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ABSTRACT 

Ex-situ sputtered AlN nucleation layer has been demonstrated effective to significantly improve crystal quality and 

electrical properties of GaN epitaxy layers for GaN based Light-emitting diodes (LEDs). In this report, we have 

successfully reduced X-ray (102) FWHM from 240 to 110 arcsec, and (002) FWHM from 230 to 101 arcsec. In addition, 

reverse-bias voltage (Vr) increased around 20% with the sputtered AlN nucleation layer. Furthermore, output power of 

LEDs grown on sputtered AlN nucleation layer can be improved around 4.0% compared with LEDs which is with 

conventional GaN nucleation layer on pattern sapphire substrate (PSS).  
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1. INTRODUCTION 

There are several significant factors which affect quantum efficiency in GaN based light-emitting diodes (LEDs) and 

crystal quality is always the most important. GaN-based LED structures are made typically on the (0001) c-plane 

sapphire substrates because of no nature GaN substrates.1, 2 Several reports showed that interfacial energy difference 

between sapphire and GaN film may cause dislocations which can produce V-shape pits and lower crystal quality of the 

subsequently grown GaN layer.3 Furthermore, efficiency is also reduced by nonradiative recombination centers caused 

by poor quality of GaN layers.4 For solving interfacial problem, an in-situ low temperature GaN nucleation layer is 

inserted in order to decrease the energy difference from thermal expansion coefficient and lattice constant mismatch 

between sapphire substrates and GaN. To reduce threading dislocation densities (TDDs) is another way to improve the 

GaN crystal quality, and epitaxially lateral over-growth,5, 6 insertion of superlattice layers or SiNx nano–masks,7, 8 etc. are 
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successful methods of TDD reduction. After that, patterned sapphire substrates (PSS) are widely used on GaN based 

LEDs because the TDDs can be well limited, and high internal quantum efficiency (IQE) can be achieved.9 Moreover, 

the light extraction efficiency can be significantly enhanced because of rough interfaces between sapphire and GaN. 

Recently, for the purpose of achieving better electrical performance of LEDs, ex-situ sputtered AlN nucleation layer 

on PSS has been demonstrated to improve crystal quality and electrical properties of GaN epitaxy layers for GaN based 

LEDs.10 The improvement could be owing to the fact that ex-situ sputtered AlN nucleation layer has better coverage on 

sapphire substrates and could lower the lattice constant mismatch between sapphire and the GaN film. However, large 

strain still exists in the LED structure and may lead to cracks within GaN layers because of different lattice constants and 

thermal expansion coefficients between GaN and sapphire substrate. The internal electric field caused by strain may 

induce band bending and suppress the recombination efficiency between electrons and holes in the multiple quantum 

wells (MQWs) based on the strain-related quantum-confined Stark effect (QCSE).11-13 Therefore, relationship of strain, 

crystal quality and electrical properties is going to be discussed.  

 
2. EXPERIMENT 

2.1 Substrates and precursors 

Trimethylgallium (TMGa), trimethylaluminium (TMAl), trimethylindium(TMIn), and ammonia (NH3) were used as 

precursors of chemical reactions for Ga, Al, In, and N sources, respectively. N-type and p-type doping sources were 

silane (SiH4) and bicyclopentadienyl magnesium (Cp2Mg), respectively. The GaN based LED structures were grown on 

4-inch (0001) PSS by MOCVD. 

2.2 LED structures 

Figure 1 shows a conventional in-situ 25-nm-thick low temperature GaN (LT-GaN) nucleation layer was deposited at 560 

℃ on PSS in MOCVD (Figure 1a) and the other was deposited with an ex-situ 25-nm-thick sputtered AlN nucleation 

layer (Figure 1b). The same GaN based LED structures grown on both samples consisted of a 4-μm-thick unintentionally 

doped GaN (un-GaN) layer, 3-μm-thick n-type GaN layer (n-doping = 1 x 1019 cm-3), 950-Å-thick strain-release layer, 

nine pairs of InGaN/GaN MQWs with a 3-nm-thick un-doped well and a 12-nm-thick n-doping barriers as active regions, 

a 60-nm-thick p-type Al0.1Ga0.9N (p-doping = 8 x 1019 cm-3) electron blocking layer (EBL), and a 100-nm-thick p-type 

GaN cap layer (p-doping = 1 x 1019 cm-3).  
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3.2 TEM Result and X-ray analysis 

Figure 3 shows the cross-sectional TEM image of sample X and sample Y. Some dislocations around top of pattern and 

air voids at cone slope area in sample X can be observed from Figure 3a. On the contrary, almost no defects and only a 

little air voids can be discovered around the top region of cones in sample Y. In addition, the X-ray (102) full-width at 

half maximum (FWHM) could be reduced from 240 of sample X to 110 arcsec of sample Y, and (002) FWHM was also 

from 230 to 101 arcsec. This analysis can indicates that the crystal quality of GaN layers can be effectively improved by 

using the ex-situ sputtered AlN nucleation layer.  

 

Figure 3. Cross sectional TEM images of GaN epitaxial layer grown on PSS: (a) with an in-situ LT GaN nucleation layer, (b) with an 

ex-situ sputtered AlN nucleation layer. 

 

3.3 L-I curve and V-I curve 

Figure 4a shows the forward bias L-I curve. The light output powers were 754 and 725 mW when the injection current 

was 600 mA, respectively. The light output power (LOP) of sample Y was 4.0 % higher than sample X. Figure 4b 

indicates the reversed bias voltage versus reversed bias current. The reversed bias voltage of sample Y was always -10V 

much higher than sample X at either lower (1μA) or higher (1mA) reversed bias current, respectively. We believe that 

reversed bias leakage current corresponds to the dislocation density which means the better crystal quality could bring 

out the lower leakage current and higher reversed bias voltage. 
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Figure 4. (a) The forward L-I characteristics and (b) the reversed bias V-I curve of LED devices. 

 

3.4 PL result 

Figure 5a and 5b show the PL emission peak and spectra FWHM of sample X and Y as a function of excitation power at 

300K, respectively. The FWHM of PL emission peak declined with the blue-shift of PL emission peak because the QCSE 

was gradually screened and the MQWs became flatter with increasing the carrier density at the lower excitation power. 

When it came to the higher excitation power, the QCSE was completely screened and the Burstein–Moss effect started to 

dominate the blue-shift of PL emission peak.20 At the same time, all states close to the conduction band are populated 

which caused large amount of carriers being pushed to higher energy states, so the FWHM of PL emission peak 

increased. The energy shift of PL emission peak of sample X and Y before the FWHM raising were 3.3 and 8.2 meV, 

respectively. The fact of that LED with the ex-situ sputtered AlN nucleation layer has higher compressive strain can be 

proved from the energy shift result.  

 

 
Figure 5. Power dependent PL peak wavelength and FWHM as a function of excitation power for sample X (a) and Y (b), respectively. 
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3.5 Raman result 

The depth resolved confocal Raman spectroscopy was analyzed to figure out strain distribution in the LED structure. 

Figure 6 shows the peak position of GaN E2
high Raman peak from the sample surface to the substrate interface, and the 

error bars was the uncertainty in the curve-fitting. The formation of defects caused partial strain release during the 

growth of GaN layers in sample X. Therefore, the strain around the surface was lower than that in sample Y. On the other 

hand, the more coherent growth of GaN layers by using the ex-situ sputtered AlN nucleation layer induced relatively 

high compressive strain in sample Y. Based on these analysis, we believed that better crystal quality is one of the most 

important factors which dominate higher light output power and reversed bias voltage although larger strain existed in 

LED with ex-situ sputtered AlN nucleation layer. 

 
Figure 6. The Raman peak frequency shifts of the GaN E2

high phonon modes of sample X and Y are plotted as a function of the depth 

of epitaxial layer from the p-GaN surface toward the sapphire substrate. 

 
4. CONCLUSION 

Sputtered AlN nucleation layer can reduce the dislocation formation of GaN layers and suppress crystal growth on the 

cone region of PSS compared with GaN layers on in-situ LT GaN nucleation layers which indicates that crystal quality of 

GaN layers was improved significantly by using ex-situ sputtered AlN nucleation layer. Moreover, LEDs with ex-situ 

sputtered AlN nucleation layers have 4.0% increase of LOP and around -10V improvement of reversed bias voltage. 

Lastly, the truth was revealed by PL and depth resolved Raman measurement that LEDs with ex-situ sputtered AlN 

nucleation layers have larger compressive strain. However, owing to great crystal quality, LEDs with ex-situ sputtered 

AlN nucleation layers hold excellent performance of optical and electrical properties. 
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