
A fair scheduling algorithm with traffic classification

for wireless networks

You-Chiun Wang, Shiang-Rung Ye, Yu-Chee Tseng*

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsin-Chu, 30050 Taiwan, ROC

Received 21 July 2004; accepted 21 July 2004

Available online 11 September 2004

Abstract

Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms have been

proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the difference of

traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may be incurred

for real-time flows. To resolve this problem, we propose a traffic-dependent wireless fair queuing (TD-FQ) algorithm that takes traffic types

of flows into consideration when scheduling packets. The proposed TD-FQ algorithm not only alleviates queuing delay of real-time flows, but

also guarantees bounded delays and fairness for all flows.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Data communication; Fair queuing; Mobile communication system; Scheduling; Wireless network
1. Introduction

To meet QoS requirements, many packet scheduling

algorithms [1–6] have been proposed for wireline networks

to guarantee fairness and delay bounds. However, it is not a

trivial task to directly apply these algorithms to wireless

domain. In particular, wireless channels are characterized

by more serious bursty and location-dependent errors [7,8].

Bursty errors may break a flow’s continuous services, while

location-dependent errors are likely to allow error-free

flows to receive more services than they deserve, thus

violating the fairness and delay bound properties.

To solve these problems, several wireless packet

scheduling algorithms have been proposed [9–14]. In

idealized wireless fair queuing (IWFQ) [9], each packet is

associated with a finish tag, which is computed according to

the principles of weight fair queuing (WFQ) [2].

The scheduler always selects the error-free packet with
0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.07.025

* Corresponding author. Tel.: C886 3 513 1366; fax: C886 3 572 4176.

E-mail address: yctseng@csie.nctu.edu.tw (Y.-C. Tseng).
the smallest finish tag to serve. When a flow suffers from

channel errors, all its packets will keep their old tags.

Therefore, when the flow exits from errors, its packets are

likely to have smaller finish tags, thus achieving the

compensation purpose. In channel-condition independent

fair queuing (CIF-Q) [10], fairness is achieved by

transferring the time allocated to those error flows to those

error-free flows. Later on, compensation services (CS) will

be dispatched to the former proportional to their weights.

However, as Ref. [13] shows, an inherent limitation of fluid

fair queuing is that the delay observed by a flow is tightly

coupled with the fraction of bandwidth given to that flow

among all backlogged flows. Since the fraction is in turn

coupled with the weight assigned to the flow, we call this the

delay-weight coupling problem. Both IWFQ and CIF-Q

may suffer from this problem.

In this work, we consider the fair scheduling problem in a

wireless network whose input includes both real-time and

non-real-time traffics. This problem is especially important

with the recently emerging multi-media services (MMS) in

next-generation wireless networks. Real-time applications

are typically delay-sensitive. If wireless fair scheduling is
Computer Communications 28 (2005) 1225–1239
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom


Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–12391226
supported without special consideration for real-time flows,

the delay-weight dilemma would either hurt real-time flows

or the system performance. Several wireless scheduling

algorithms have been proposed to address this concern

[11–14]. However, they still suffer from certain weaknesses

(Ref. to Section 2).

In this work, we propose a new algorithm called

Traffic-Dependent wireless Fair Queuing (TD-FQ). Traffics

arriving at a base station (BS) are mixed with real-time and

non-real-time flows. TD-FQ is developed based on CIF-Q

[10], but it adds extra mechanisms to reduce queuing delays

of real-time flows by giving them higher priorities.

Nevertheless, TD-FQ guarantees that the special treatment

of real-time flows will not starve non-real-time flows. Thus,

it still maintains fairness and bounded delays for all flows.

The rest of this paper is organized as follows. Related

work is discussed in Section 2. Section 3 presents our

TD-FQ algorithm. Section 4 formally proves several

properties of TD-FQ. Simulation results are presented in

Section 5. Conclusions are drawn in Section 6.
2. Related work

In server based fairness approach (SBFA) [11], a fraction of

bandwidth is reserved particularly for compensation purpose.

A number of virtual servers called long-term fairness servers

(LTFS) are created for those flows that experienced errors.

Then the reserved bandwidth will be used to compensate those

LTFS flows. However, since the erroneous flows are

compensated in a first-come-first-served manner, real-time

lagging flows may still suffer from long queuing delay.

Effort-limited fair (ELF) [12] suggests to adjust each

flow’s weight in response to the error rate of that flow, up to

a maximum defined by that flow’s power factor. However,

since the scheduler does not have immediate knowledge

about the error rates of a flow, there could be some delay in

adjusting its weight to respond to its channel and queue

condition. Besides, when a real-time flow just exits from

errors, it is emergent to deliver packets for the flow, or these

packets may be dropped. Unfortunately, adjusting weights

cannot guarantee higher priorities for such flows.
Fig. 1. System architec
Wireless fair service (WFS) [13] assigns each flow i with

a rate weight ri and a delay weight Fi, and associates every

packet pk
i with a start tag Sðpk

i Þ and a finish tag Fðpk
i Þ;

Sðpk
i Þ Z maxfVðAðpk

i ÞÞ; Sðp
kK1
i ÞCLkK1

i =rig;

Fðpk
i Þ Z Sðpk

i ÞCLk
i =Fi;

where Lk
i is the length of the kth packet of flow i, Aðpk

i Þ is the

arrival time of the packet, and V(t) is the virtual time at time t.

Essentially, flow i is drained into the scheduler according to

the rate weight ri, but served according to the delay weight

Fi. The flow with the smallest finish tag will be picked by

the scheduler. By introducing the delay weight, WFS

decouples delay and bandwidth to a certain degree.

However, since the computation of start tags is still based

on rate weights, real-time flows may not get much benefit.

Besides, WFS adopts a compensation mechanism based on a

weighted round robin approach, where the lagging degree of

a flow is used as its weight. Without distinguishing real-time

and non-real-time flows, this algorithm may still cause

serious queuing delays for real-time flows.

Lee et al. [14] classify flows into four groups: poor,

poorer, rich, and normal. A flow is said poor if it receives less

service than it expects. When a poor flow transmitting real-

time traffic is about to drop packets due to long waiting time,

this flow is changed to a poorer flow. When there are CSs

available, the poorer flows always have the highest priority to

receive such services. However, this behavior may cause

other poor flows to starve if there are many poorer flows.
3. The TD-FQ algorithm

Below, we first introduce the system model and basic

operations of TD-FQ, followed by some special designs of

TD-FQ, including graceful degradation, compensation, and

lag redistribution.
3.1. System model

We consider a packet-cellular network as in Fig. 1.

Packets arriving at a BS are classified into real-time traffic
ture of TD-FQ.



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–1239 1227
and non-real-time traffic and dispatched into different

queues depending on their destination mobile stations.

These traffic flows are sent to the TD-FQ scheduler, which is

responsible for scheduling flows and transmitting their

head-of-line (HOL) packets via the MAC protocol.

The Channel state monitor provides information about the

channel state of each mobile station (there are different

alternatives to achieve this, but this is out of the scope of this

work). For simplicity, we assume that BS has immediate

and accurate knowledge of each channel’s state.

In this paper, we focus on the design of TD-FQ

scheduler. Mobile stations may suffer from bursty and

location-dependent channel errors. However, error

periods are assumed to be sporadic and short relative to

the whole lifetime of flows so that long-term unfairness

would not happen.
3.2. Basic operations

Following most fair queuing works, each flow i is

assigned a weight ri to represent the ideal fraction of

bandwidth that the system commits to it. However, the real

services received by flow i may not match exactly its

assigned weight. So we maintain a virtual time vi to record

the nominal services received by it, and a lagging level lagi
Fig. 2. Scheduling po
to record its credits/debits. The former is to compete with

other flows for services, while the latter is to arrange CSs.

The actual normalized service received by flow i is

viKlagi/ri. Flow i is called leading if lagi!0, called lagging

if lagiO0, and called satisfied if lagiZ0. Further, depending

on its queue content, a flow is called backlogged if its queue

is nonempty, called unbacklogged if its queue is empty, and

called active if it is backlogged or unbacklogged but

leading. Note that TD-FQ will only choose active flows to

serve. When an unbacklogged but leading flow (i.e. an

active flow) is chosen, its service will actually be transferred

to another flow for compensation purpose. Also, following

the principle of CIF-Q, whenever a flow i transits from

unbacklogged to backlogged, its virtual time vi is set to

max{vi, minj2A{vj}}, where A is the set of all active flows.

Fig. 2 outlines the scheduling policy of TD-FQ. TD-FQ

follows the design principle of CIF-Q. First, the active flow i

with the smallest virtual time vi is selected. If flow i is

backlogged and its channel condition is good, the HOL

packet of flow i can be served if flow i is non-leading, in

which case the service is called a normal service (NS). Then

we update the virtual time vi as (viClp/ri), where lp is the

length of the packet. In case that flow i has to give up its

service due to an empty queue or a bad channel condition,

the service will become an extra service (ES). On the other
licy of TD-FQ.



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–12391228
hand, if flow i is over-served (i.e. leading), the Graceful

Degradation Scheme will be activated to check if flow i is

still eligible for the service. If flow i has to give up its

service, the service will be transferred to a CS. In both cases

of CS and ES, the Compensation Scheme will be triggered,

trying to select another flow j to serve. If the scheme fails to

select any flow, this service is wasted, called a lost service

(LS). If the scheme still selects flow i to serve, then we

update vi and send its HOL packet. If a flow j (si) is

selected, flow j’s packet will be sent and the values of vi,

lagi, and lagj are updated as follows:

vi Z vi C lp0 =ri; (1)

lagi Z lagi C lp0 ; (2)

lagj Z lagj K lp0 ; (3)

where p 0 is the packet being sent. Note that in this case we

‘charge’ to flow i by increasing its virtual time, but ‘credit’

(resp., debit) to lagi (resp., lagj) of flow i (resp., j).

Whenever the scheduler serves the HOL packet of any

flow i, it has to check the queue size of flow i. If it finds that

flow i’s queue is empty, it will invoke the Lag Redistribut-

ing Scheme to adjust flow i’s lag, if necessary.

Below, we introduce the three schemes, Graceful

Degradation Scheme, Compensation Scheme, and Lag

Redistributing Scheme, in TD-FQ. Table 1 summarizes

notations used in TD-FQ.

3.3. Graceful degradation scheme

When a leading flow i is selected for service, the

Graceful Degradation Scheme will be triggered to check its
Table 1

Summary of symbols used in TD-FQ

Symbols Definition

vi Virtual time of flow i

lagi The credits/debits of flow i

ri Weight of flow i

si Graceful degradation service index of flow

i when lagi!0

aR, aN Graceful degradation ratios for real-time and

non-real-time flows

d The threshold to distinguish seriously/moderately

lagging flows

LR, LN, LS
R, LM

R ,

LS
N, LM

N

Lagging flows (defined in CWC)

WR, WN, WS
R,

WM
R , WS

N, WM
N

Weights of lagging flows LR, LN, LS
R, LM

R , LS
N, and LM

N ,

respectively

GR, GN, GS
R,

GM
R , GS

N, GM
N

Normalized amounts of ES/CS received by LR, LN, LS
R,

LM
R , LS

N,

and LM
N , respectively

B Bound of differences of services (used in CWC)

cS
i ; cM

i Normalized amounts of ES/CS received by flow i when

lagi/riRd and 0!lagi/ri!d, respectively

fi Normalized amount of ES received

by flow i when lagi%0
leading amount. Here we adopt the idea in CIF-Q to limit

the amount of such services a leading flow may enjoy. The

scheme in CIF-Q works as follows. A leading flow is

allowed to receive an amount of additional service

proportional to its NSs. Specifically, when a flow i transits

from lagging/satisfied to leading, we set up a parameter

siZavi, where a (0%a%1) is a system-defined constant.

Later on, flow i’s virtual time will be increased each time

when it is selected by the scheduler (note that ‘selected’

does not mean that it is actually ‘served’). Let v 0
i be flow i’s

current virtual time when it is selected. We will allow flow i

to be served if si%av 0
i. If so, si is updated as siClp/ri, where

lp is the length of the packet. Intuitively, flow i can enjoy

approximately a(v 0
iKvi) services, and this is called

‘graceful degradation’.

TD-FQ adopts the above idea. Further, to distinguish

real-time from non-real time flows, we substitute a by a

parameter aR for real-time flows, and by aN for non-real-

time flows. We set aROaN to distinguish their priorities.
3.4. Compensation scheme

When the selected flow i has a bad channel or fails to

satisfy the graceful degradation condition, the Compen-

sation Scheme will be triggered (reflected by ES and CS in

Fig. 2). In this case, lagging flows should always have a

higher priority over non-lagging flows to receive such

additional services. Section 3.4.1 discusses how to choose a

lagging flow. Section 3.4.2 deals with the case when all

lagging flows are experiencing error.
3.4.1. Dispatching ES and CS to lagging flows

The Compensation Scheme first tries to dispatch ES/CS

to lagging flows. We propose a class-based weight

compensation (CWC) mechanism, as shown in Fig. 3.

CWC first divides lagging flows into a real-time set LR and a

non-real-time set LN. These sets are each further divided

into a seriously lagging set and a moderately lagging set.

Individual flows are at the bottom. The concept of weight is

used to dispatch services to these sets.

To dispatch ES/CS to LR and LN, we assign weights WR

and WN to them, respectively. (Normally, we would set

WRRWN.) Also, a variable GR (resp., GN) is used to record

the normalized ES/CS received by LR (resp., LN). When

both LR and LN have error-free flows, the service will be

given to LR if GR%GN, and to LN otherwise. When only one

of LR and LN has error-free flows, the service will be given

to that one, independent of the values of GR and GN. When

LR receives the service, GR is updated as

GR Z min GR C
lp

WR

;
B CGNWN

WR

� �
; (4)

where lp is the length of the transmitted packet, and B is a

predefined value to bound the difference between GR

and GN. Similarly, when LN receives the service, GN is



Fig. 3. Structure of the class-based weight compensation (CWC) scheme.

Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–1239 1229
updated as

GN Z min GN C
lp

WN

;
B CGRWR

WN

� �
: (5)

Note that to avoid the cases of GR[GN or GN[GR, which

may cause LR or LN to starve when the other set recovers

from error, we set up a bound jGRWRKGNWNj%B.

This gives the second term in the right-hand side of

Eqs. (4) and (5).

The flows in LR are further divided into a seriously

lagging set LS
R and a moderately lagging set LM

R . We assign a

real-time lagging flow i to LS
R if lagi/riRd, where d is a

predefined value. Otherwise, flow i is assigned to LM
R .

Similarly, the flows in LN are divided into a seriously

lagging set LS
N and a moderately lagging set LM

N . Again,

services are dispatched to sets LS
R, LM

R LS
N and LM

N according

their weights WS
R WM

R WS
N, and WM

N , respectively. To favor

seriously lagging flows, we suggest that WS
RRWM

R and

WS
N RWM

N . Services are dispatched to these sets similar to

the earlier case (i.e. the service distribution to LR and LN).

We use GS
R GM

R GS
N and GM

N to record the services received

by these sets. Again a bound B is set to limit the differences

between GS
R and GM

R and between GS
N and GM

N .

At the bottom of CWC are four groups of individual

flows of the same properties (traffic types and lagging

degrees). Here the scheduler dispatches ES/CS proportional

to flows’ weights. Specifically, for each flow i, we maintain

two compensation virtual times cS
i and cM

i ; which keep track

of the normalized amount of ES/CS received by flow i when

lagi/riRd and 0!lagi/ri!d, respectively. When the sche-

duler chooses the seriously lagging set (LS
R or LS

N), it selects

the error-free flow i with the smallest cS
i in the set to serve.

Similarly, when the scheduler chooses the moderately

lagging set (LM
R or LM

N ), it selects the error-free flow i

with the smallest cM
i in the set to serve. When a lagging
flow i receives such a service, its compensation virtual times

are updated as

cS
i Z cS

i C lp=ri; if lagi=ri Rd

cM
i Z cM

i C lp=ri; otherwise
:

(

When a flow i newly enters one of the sets LS
R, LM

R , LS
N, and

LM
N or transits from one set to another, we have to assign its

cS
i or cM

i as follows. If flow i is seriously lagging

(i.e. lagi/riRd), we set

cS
i Z

maxfcS
i ; c

SR
ming; if flow i is real–time

maxfcS
i ; c

SN
ming; if flow i is non–real–time

:

(

Otherwise, we set

cM
i Z

maxfcM
i ; c

MR
ming; if flow i is real–time

maxfcM
i ; c

MN
ming; if flow i is non–real–time

;

(

where cSR
min (resp., cSN

min) is the minimum value of cS
j such that

j2LS
R (resp., j2LS

N), and cMR
min (resp., cMN

min) is the minimum

value of cM
j such that j2LM

R (resp., j2LM
N ). One exception

is when the set LS
R=L

S
N=L

M
R =L

M
N is empty, in which case cSR

min=

cSN
min=c

MR
min=c

MN
min is undefined. If so, we set cSR

min=c
SN
min=c

MR
min=c

MN
min to

the value of cS
j =c

M
j of the ‘last flow’ j that left the set

LS
R=L

S
N=L

M
R =L

M
N .

The main contribution of CWC is that it compensates

more services for real-time flows and for seriously lagging

flows, thus alleviating these flows’ queuing delays. Besides,

CWC does not starve other lagging flows because these

flows can still share a fraction of ES/CS.
3.4.2. Dispatching ES to non-lagging flows

If there is no lagging flow selected in the previous stage

(due to errors), the service will be dispatched according to

its original type. If the service comes from CS, it will be



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–12391230
returned back to the originally selected flow. Otherwise, the

(ES) service will be given to a non-lagging flow. Just like

CIF-Q, TD-FQ also dispatches ES proportional to those

non-lagging flows’ weights. That is, each flow i is assigned

with an extra virtual time fi to keep track of the normalized

amount of ES received by flow i when it is non-lagging

(lagi%0). Whenever a backlogged flow i becomes error-free

and non-lagging, fi is set to

fi Z maxffi;minffjjflow j is error–free;

backlogged; and non – lagging; jsigg:

The scheduler selects the flow i with the smallest fi value

among all error-free, backlogged, and non-lagging flows to

serve. When flow i receives the service, fi is updated as

(fiClp/ri). An exception occurs when there is no selectable

non-lagging flow, in which case this time slot will simply be

wasted.
3.5. Lag redistributing scheme

After a flow is served, if its queue state changes to

unbacklogged and it is still lagging, we will distribute its

credit to other flows that are in debet and reset its credit to

zero. This is because the flow does not need the credit any

more [15]. This is done by the Lag Redistribution Scheme.

The scheme examines the flow i that is actually served in

this round. After the service, if flow i’s queue becomes

empty and lagiO0, we will give its credit to other flows in

debet proportional to their weights, i.e. for each flow k such

that lagk!0, we set

lagk Z lagk C lagi !
rkP

lagm!0 rm

:

Then we reset lagiZ0. Our redistribution rule is slightly

different from CIF-Q (where all flows, including lagging

ones, will share the credit). We feel that it makes sense to

give these credits to only those flows in need of services.

Table 2 summarizes the major differences between

TD-FQ and CIF-Q.
Table 2

The major differences between TD-FQ and CIF-Q

Schemes TD-FQ CIF-Q

Graceful degra-

dation scheme

Real-time leading flows

can receive more

additional services

Each leading flow

receives the same ratio

of additional services

Compensation

scheme

Dispatch ES/CS to

lagging flows by CWC,

which treats real-time

and non-real-time flows

in different ways

Dispatch ES/CS to

lagging flows

propositional to their

weights

Lag redistributing

scheme

Distribute the lag of an

unbacklogged lagging

flow to all other leading

flows

Distribute the lag of an

unbacklogged lagging

flow to all other flows
4. Theoretical analyses

In this section, we analyze the fairness and delay

properties of TD-FQ. Our proof relies on the following

assumptions: (i) aRRaN, (ii) WRRWN, (iii) WS
R RWM

R ,

(iv) WS
N RWM

N , and (v) BR L̂max; where L̂max is the

maximum length of a packet.
4.1. Fairness properties

Lemmas 1–3 give bounds on the differences between

virtual times (vi’s), extra virtual times (fi’s), and

compensation virtual times (cS
i ’s and cM

i ’s) of any two

active flows.

Lemma 1. Let vi(t) be the virtual time of flow i at time t. For

any two active flows i and j such that tR0, we have

K
L̂max

rj

%viðtÞKvjðtÞ%
L̂max

ri

: (6)

Proof. This proof is by induction on t.

Basic step. When tZ0, all virtual times are 0, so Eq. (6)

holds trivially.

Induction step. Suppose that at time t, Eq. (6) holds. Let

tCDt be the nearest time when any flow changes its virtual

time. We want to prove Eq. (6) for time tCDt. Observe that

a flow’s virtual time may be updated in two cases: (1) it is

selected by the scheduler and the service does not become a

LS, and (2) it becomes active.

In Case (1), let flow i be selected by the scheduler.

Then its virtual time becomes

viðt CDtÞ Z viðtÞC
lp

ri

;

where lp is the length of the packet being transmitted (not

necessarily flow i’s). By TD-FQ, it follows that vi(t)%vj(t),

for all j2A. Since vi is increased, by induction hypothesis,

we have

K
L̂max

rj

%viðt CDtÞKvjðtÞ Z viðt CDtÞKvjðt CDtÞ:

Further, since vi(t)%vj(t), we have

viðtCDtÞKvjðtCDtÞZ viðtÞC
lp

ri

� �
KvjðtÞ%

lp

ri

%
L̂max

ri

:

So Eq. (6) holds at tCDt.

In Eq. (6), if flow j is selected by the scheduler, then

viðtCDtÞKvjðtCDtÞ% L̂max=ri holds trivially. Further,

viðtCDtÞKvjðtCDtÞZviðtÞK vjðtÞC
lp

rj

� �

RK
lp

rj

RK
L̂max

rj

:

So Eq. (6) still holds at tCDt.



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–1239 1231
In Case (2), suppose that flow i becomes active at tCDt.

By TD-FQ, vi(tCDt) is set to max{vi(t), mink2AK{i}{vk(tC
Dt)}}. If vifðtCDtÞZmink2AKfigfvkðtCDtÞg; then Eq. (6)

holds trivially. Otherwise, vi(tCDt)Zvi(t), which means

that vi(t)Rmink2AK{vk(tCDt)}. So we have

viðt CDtÞKvjðt CDtÞRmink2AKfigfvkðt CDtÞg

Kvjðt CDtÞRK
L̂max

rj

:

Since the virtual time is non-decreasing, we have

viðt CDtÞKvjðt CDtÞ%viðtÞKvjðtÞ%
L̂max

ri

:

So Eq. (6) holds at tCDt. When flow j (instead of i) becomes

active, the proof is similar, so we can conclude the proof. ,
Because TD-FQ updates fi, cS

i ; and cM
i similarly to that of

the vi, proofs of Lemmas 2 and 3 are similar to that of

Lemma 1. So we omit the proofs.

Lemma 2. Let fi(t) be the extra virtual time of flow i at time t.

For any two active flows i and j such that tR0, we have

K
L̂max

rj

% fiðtÞK fjðtÞ%
L̂max

ri

:

Lemma 3. Let cS
i ðtÞ and cM

i ðtÞ be the compensation virtual

times of flow i at time t. For any two active flows i and j

which have the same traffic type (real-time or non-real-time)

such that tR0, we have

K
L̂max

rj

%cS
i ðtÞKcS

j ðtÞ%
L̂max

ri

if bothflowsareseriouslylagging

K
L̂max

rj

%cM
i ðtÞKcM

j ðtÞ%
L̂max

ri

if bothflowsaremoderatelylagging

:

8>>><
>>>:
Lemma 4 gives bounds on the difference between the

normalized services received by a leading flow i (i.e. si) and

the maximum amount that it can receive (i.e. aivi).

Lemma 4. Let si(t) be the value of si at time t. For any flow i

that is error-free, backlogged, and leading during the time

interval t2[t1, t2), we have

ða K1Þ
L̂max

ri

%aviðtÞKsiðtÞ%a
L̂max

ri

; (7)

where aZaR if flow i is a real-time flow, and aZaN

otherwise.

Proof. The proof is by induction on time t2[t1, t2).

Basic step. When tZt1, flow i just becomes leading, and

the Graceful Degradation Scheme will set si(t)Zavi(t), so

the lemma is trivially true.

Induction step. Suppose that at time t, the lemma holds.

Observe that vi and/or si change only when flow i is selected.

So we consider two cases: (1) flow i is actually served,
and (2) another flow jsi is served. Let tCDt%t2 be the

nearest time that vi and/or si are updated. We want to prove

that the lemma still holds at tCDt.

According to TD-FQ, Case (1) occurs only when

si(t)%avi(t), so we have

aviðt CDtÞKsiðt CDtÞ Z a viðtÞC
lp

ri

� �
K siðtÞC

lp

ri

� �

Z ða K1Þ
lp

ri

CaviðtÞKsiðtÞR ða K1Þ
L̂max

ri

;

where lp represents the length of the packet being

transmitted.

Case (2) implies si(t)Oavi(t). Also, vi is updated but si is

not. So we have

aviðtCDtÞKsiðtCDtÞZa viðtÞC
lp

ri

� �

KsiðtÞ!a
lp

ri

%a
L̂max

ri

: ,

Theorems 1–3 show the fairness property guaranteed by

TD-FQ. Theorem 1 is for flows of the same traffic type,

while Theorem 2 is for flows of different types. Theorem 3

provides some bounds on differences of services received by

LR, LN, LS
R, LM

R , LS
N and LM

N .

Theorem 1. For any two active flows i and j of the same

traffic type, the difference between the normalized services

received by flows i and j in any time interval [t1, t2) during

which both flows are continuously backlogged, error-free,

and remain in the same state (leading, seriously lagging,

moderately lagging, or satisfied) satisfies the inequality:

Fiðt1;t2Þ

ri

K
Fjðt1;t2Þ

rj

����
����%3

L̂max

ri

C
L̂max

rj

� �
;

where Fi(t1, t2) represents the services received by flow i

during [t1, t2), 3Z3 if both flows belong to the same lagging

set (LS
R, LM

R , LS
N, or LM

N ) or both flows are satisfied, 3Z3CaR

if both flows are real-time leading flows, and 3Z3CaN if

both flows are non-real-time leading flows.

Proof. We consider the four cases: flows i and j are both

(1) seriously lagging, (2) moderately lagging, (3) satisfied,

and (4) leading and backlogged during the entire time

interval [t1, t2).

Case (1): In this case, any flow i that is seriously lagging

can receive services each time when it is selected (by vi), or

when it receives ES/CS from another flow (by cS
i ). Since vi

and cS
i are updated before a packet is transmitted, the

services received by flow i may deviate from what really

reflects by its virtual times by one packet, so

viðt2ÞKviðt1ÞCcS
i ðt2ÞKcS

i ðt1ÞK
L̂max

ri

%
Fiðt1; t2Þ

ri

%viðt2ÞKviðt1ÞCcS
i ðt2ÞKcS

i ðt1ÞC
L̂max

ri

: (8)



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–12391232
Applying Eq. (8) to flows i and j, we have

viðt2ÞKviðt1ÞCcS
i ðt2ÞKcS

i ðt1ÞK
L̂max

ri

K vjðt2ÞKvjðt1ÞCcS
j ðt2ÞKcS

j ðt1ÞC
L̂max

rj

� �
%

Fiðt1; t2Þ

ri

K
Fjðt1; t2Þ

rj

%viðt2ÞKviðt1ÞCcS
i ðt2ÞKcS

i ðt1ÞC
L̂max

ri

K vjðt2ÞKvjðt1ÞCcS
j ðt2ÞKcS

j ðt1ÞK
L̂max

rj

� �
:

By Lemmas 1 and 3, the leftmost term can be reduced to

viðt2ÞKvjðt2ÞK ðviðt1ÞKvjðt1ÞÞCcS
i ðt2ÞKcS

j ðt2ÞK ðcS
i ðt1Þ

KcS
j ðt1ÞÞK

L̂max

ri

C
L̂max

rj

� �
RK3

L̂max

ri

C
L̂max

rj

� �
:

Similarly, the right-most term would be less than or equal to

3ðL̂max=ri C L̂max=rjÞ; which leads to

Fiðt1; t2Þ

ri

K
Fjðt1; t2Þ

rj

����
����%3

L̂max

ri

C
L̂max

rj

� �
:

Case (2): This case is similar to Case (1). So we can replace cS
i

and cS
j by cM

i and cM
j , respectively, and obtain an inequality

similar to Eq. (8). This will lead to a 3Z3 too.

Case (3): In this case, both flows can receive

services each time when they are selected (by vi), or when

they receive ES from another flow (by fi). So we have

viðt2ÞKviðt1ÞC fiðt2ÞK fiðt1ÞK
L̂max

ri

%
Fiðt1; t2Þ

ri

%viðt2Þ

Kviðt1ÞC fiðt2ÞK fiðt1ÞC
L̂max

ri

:

Consequently, similar to Case (1), by Lemmas 1 and 2, we

can obtain

Fiðt1; t2Þ

ri

K
Fjðt1; t2Þ

rj

����
����%3

L̂max

ri

C
L̂max

rj

� �
:

Case (4): An error-free, backlogged, and leading flow i can

receive NS (by si) and ES from other flows (by fi). So the total

services received by the flow i during [t1, t2) is bounded as

siðt2ÞKsiðt1ÞC fiðt2ÞK fiðt1ÞK
L̂max

ri

%
Fiðt1; t2Þ

ri

%siðt2ÞKsiðt1ÞC fiðt2ÞK fiðt1ÞC
L̂max

ri

: (9)
Applying Lemma 4 twice to flows i and j and subtracting one

by the other, we have

aðviðtÞKvjðtÞÞCa
L̂max

rj

K
L̂max

ri

� �
K

L̂max

rj

%siðtÞKsjðtÞ

%aðviðtÞKvjðtÞÞCa
L̂max

rj

K
L̂max

ri

� �
C

L̂max

ri

:

By Lemma 1, we can rewrite the inequality as

Ka
L̂max

ri

K
L̂max

rj

%siðtÞKsjðtÞ%a
L̂max

rj

C
L̂max

ri

: (10)

Applying Eq. (10) and Lemma 2 to Eq. (9), we have

Fiðt1; t2Þ

ri

K
Fjðt1; t2Þ

rj

����
����% ð3 CaÞ

L̂max

ri

C
L̂max

rj

� �
;

where aZaR if these flows are real-time, and aZaN if they

are non-real-time. ,

Theorem 2. For any real-time flow i and non-real-

time flow j, the difference between the normalized

services received by flows i and j in any time interval

[t1, t2) during which both flows are continuously

backlogged, error-free, and remain leading satisfies the

inequality:

Fiðt1; t2Þ

ri

K
Fjðt1; t2Þ

rj

����
����%3

L̂max

ri

C
L̂max

rj

� �
C2aN

L̂max

rj

:

(11)

Proof. Applying Lemma 4 to flows i and j and taking a

subtract leads to

aRviðtÞKaR

L̂max

ri

K aNvjðtÞK ðaN K1Þ
L̂max

rj

� �
%siðtÞ

KsjðtÞ%aRviðtÞK ðaR K1Þ
L̂max

ri

K aNvjðtÞKaN

L̂max

rj

� �
Z T : ð12Þ

By Lemma 1 and the aRRaN principle, the left-hand side

of Eq. (12) becomes

aRviðtÞKaNvjðtÞCaN

L̂max

rj

KaR

L̂max

ri

K
L̂max

rj

RaNðviðtÞKvjðtÞÞCaN

L̂max

rj

KaR

L̂max

ri

K
L̂max

rj

RKaR

L̂max

ri

K
L̂max

rj

:



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–1239 1233
Consider the right-hand side of Eq. (12). There are two

cases for the term aRvi(t)KaNvj(t). If aRvi(t)KaNvj(t)R0,

we have viðtÞRaN=aRvjðtÞ. By Lemma 1,

T %aNðvjðtÞKviðtÞÞCaN

L̂max

rj

KaR

L̂max

ri

C
L̂max

ri

%2aN

L̂max

rj

KaR

L̂max

ri

C
L̂max

ri

:

If aRvi(t)KaNvj(t)!0, we have

T %aN

L̂max

rj

KaR

L̂max

ri

C
L̂max

ri

:

These two cases together imply

T %2aN

L̂max

rj

KaR

L̂max

ri

C
L̂max

ri

:

So we have

KaR

L̂max

ri

K
L̂max

rj

%siðtÞKsjðtÞ%2aN

L̂max

rj

Cð1KaRÞ
L̂max

ri

:

Similar to the proof of Theorem 1, the service

received by any leading flow i during [t1, t2) satisfies

Eq. (9). Subtracting Eq. (9) of flow i by Eq. (9) of flow j

leads to

siðt2ÞKsiðt1ÞCfiðt2ÞKfiðt1ÞK
L̂max

ri

K sjðt2ÞKsjðt1ÞCfjðt2ÞKfjðt1ÞC
L̂max

rj

� �
%

Fiðt1;t2Þ

ri

K
Fjðt1;t2Þ

rj

%siðt2ÞKsiðt1ÞCfiðt2ÞKfiðt1ÞC
L̂max

ri

K sjðt2ÞKsjðt1ÞCfjðt2ÞKfjðt1ÞK
L̂max

rj

� �
;

The leftmost term can be reduced to

siðt2ÞKsjðt2ÞKðsiðt1ÞKsjðt1ÞÞCfiðt2ÞKfjðt2ÞKðfiðt1Þ

Kfjðt1ÞÞK
L̂max

ri

C
L̂max

rj

� �
RKaR

L̂max

ri

K
L̂max

rj

K2aN

L̂max

rj

CðaR K1Þ
L̂max

ri

K2
L̂max

ri

C
L̂max

rj

� �

ZK3
L̂max

ri

C
L̂max

rj

� �
K2aN

L̂max

rj

:

Similarly, the right-most term would be less than or

equal to
3
L̂max

ri

C
L̂max

rj

� �
C2aN

L̂max

rj

:

Thus, Eq. (11) holds. ,

Lemma 5. Let GR(t), GN(t), GS
RðtÞ, GM

R ðtÞ, GS
NðtÞ and GM

N ðtÞ

be the value of GR, GN, GS
R, GM

R , GS
N, and GM

N at time t,

respectively. For tR0, we have

K
B

WN

%GRðtÞKGNðtÞ%
B

WR

K
B

WM
R

%GS
RðtÞKGM

R ðtÞ%
B

WS
R

K
B

WM
N

%GS
NðtÞKGM

N ðtÞ%
B

WS
N

8>>>>>><
>>>>>>:
Proof. This proof is by induction on time tR0.

Basic step. When tZ0, GR(t)ZGN(t)Z0, so the lemma

is trivially true.

Induction step. Assume that the lemma holds at time t.

GR (resp., GN) is updated only when LR or LN is non-empty.

We consider two cases: (1) only one set is non-empty, and

(2) two sets are non-empty. Let tCDt be the nearest time

that GR or GN is updated. We want to prove the lemma to be

true at time tCDt.

In Case (1), if LR is active, then ES/CS will be given to

LR. In TD-FQ, we bound the total difference of ES/CS

received by LR and LN at any time by jWRGRKWNGNj%B.

So at time tCDt, WRGR(tCDt)KWNGN(tCDt)%B. Since

WRRWN, we have

WRGRðtCDtÞKWRGNðtCDtÞ%WRGRðtCDtÞ

KWNGNðtCDtÞ%B0GRðtCDtÞKGNðtCDtÞ%
B

WR

:

On the other hand, if LN is active, we can similarly derive

that

GRðtCDtÞKGNðtCDtÞRK
B

WN

:

So the first inequality in the lemma holds at tCDt.

In Case (2), since both sets are non-empty, the scheduler

gives ES/CS to LR if GR(t)%GN(t). Let lp represent the

length of the packet being transmitted. We have

GRðt CDtÞKGNðt CDtÞ Z GRðtÞC
lp

WR

� �

KGNðtÞ%
lp

WR

%
L̂max

WR

%
B

WR

:

Note that it is trivially true that KB=WN %GRðtCDtÞK
GNðtCDtÞ: Similarly, if GR(t)OGN(t), the service is given

to LN, so we have

GRðt CDtÞKGNðt CDtÞ Z GRðtÞK GNðtÞC
lp

WN

� �

OK
lp

WN

RK
L̂max

WN

RK
B

WN

:



:

:

Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–12391234
Note that it is trivially true that GRðtCDtÞKGNðtCDtÞ%
B=WR: Therefore, the first inequality in this lemma still holds

at tCDt. The other two inequalities in this lemma can be

proved in a similar way. ,
Theorem 3. The difference between normalized ES/CS

received by any two lagging sets in any time interval [t1, t2)

during which both sets remain active satisfies the inequal-

ities:

ð1Þ forLR and LN :
FRðt1; t2Þ

WR

K
FNðt1;t2Þ

WN

����
����%BCL̂max

WR

C
BCL̂max

WN

;

ð2Þ for LS
R andLM

R :
FS

Rðt1;t2Þ

WS
R

K
FM

R ðt1; t2Þ

WM
R

����
����%BCL̂max

WS
R

C
BCL̂max

WM
R

;

ð3Þ forLS
N and LM

N :
FS

Nðt1;t2Þ

WS
N

K
FM

N ðt1; t2Þ

WM
N

����
����%BCL̂max

WS
N

C
BCL̂max

WM
N

;

where FR(t1, t2), FN(t1, t2), FS
Rðt1;t2Þ, FM

R ðt1; t2Þ, FS
Nðt1; t2Þ,

and FM
N ðt1; t2Þ represents ES/CS received by LR, LN, LS

R, LM
R ,

LS
N and LN

M during [t1, t2), respectively.

Proof. Since GR is updated before a packet is transmitted, it

follows that the total ES/CS received by LR during [t1, t2) is

bounded by

GRðt2ÞKGRðt1ÞK
L̂max

WR

%
FRðt1;t2Þ

WR

%GRðt2ÞKGRðt1ÞC
L̂max

WR

Similarly, for GN, we have

GNðt2ÞKGNðt1ÞK
L̂max

WN

%
FNðt1;t2Þ

WN

%GNðt2ÞKGNðt1ÞC
L̂max

WN

Therefore, we have

GRðt2ÞKGRðt1ÞK
L̂max

WR

K GNðt2ÞKGNðt1ÞC
L̂max

WN

� �

%
FRðt1;t2Þ

WR

K
FNðt1;t2Þ

WN

%GRðt2ÞKGRðt1ÞC
L̂max

WR

K GNðt2ÞKGNðt1ÞK
L̂max

WN

� �
:

By Lemma 5, we can rewrite the inequality as

K
BCL̂max

WR

C
BCL̂max

WN

� �
%

FRðt1;t2Þ

WR

K
FNðt1;t2Þ

WN

%
BCL̂max

WR

C
BCL̂max

WN

0
FRðt1;t2Þ

WR

K
FNðt1;t2Þ

WN

����
����

%
BCL̂max

WR

C
BCL̂max

WN

:

This concludes the first inequality. The other two inequal-

ities in this theorem can be proved similarly. ,
4.2. Delay bounds

When a backlogged flow suffers from errors, it becomes

lagging. Theorem 4 shows that if a lagging flow becomes

error-free and has sufficient service demand, it can get back

all its lagging services within bounded time.

Theorem 4. If an active but lagging flow i becomes error-

free at time t and remains backlogged continuously after

time t, it is guaranteed that flow i will become non-lagging

(i.e. lagi%0) within time Dt, where

Dt %
4ðJ C2L̂maxÞ

rminð1 KaRÞĈ
C n C1 C

4

rmin

� �
L̂max

Ĉ
;

n is the number of active flows, Ĉ is the channel capacity, 4

is the aggregate weight of all flows, 4R is the aggregate

weight of all real-time flows, 4N is the aggregate weight of

all non-real-time flows, rmin is the minimum weight of all

flows, and

JZ
ðWRCWNÞðW

S
RCWM

R Þ

WRWS
R

lagiðtÞ

ri

4RC
4R

ri

CnK2

� �
L̂max CB

� �

C
WRCWN

WR

d4RC
24R

ri

CnK1

� �
L̂maxCB

� �

if flow i is real-time, and

JZ
ðWRCWNÞðW

S
NCWM

N Þ

WNWS
N

lagiðtÞ

ri

4N C
4N

ri

CnK2

� �
L̂maxCB

� �

C
WRCWN

WN

d4NC
24N

ri

CnK1

� �
L̂max CB

� �

if flow i is non-real-time.

Proof. Assume that flow i is a real-time flow. Consider the

worst case: flow i has the maximum lag among all flows and

lagi/riRd at time t. Since flow i becomes error-free

after time t, lagi is decreased each time when it receives

CS. Now let flow i becomes moderately lagging at time tM,

and further become non-lagging at time tN, t!tM!tN,

i.e. i2LS
R during [t, tM) and i2LM

R during [tM, tN). Also, let

FC(t, tN) be the total CS received by all lagging flows during

[t, tN).

To prove Theorem 4, observe that Dt should be an upper

bound of tNKt. The largest value of tN occurs when all flows

in the system are error-free (i.e. no ES) and there is only one

leading flow, say k, who provides CS such that flow k is a

real-time flow and rkZrmin. Since flow k can still receive a

fraction aR of its NS when it is leading and flow k uses sk to

keep track of the amount of such NS when it is leading, this

leads to

FCðt;tNÞRrminðvkðtNÞKvkðtÞÞKrminðskðtNÞKskðtÞÞKL̂max:

(13)



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–1239 1235
By Lemma 1, for any active flow j during [t, tN), we have

vjðtNÞKvjðtÞ%vkðtNÞKvkðtÞC
L̂max

rj

C
L̂max

rmin

:

This inequality helps to derive the total amount of

services provided by the system during [t, tN):

ĈðtN KtÞ%
X
j2A

rjðvjðtNÞKvjðtÞÞ

 !
CL̂max

%
X
j2A

rj vkðtNÞKvkðtÞC
L̂max

rj

C
L̂max

rmin

� � !
CL̂max

%ðvkðtNÞKvkðtÞÞ
X
j2A

rj CnL̂max C
L̂max

rmin

X
j2A

rj CL̂max

%ðvkðtNÞKvkðtÞÞ4C nC1C
4

rmin

� �
L̂max0vkðtNÞKvkðtÞ

R
1

4
ĈðtN KtÞK nC1C

4

rmin

� �
L̂max

� �
: ð14Þ

Applying Lemma 4 to flow k at times t and tN and taking

a subtract, we obtain

skðtNÞKskðtÞ%aRvkðtNÞKaRvkðtÞC
L̂max

rmin

: (15)

By combining Eqs. (14) and (15) into Eq. (13), we can

obtain

FCðt;tNÞRrminðvkðtNÞKvkðtÞKðskðtNÞKskðtÞÞÞKL̂max

Rrmin vkðtNÞKvkðtÞKaRvkðtNÞCaRvkðtÞK
L̂max

rmin

� �
KL̂max

Zrminð1KaRÞðvkðtNÞKvkðtÞÞK2L̂max

R
rminð1KaRÞ

4
ĈðtNKtÞK nC1C

4

rmin

� �
L̂max

� �
K2L̂max

0tNKt%
4ðFCðt;tNÞC2L̂maxÞ

rminð1KaRÞĈ
C nC1C

4

rmin

� �
L̂max

Ĉ
:

(16)

It remains to derive an upper bound for FC(t, tN) in

Eq. (16). Note that there are nK1 lagging flows who are

allowed to share the FC(t, tN) services. The worst case

happens when (1) exactly one of the nK1 flows remains

in LN during [t, tN), (2) exactly nK3 flows remain in LS
R

and 1 flow remains in LM
R during [t, tM), and (3) no flow

remains in LS
R and exactly nK2 flows remain in LM

R during

[tM, tN). Note that in this case LR can share at most a

fraction WR=ðWRCWNÞ of FC(t, tN) during [t, tN), and LS
R

can share at most a fraction WS
R=ðW

S
RCWM

R Þ of CS

received by LR during [t, tM).

Let FR(t, tN) and FN(t, tN) be CS received by LR and LN

during [t, tN), respectively, FC(t, tN)ZFR(t, tN)CFN(t, tN).
According to the first inequality of Theorem 3, we have

FNðt; tNÞ%WN

FRðt; tNÞ

WR

C
B C L̂max

WR

C
B C L̂max

WN

� �

0FCðt; tNÞ%
WR CWN

WR

ðFRðt; tNÞCB C L̂maxÞ: (17)

Next we derive the FR(t, tN) in Eq. (17). It can be divided

into two terms,

FRðt; tNÞ Z FRðt; tMÞCFRðtM; tNÞ: (18)

Let FS
Rðt; tMÞ and FM

R ðt; tMÞ be CS received by LS
R and LM

R

during [t, tM), respectively. Again, by Theorem 3, we have

FRðt;tMÞZFS
Rðt;tMÞCFM

R ðt;tMÞ%FS
Rðt;tMÞ

CWM
R

FS
Rðt;tMÞ

WS
R

C
BCL̂max

WS
R

C
BCL̂max

WM
R

� �

Z
WM

R CWS
R

WS
R

ðFS
Rðt;tMÞCBCL̂maxÞ: (19)

We further expand the term FS
Rðt; tMÞ in Eq. (19) as follows:

FS
Rðt; tMÞ%

X
j2LS

R
ðt;tMÞ

rjðc
S
j ðtMÞKcS

j ðtÞÞ

%
X

j2LS
R
ðt;tMÞ

rj cS
i ðtMÞKcS

i ðtÞC
L̂max

ri

C
L̂max

rj

� �

Z ðcS
i ðtMÞKcS

i ðtÞÞ
X

j2LS
R
ðt;tMÞ

rj C
L̂max

ri

X
j2LS

R
ðt;tMÞ

rj

C
X

j2LS
R
ðt;tMÞ

L̂max !4Rðc
S
i ðtMÞKcS

i ðtÞÞ

C
4R

ri

Cn K3

� �
L̂max: ð20Þ

Note that the fourth term in Eq. (20) is obtained by applying

Lemma 3 twice on flow i and any flow j2LS
R

cS
j ðtMÞKcS

j ðtÞ%cS
i ðtMÞKcS

i ðtÞC
L̂max

ri

C
L̂max

rj

:

Since LS
R is empty during [tM, tN), FRðtM; tNÞZFM

R ðtM; tNÞ.

Similarly to the derivation of Eq. (20), we have

FRðtM; tNÞ Z FM
R ðtM; tNÞ%

X
j2LM

R
ðtM ;tNÞ

rjðc
M
j ðtNÞKcM

j ðtMÞÞ

%4Rðc
M
i ðtNÞKcM

i ðtMÞÞC
4R

ri

Cn K2

� �
L̂max:

(21)

By Eqs. (19) and (20), we have

FRðt; tMÞ

!
WM

R CWS
R

WS
R

4Rðc
S
i ðtMÞKcS

i ðtÞÞC
4R

ri

CnK2

� �
L̂max CB

� �
:

(22)



Table 3

Traffic specification of the flows used in experiment 1

Flow Guaranteed

bandwidth

Packet size

(kB)

Error scenario

Voice1 64 kB/s 2 No error occurs

Voice2 32 kB/s 1 PgoodZ6 s, PbadZ1.5 s

Voice3 32 kB/s 1 PgoodZ5 s, PbadZ0.5 s

CBR1 512 kB/s 2 No error occurs

CBR2 256 kB/s 1 PgoodZ6 s, PbadZ1.5 s

CBR3 256 kB/s 1 PgoodZ5 s, PbadZ0.5 s

FTP1 2 MB/s 4 No error occurs

FTP2 2 MB/s 4 PgoodZ6 s, PbadZ1.5 s

Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–12391236
Furthermore, by combining Eqs. (21) and (22) into Eq. (18),

we have

FRðt;tNÞ

%
WM

R CWS
R

WS
R

4Rðc
S
i ðtMÞKcS

i ðtÞÞC
4R

ri

CnK2

� �
L̂maxCB

� �

C4Rðc
M
i ðtNÞKcM

i ðtMÞÞC
4R

ri

CnK2

� �
L̂max

Z4R

WS
RCWM

R

WS
R

ðcS
i ðtMÞKcS

i ðtÞÞCcM
i ðtNÞKcM

i ðtMÞ

� �

C
2WS

RCWM
R

WS
R

4R

ri

CnK2

� �
L̂maxC

ðWS
RCWM

R ÞB

WS
R

: ð23Þ

By combining Eqs. (17) and (23), we have

FCðt;tNÞ%
WRCWN

WRWS
R

ð4RððW
S
RCWM

R ÞðcS
i ðtMÞKcS

i ðtÞÞ

CWS
Rðc

M
i ðtNÞKcM

i ðtMÞÞÞ

C ð2WS
RCWM

R Þ
4R

ri

CnK2

� �
CWS

R

� �
L̂max

Cð2WS
RCWM

R ÞBÞ: ð24Þ

Since flow i is still lagging after time tM, it means that

0!lagi(tM)!lagi(t). So

cS
i ðtMÞKcS

i ðtÞZ
jlagiðtMÞKlagiðtÞj

ri

Z
lagiðtÞKlagiðtMÞ

ri

!
lagiðtÞ

ri

:

(25)

After time tN, flow i becomes non-lagging, so KL̂max!
lagiðtNÞ%0: Besides, 0!lagi(tM)!rid since flow i becomes

moderately lagging after time tM, so we have

cM
i ðtNÞKcM

i ðtMÞZ
jlagiðtNÞKlagiðtMÞj

ri

Z
lagiðtMÞKlagiðtNÞ

ri

!dC
L̂max

ri

:

(26)

By combining Eqs. (25) and (26) into Eq. (24), we have

FCðt; tNÞ

!
ðWR CWNÞðW

S
R CWM

R Þ

WRWS
R

lagiðtÞ

ri

4R C
4R

ri

CnK2

� �
L̂max CB

� �

C
WR CWN

WR

d4R C
24R

ri

CnK1

� �
L̂max CB

� �
:

(27)

By combining Eqs. (16) and (27), the first part of this

theorem is proved. When flow i is a non-real-time flow, the

proof is similar and we omit the details. ,
5. Simulation results

In this section, we present some experimental results to

verify the effectiveness of the proposed algorithm. The first

one observes the packet dropping ratios and queuing delays

of real-time flows in TD-FQ and CIF-Q, respectively. The

second one compares the throughput of flows in these two

algorithms. The last one gives a comparison on different

compensation strategies for lagging flows.
5.1. Experiment 1: dropping ratios and delays

for real-time flows

In this experiment, we mix real-time and non-real-time

traffics together. We observe the packet dropping ratios and

queuing delays of real-time flows in TD-FQ and CIF-Q,

respectively. Eight flows are used, as shown in Table 3. The

first six flows are real-time flows, which have two traffic

models: constant-bit-rate (CBR) and ON–OFF model. The

latter is to model voice communication. The average

durations of ON and OFF states are set to 2.5 and 0.5 s,

respectively. During ON period, packets are generated with

fixed intervals. No packet is generated during OFF period.

The last two flows are non-real-time FTP flows, and their

traffics are modeled as greedy sources whose queues are

never empty. As for error scenarios, we use two parameters

Pgood and Pbad to control the average time when the channel

stays in error-free and error states, respectively. The total

channel capacity is set to 5 MB/s. The total simulation time

in this experiment is 100 s.

For CIF-Q, we set aZ0.5, while for TD-FQ we set

aRZ0.8 and aNZ0.2, respectively. The weights assigned to

lagging sets are WR:WNZ3:1, WS
R : WM

R Z3 : 1, and

WS
N : WM

N Z3 : 1. The packet dropping ratios and queuing

delays of real-time flows are shown in Figs. 4 and 5,

respectively, where the packet dropping ratio is defined as

Number of packets dropped due to exceeding deadline

Number of packet generated
;

where the deadline of a packet is set to twice of the packet

interarrival time. From Figs. 4 and 5, we can observe that

the packet dropping ratios and queuing delays of real-time

flows in TD-FQ are smaller than those in CIF-Q, especially



Table 4

Fig. 5. Average queuing delays of real-time flows.

Fig. 4. Packet dropping ratios of real-time flows.

Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–1239 1237
when the flows are voice traffic. This is because TD-FQ not

only lets real-time flows give up less services to compensate

other lagging flows, but also gives more services to

real-time lagging flows for compensation. From this

observation, we conclude that TD-FQ can alleviate the

packet dropping ratios and queuing delays of real-time flows

as compared to CIF-Q.
Traffic specification of the flows used in experiment 2

Flow Guaranteed band-

width (MB/s)

Packet

size (kB)

Error scenario

CBR1 1.25 4 No error occurs

CBR2 1.25 4 Error occurs during [0,15) s

FTP1 2 8 No error occurs

FTP2 2 8 Error occurs during

[10,15) s
5.2. Experiment 2: throughputs of flows

In this experiment, we observe the throughputs of flows

in TD-FQ and CIF-Q. Four flows are used, as shown in

Table 4. The first two flows are real-time CBR flows,

and the last two flows are non-real-time FTP flows.

Suffering from channel errors during [0, 15) period, flows
CBR2 and FTP2 will become active but lagging after the

15th second. The other flows are all leading in this

experiment. For CIF-Q, we set aZ0.5, while for TD-FQ

we set aRZ0.8, aNZ0.2, WRZ3, and WNZ1. The channel

capacity in this experiment is set to 2 MB/s.



Fig. 6. Throughputs of (a) real-time flows CBR1 and CBR2 and (b) non-

real-time flows FTP1 and FTP2.

Table 5

Traffic specification of the flows used in experiment 3

Flow no. Traffic type Guaranteed

bandwidth

(MB/s)

Error scenario

1 FTP 1 No error occurs

2 FTP 1 Error occurs

during [0,15) s

3 FTP 1 Error occurs

during [5,15) s

4–6 FTP 1 Error occurs

during [10,15) s

Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–12391238
Fig. 6 shows the throughput of flows after the 16th

second. We see that real-time flows can receive more

services in TD-FQ as compared to CIF-Q. This is because

TD-FQ favors real-time flows over non-real-time flows.

However, the cost, as shown in Fig. 6(b), is at lower

throughputs for non-real-time flows.
Fig. 7. Received compensation services (CS) by (a) the seriously lagging

flow 2, (b) seriously lagging flow 3, and (c) moderately lagging flows 4–6.
5.3. Experiment 3: effect of compensation

We compare three compensation strategies for lagging

flows: (1) TD-FQ, (2) CIF-Q (which dispatches services

proportional to flows’ weights), and (3) Max-lag (which

always selects the error-free flow with the maximum

normalized lag to serve).

Six FTP flows are used. Table 5 shows the traffic

specification of these flows. Each flows has unlimited data

to transmit and each packet is of size 1 kB. The bandwidth

of the BS is set to 1 MB/s. From Table 5, it is clear that

flow 1 will become a leading flow after the 15th second.

Flow 2 and 3 are treated as seriously lagging flows in TD-

FQ, while other flows are treated moderately lagging. To let



Y.-C. Wang et al. / Computer Communications 28 (2005) 1225–1239 1239
lagging flows receive the maximum CSs, we set aZ0 for

both CIF-Q and TD-FQ. In TD-FQ, we assign weights WS
N Z

2 and WM
N Z1.

Fig. 7(a) shows the total CSs that flow 2 receives after the

15th second. We see that flow 2 enjoys the most CSs in the

Max-lag scheme. This remains true until flow 2’s lag lowers

down to the lags of other lagging flows. On the contrary,

CIF-Q gives the least CSs to flow 2 because it dispatches

CSs proportional to flows’ weights. So flow 2 may

suffer from more serious queuing delays during this period.

TD-FQ performs in between what CIF-Q and Max-lag

perform because it separates seriously lagging flows from

moderately lagging flows. Note that after the 32th second,

the behavior of flow 2 in TD-FQ is similar to that in CIF-Q.

This is because after the 32th second, flows 4–6 have

become non-lagging both in TD-FQ and CIF-Q (Ref. to

Fig. 7(c)), and flows 2 and 3 become moderately lagging in

TD-FQ. So in this case, TD-FQ works similarly to CIF-Q.

Fig. 7(b) shows the behavior of flow 3, which is also

seriously lagging but has less lag compared to flow 2. From

Fig. 7(b), we can observe that even flow 3 is seriously

lagging, it is starved until the 20th second in the Max-lag

scheme. Fig. 7(c) shows our observation for flows 4–6. The

result does verify that CIF-Q favors moderately lagging

flows over seriously lagging flows. Besides, Fig. 7(c) shows

that moderately lagging flows will be starved for longer time

when Max-lag is used.

From this experiment, we conclude that CIF-Q addresses

the fairness issues purely based on weights to dispatch CSs.

So it may incur higher queuing delays for seriously lagging

flows. The Max-lag scheme can alleviate the queuing delays

of seriously lagging flows, but it violates the fairness

principle and may starve other lagging flows when

compensating the former. The proposed TD-FQ not only

provides fairness in dispatching CSs, but also alleviates the

queuing delays of seriously lagging flows.
6. Conclusions

We have addressed the delay-weight coupling problem

that exists in many existing fair-queuing schemes. A new

algorithm, TD-FQ, is proposed to solve this problem. By

taking traffic types of flows into consideration when

scheduling packets, TD-FQ not only alleviates queuing

delay of real-time flows, but also guarantees bounded delays

and fairness for all flows. We have derived analytically the

fairness properties and delay bounds of TD-FQ. Simulation

results have also shown that TD-FQ incurs less packet

dropping and queuing delay for real-time flows when

compared to CIF-Q.
Acknowledgements

Y. C. Tseng’s research is co-sponsored by the NSC

Program for Promoting Academic Excellence of Univer-

sities, by Computer and Communications Research Labs.,

ITRI, Taiwan, by Intel Inc., by the Institute for Information

Industry and MOEA, R.O.C, under the Handheld Device

Embedded System Software Technology Development

Project, and by Chung-Shan Institute of Science and

Technology under contract number BC93B12P.
References

[1] A.K. Parekh, R.G. Gallager, A generalized processor sharing

approach to flow control in integrated services networks: the single-

node case, IEEE/ACM Transactions on Networking 1 (1993)

344–357.

[2] A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair

queueing algorithm, Journal of Internetworking Research and

Experience 1 (1990) 3–26.

[3] P. Goyal, H.M. Vin, H. Chen, Start-time fair queueing: a scheduling

algorithm for integrated services packet switching networks, Con-

ference on Applications, Technologies, Architectures, and Protocols

for Computer Communications 1996; 157–168.

[4] S.J. Golestani, A self-clocked fair queueing scheme for broadband

applications, INFOCOM 1994; 12–16.

[5] J.C.R. Bennett, H. Zhang, WF2Q: worst-case fair weighted fair

queueing, INFOCOM 1996; 120–128.

[6] J.C.R. Bennett, H. Zhang, Hierarchical packet fair

queueing algorithms, Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications 1996;

143–156.

[7] V. Bharghavan, S. Lu, T. Nandagopal, Fair queuing in wireless

networks: issues and approaches, IEEE Personal Communications 6

(1999) 44–53.

[8] Y. Cao, V.O.K. Li, Scheduling algorithms in broadband wireless

networks, IEEE Proceedings of the IEEE 89 (2001) 76–87.

[9] S. Lu, V. Bharghavan, R. Srikant, Fair scheduling in wireless

packet networks, IEEE/ACM Transactions on Networking 7 (1999)

473–489.

[10] T.S.E. Ng, I. Stoica, H. Zhang, Packet fair queueing algorithms for

wireless networks with location-dependent errors, INFOCOM 3

(1998) 1103–1111.

[11] P. Ramanathan, P. Agrawal, Adapting packet fair

queuing algorithms to wireless networks, ACM/IEEE

International Conference on Mobile Computing and Networking

1998; 1–9.

[12] D.A. Eckhardt, P. Steenkiste, Effort-limited fair (ELF) scheduling for

wireless networks, INFOCOM 3 (2000) 1097–1106.

[13] S. Lu, T. Nandagopal, V. Bharghavan, A wireless fair service

algorithm for packet cellular networks, ACM/IEEE International

Conference on Mobile Computing and Networking 1998; 10–20.

[14] S. Lee, K. Kim, A. Ahmad, Channel error and handoff compensation

scheme for fair queuing algorithms in wireless networks, IEEE ICC 5

(2002) 3128–3132.

[15] Y. Yi, Y. Seok, T. Kwon, Y. Choi, J. Park, W2F2Q packet fair queuing

in wireless packet networks, Proceedings of the Third ACM

International Workshop on Wireless Mobile Multimedia 2000; 2–10.


	A fair scheduling algorithm with traffic classification for wireless networks
	Introduction
	Related work
	The TD-FQ algorithm
	System model
	Basic operations
	Graceful degradation scheme
	Compensation scheme
	Lag redistributing scheme

	Theoretical analyses
	Fairness properties
	Delay bounds

	Simulation results
	Experiment 1: dropping ratios and delays for real-time flows
	Experiment 2: throughputs of flows
	Experiment 3: effect of compensation

	Conclusions
	Acknowledgements
	References


