

L−1θµ1...µm
α

µ1...µm−1 |0, k〉 = θµ1...µm
(kλα

λµ1...µm−1 + mα
µ1−2α

µ2...µm−1 ) |0, k〉 , (30)

where −k2 = M2 = 2m, m = 0, 1, 2, 3 · · · . For example, m = 0, 1 give Eqs. (8) and
(10).

b. (
L−2 +

3
2
L2
−1

)
θµ1...µm

α
µ1...µm−1 |0, k〉

=
{
θµ1...µm

[(3
2
kνkλ +

1
2
ηνλ

)
α

νλµ1...µm−1 +
3
2
m(m − 1)αµ1µ2−2 α

µ3...µm−1

+(1 + 3m)α
µ1...µm−1

−1 α
µm−3

]
+
[3
2
(m + 1)k(λθµ1...µm) +

3
2
mkµm

θµ1...µm−1λ

]
α

µ1...µm−1 αλ
−2

}
|0, k〉 , (31)

where −k2 = M2 = 2m + 2, m = 0, 1, 2 · · · . For example, m = 0, 1 give Eqs. (9) and
(11).

c.

L−1θµ1...µm−2,µm−1
α

µ1...µm−2

−1 α
µm−1

−2 |0, k〉

= θµ1...µm−2,µm−1
[kλα

λµ1...µm−2

−1 α
µm−1

−2 + (m − 2)αµ1...µm−3

−1 α
µm−2µm

−2

+2α
µ1...µm−2

−1 α
µm−1

−2 ] |0, k〉 , ...... (32)
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Calculation of Zero-Norm States 267

where −k2 = M2 = 2m, m = 3, 4, 5 · · · . For example, m = 3, 4 give Eqs. (19) and
(27).

d. (
L−2 +

3
2
L2
−1

)
θµ1...µm−2,µm−1

α
µ1...µm−2

−1 α
µm−1

−2 |0, k〉

= θµ1...µm−2,µm−1

[(3
2
kλkν +

1
2
ηλν

)
α

µ1...µm−2λν
−1 α

µm−1

−2 + 6kλα
µ1...µm−2λ
−1 α

µm−1

−3

+
(3

2
m − 2

)
kλα

µ1...µm−2

−1 α
µm−1λ

−2 + 2(m − 2)αµ1...µm−3

−1 α
µm−2

−2 α
µm−1

−3

+11α
µ1...µm−2

−1 α
µm−1

−4 + kλα
µ1...µm−3λ
−1 α

µm−2µm−1

−2

+(m − 3)α
µ1...µm−4

−1 α
µm−3µm−2µm−1

−2

]
|0, k〉 , ...... (33)

where −k2 = M2 = 2m + 2, m = 3, 4, 5.... For example, m = 3 gives Eq. (29).
e.

L−1θµ1...µm−4,µm−3µm−2

(
α

µ1...µm−4

−1 α
µm−3µm−2

−2 − 4
3
α

µ1...µm−3

−1 α
µm−2

−3

)
= θµ1...µm−4,µm−3µm−2

[
kλα

λµ1...µm−4

−1 α
µm−3µm−2

−2 + (m − 4)α
µ1...µm−3

−1 α
µm−4µm−3µm−2

−2

+
16
3

α
µ1...µm−4

−1 α
µm−3

−3 α
µm−2

−2 +
4
3
kλα

λµ1...µm−3

−1 α
µm−2

−3 + 4α
µ1...µm−3

−1 α
µm−4

−4

]
,

...... (34)

where −k2 = M2 = 2m, m = 5, 6 · · · .
f. The zero-norm states of Eq. (30) can be used to generate new type I zero-norm

states by the modified method as following

L−1θµ1...µm

( m

m + 1
kλα

λµ1...µm−1 + α
µ1−2α

µ2...µm−1

)
|0, k〉

=
[ m

m + 1
kνkλθµ1...µm

α
νλµ1...µm−1 + m(k(λθµ1...µm)

+ kλθµ1...µm
)αµ1−2α

λµ2...µm−1

+m(m − 1)θµ1...µm
α

µ1µ2−2 α
µ3...µm−1 + 2mθµ1...µm

α
µ1−3α

µ2...µm−1

]
|0, k〉 , (35)

where −k2 = M2 = 2m + 2, m = 1, 2, 3 · · · . For example, m = 1, 2 and 3 give
Eqs. (14), (20) and (25). Note that the coefficient of the first term in Eq. (35)
has been modified to m

m+1 . Similarly, new type II zero-norm states can also be con-
structed.

These are examples of some higher spin zero-norm states at arbitrary mass levels.
As in the case of positive-norm states, the complexity of the calculation increases
when calculating lower spin zero-norm states for higher levels. Fortunately, for our
purpose in this paper, it is usually good enough to calculate higher spin zero-norm
states as it will become clear in the next section. For those formulas with transverse
trace12)

ηT
µν = ηµν − kµkν/k2, (36)
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the modified method should be used, and we have no general formulas for them.
Each zero-norm state calculated in this section corresponds to an on-shell Ward

identity, which can be easily written down. As an interesting example8) to illustrate
the importance of zero-norm state, the inter-particle Ward identity for two propa-
gating states at the second massive level (M2 = 4) was calculated to be (k · θ = 0)(1

2
kµkνθλ + 2ηµνθλ

)
T (µνλ)

2,χ + 9kµθνT [µν]
2,χ − 6θµT µ

2,χ = 0, (37)

where we have chosen, say, v1(k1) to be the vertex operator constructed from D2

vector zero-norm state obtained by antisymmetrizing those terms which contain
αµ
−1α

ν−2 in the original type I, Eq. (14), and type II, Eq. (11), vector zero-norm
states and kµ ≡ k1µ. Note that v2, v3 and v4 can be any string states (including
zero-norm states), and we have omitted their tensor index for the cases of excited
string states in Eq. (37). T ′

2,χs in Eq. (37) are the second massive level, χ-th order

string-loop amplitudes. At this point, {T (µνλ)
2,χ , T (µν)

2,χ , T µ
2,χ} is identified to be the

amplitude triplet of the spin-three state and T [µν] is identified to be the amplitude of
the antisymmetric spin-two state.8) Eq. (37) thus relates the scattering amplitudes
of two different string states at the second massive level. It is important to note
that Eq. (37) is, in contrast to the high-energy α′ → ∞ result of Gross, valid to all
string-loop and all energy α′, and its coefficients do depend on the center of mass
scattering angle φCM , which is defined to be the angle between

−→
k 1 and

−→
k 3, through

the dependence of momentum k . This angular dependence disappears in the high-
energy limit of Eq. (37),9) which is consistent with Gross’s result. The inter-particle
gauge symmetry corresponding to Eq. (37) can be calculated to be7)

δC(µνλ) =

(
1
2
∂(µ∂νθλ) − 2η(µνθλ)

)
, δC[µν] = 9∂[µθν], (38)

where ∂νθ
ν = 0, (∂2−4)θν = 0 are the on-shell conditions of the D2 vector zero-norm

state. C(µνλ) and C[µν] are the background fields of the symmetric spin-three and
antisymmetric spin-two states respectively at the second mass level. Equation (38)
is the result of the first order weak field approximation but valid to all energy α′
in the generalized σ-model approach. It is important to note that the decoupling
of D2 vector zero-norm state implies simultaneous change of both C(µνλ) and C[µν],
thus they form a gauge multiplet. This important stringy phenomenon can also be
justified in WSFT.6),8) A second order weak field calculation implies an even more
interesting spontaneously broken inter-mass level symmetry in string theory.16)

§3. Reduction of degenerate state’s amplitude

The decoupling of degenerate positive-norm states was first discovered in Ref. 3)
by using generalized sigma-model approach. It was recently justified by using WSFT
for the open string case up to the spin-five level.6) This stringy phenomenon begins
to show up at spin-four level of open bosonic string. The explicit form of four
positive-norm states at spin-four level can be found in Ref. 13). According to the
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decoupling conjecture, the spin-two and the scalar positive-norm states should be
decoupled. That is, their amplitudes are determined from those of two other higher
spin states. Let us begin the discussion by first making an important observa-
tion. According to Eq. (2), the vertex operator corresponding to αµνλγ

−1 is Aµνλγ =
:∂xµ∂xν∂xλ∂xγeik·x :. Due to the factorization structure of this tensor vertex, which
results from the strong constraint of 2D worldsheet conformal symmetry, the ampli-
tude corresponding to Aµνλγ is fixed by its traceless, transverse spin part εµνλγ . In
particular, the longitudinal parts of Aµνλγ are determined by εµνλγ through the
Lorentz extension; and the trace parts of Aµνλγ are fixed by the conformal extension.
This means that given the on-shell amplitude of εµνλγ , the amplitude Tµνλγ of Aµνλγ

is fixed. Here T µνλγ is defined to be the four-point function containing the rank -four
tensor : ∂xµ∂xν∂xλ∂xγeik·x : and three tachyons. Due to the factorization structure
of stringy vertex operator, the string-tree scattering amplitude are factorized in the
momentum kµ carried by the vertex vertex. Let us use a simpler rank-two tensor
to illustrate the trace fixing or conformal extension. Given a factorized symmetric
rank-two tensor constructed from a D-vector kµ (kµ will correspond to momentum
for the scattering amplitudes in the later discussion)

Aµν = kµkν + cηµν

=
(
kµkν − k2

D
ηµν
)

+
(k2

D
+ c
)
ηµν , (39)

where we have decomposed Aµν into a traceless spin part and a trace part containing
a scalar c independent of the spin part, the trace part of Aµν is not fixed by the spin
part of Aµν . Now for the homogeneous factorized tensor, c = 0 in Eq. (39). The
traceless spin part of Eq. (39) gives us D(D+1)

2 components which is of order D2,
while the factorized symmetric rank-two tensor Aµν contains only D independent
components which are components of kµ. It is thus easy to see that the trace part of
Aµν is fixed by the spin part of the tensor. Thus, knowing the spin part of Aµν means
knowing the whole tensor. This result can be easily generalized to the decomposition
of a homogeneous factorized tensor Aµν = kµ

1 kν
2 , which contains only 2D independent

components in contrast to the number of components of the spin part, which is of
the order D2. Similar results can be obtained for homogeneous factorized higher rank
tensors. Note that this factorized property can only be seen in the first order weak
field approximation3) (or vertex operator consideration), and does not show up in
the zeroth order spectrum.

With the observation discussed above in mind, we can now discuss the decoupling
phenomenon at level four. It was pointed out3) that the positive-norm spin-two state
can be gauged to a gauge which contains only αµνλγ

−1 and αµν
−1α

λ−2 terms by making
use of the gauge transformations induced by the type I and the type II spin-two
zero-norm states, Eqs. (20) and (21), to be

[(1
3
kλεµν +

1
2
k(λεµν)

)
αλµ
−1α

ν
−2 +

( 13
174

kαkβεµν +
3
58

ηαβεµν

)
αµναβ
−1

]
|0, k〉 , (40)
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where εµν is a symmetric traceless and transverse spin-two tensor. Since the rank-
four amplitude T µναβ

3,χ is fixed by the spin-four amplitude and the mixed-symmetric
rank-three amplitude T λµν

3,χ is fixed by the mixed-symmetric spin-three amplitude,
the amplitude of the spin-two state in Eq. (40) is determined by those of the spin-
four and the mixed-symmetric spin-three states. (Note that T (λµν)

3,χ is fixed by the
spin-four amplitude T µναβ

3,χ due to the existence of a totally symmetric spin-three
zero-norm state Eq. (18) at this level.) In fact, T µναβ

3,χ with χ = 1 can be explicitly
calculated to be8)

T µνλγ
3,1 =

Γ (− s
2 − 1

)
Γ (− t

2 − 1)

Γ (u
2 + 2)

[(s2

4
− s
)(s2

4
− 1
)
kµ

3 kν
3kλ

3kγ
3

−t
(t2

4
− 1
)
(s + 2)k(µ

1 kν
1kλ

1k
γ)
3 +

3st

2

(s

2
+ 1
)( t

2
+ 1
)
k

(µ
1 kν

1kλ
3k

γ)
3

−s
(s2

4
− 1
)
(t + 2)k(µ

1 kν
3kλ

3k
γ)
3 +

( t2

4
− t
)(t2

4
− 1
)
kµ

1 kν
1kλ

1kγ
1

]
, (41)

where s = −(k1 + k2)2, t = −(k2 + k3)2, and u =−(k1 + k3)2are the Mandelstam
variables. We have chosen the second state to be the tensor and have done the
SL(2, R) gauge fixing and restricted to the s − t channel by setting x1 = 0, 0 ≤
x2 ≤ 1, x3 = 1, x4 = ∞. One easily sees from Eq. (41) that there are no terms
containing ηµνon the right hand side of T µνλγ

3,1 . This is due to the normal ordering
of the tensor vertex operator :∂xµ∂xν∂xλ∂xγeik·x :, and there is no contribution of
terms resulting from contraction within the tensor vertex when doing the amplitude
calculation. Thus the trace part of the rank-four amplitude is fixed by the spin-four
amplitude by the conformal extension mentioned in the beginning of this section.
That is, the rank-four amplitude T µνλγ

3,1 is fixed by the spin-four amplitude. This
result can be easily generalized to N-point amplitudes containing more than one
tensor state.

Take a representative of the positive-norm scalar state at this mass level to be13)

[(
ηµν +

13
3

kµkν

)
αµν
−2 +

(20
9

kµkνkρ +
2
3
kµηνρ +

13
3

kρηµν

)
αµν
−1α

ρ
−2

+
(23

81
kµkνkρkσ +

32
27

kµkνηρσ +
19
18

ηµνηρσ

)
αµνρσ
−1

]
|0, k〉 . (42)

It turns out that one can not gauge away the first term in Eq. (42) by using the
gauge transformations induced by the two singlet zero-norm states as in the case of
positive-norm spin-two state. However, since the amplitude corresponding to αµν

−2

has been fixed by those of two higher spin states, we conclude that the positive-
norm scalar state amplitude is again fixed by those of two higher spin states. This
concludes the justification of decoupling conjecture for spin-four level. We stress
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here that the mechanisms that is responsible for this decoupling is the existence of
two-types of zero-norm states and the factorization of stringy vertex, which are both
due to 2D infinite dimensional worldsheet conformal symmetry.

The positive-norm states at level five were calculated in Ref. 12) to be

εµνλβγαµνλβγ
−1 |0, k〉 , (43)

εµνλ,βαµνλ
−1 αβ

−2 |0, k〉 , (44)

εµ,νλ

(
αµ
−1α

νλ
−2 −

4
3
αµν
−1α

λ
−3

)
|0, k〉 , (45)

[ 4
5!(D + 5)

εµνληT
βγαµνλβγ

−1 + εµνλ

(
αµ
−1α

νλ
−2 −

4
3
αµν
−1α

λ
−3

)]
|0, k〉 , (46)

[ 5
6(D + 1)

ηT
(µνελ)βαµνλ

−1 αβ
−2 + εµν

(
αµ
−2α

ν
−3 −

1
2
αµ
−1α

ν
−4

)]
|0, k〉 , (47)

and

[ D − 2
80(D + 3)

ηT
(µνη

T
λβεγ)α

µνλβγ
−1 +

(
ηT

µνελ − 1
2
(D − 1)ε(µηT

ν)λ

)
αµν
−1α

λ
−3

+
3
4
(DεµηT

νλ − ηT
µ(νελ))α

µ
−1α

νλ
−2)
]
|0, k〉 . (48)

According to our decoupling conjecture, states (46), (47) and (48) should be de-
coupled. Note that states (27) and (45) are different in the α′

is operator content
although they share the same Young diagram. One corresponds to αµ

−1α
νλ−2 and the

other αµν
−1α

λ−3 or vice versa. With the explicit form of zero-norm states calculated

in §3, we can now justify the decoupling conjecture at level five. The terms α
(µ
−1α

νλ)
−2

and α
(µν
−1 α

λ)
−3 in Eq. (46) can be gauged away by zero-norm states in Eqs. (25) and

(26), and the amplitude corresponding to α
(µνλ
−1 α

β)
−2 is fixed by that of αµνλβγ

−1 through
zero-norm state in Eq. (24) and our observation discussed in the beginning of this
section. Thus the amplitude of state (46) is fixed by those of states (43) and (44).
Now turn to state (47). The terms α

[µ
−2α

ν]
−3 and α

[µ
−1α

ν]
−4 can be gauged away by

zero-norm states in Eqs. (28) and (29), the amplitudes corresponding to α
(µ
−1α

νλ)
−2

and α
(µν
−1 α

λ)
−3 are fixed by those of states in Eqs. (43) and (44) through zero-norm

states in Eqs. (25) and (26). Finally the amplitude of mixed-symmetric αµ
−1α

νλ−2 (or
αµν
−1α

λ−3) is fixed by those of states (43), (44) and (45). Thus the amplitude of state
(47) is fixed by those of states (43), (44) and (45). Similar analysis shows that the
amplitude of state (48) is again fixed by those of states (43), (44) and (45). This
completes the justification of our decoupling conjecture at level five.

The decoupling calculation presented in this paper by the S-matrix approach
can be easily generalized to the closed string theory by making use of the simple
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relation between closed and open string amplitudes in Ref. 17). A similar gener-
alization to the closed string theory can also be done for the massive worldsheet
sigma-model approach. Our calculation in this section justifies two previous inde-
pendent calculations based on the massive worldsheet sigma-model approach3) and
WSFT approach.6)
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Appendix

The Young tabulations of all physical states solutions of Eq. (3) up to level six,
including two types of zero-norm state solutions of Eqs. (5) and (6), are listed in the
following table:

massive level positive-norm states zero-norm states

M2 = −2 •

M2 = 0 • (singlet)

M2 = 2 , •

M2 = 4 , , 2 × , •

M2 = 6 , , , • , , 2 × , 3 × , 2 × •

M2 = 8 , , , , , , , 2 × , 2 × , 4 × , 5 × , 3 × •

M2 = 10

, , ,

, , , ,2 × , , •
, 2 × , , 3 × ,

4 × , 4 × , 7 × , 8 × , 6 × •

Note that the Young tabulations of zero-norm states at level n are subset of the
sum of all physical states at levels n-1 and n-2.
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