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Abstract

We study a single removable and unreliable server in the N policy M/G/1 queueing
system with general startup times where arrivals form a Poisson process and service
times are generally distributed. When N customers are accumulated in the system,
the server is immediately turned on but is temporarily unavailable to the waiting cus-
tomers. He needs a startup time before providing service until the system becomes
empty. The server is subject to breakdowns according to a Poisson process and his
repair time obeys an arbitrary distribution. We use maximum entropy principle to
derive the approximate formulas for the steady-state probability distributions of the
queue length. We perform a comparative analysis between the approximate results
with established exact results for various distributions, such as exponential (M),
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fc-stage Erlang (E;), and deterministic (D). We demonstrate that the maximum
entropy approach is accurate enough for practical purposes and is a useful method
for solving complex queueing systems.

© 2004 Published by Elsevier Inc.

Keywords: Control; Lagrange’s method; Maximum entropy; M/G/1 queue; Startup; Unreliable
server

1. Introduction

This paper deals with a single removable and unreliable server in the N pol-
icy M/G/1 queueing system in which the breakdown times of the server follow
the negative exponential distribution, the repair times of the server obey a gen-
eral distribution, and the startup times are generally distributed. The term
‘removable server’ is just an abbreviation for the system of turning on and turn-
ing off the server, depending on the number of customers in the system. An
unreliable server means that the server is typically subject to unpredictable
breakdowns. When the queue length reaches the threshold N (N > 1), the ser-
ver is immediately turned on but is temporarily unavailable to the waiting cus-
tomers. He requires for preservice work (i.e. begin startup) before starting
service. Once the startup is over, the server immediately starts serving the wait-
ing customers.

It is assumed that customers arrive according to a Poisson process with
parameter A and service times are independent and identically distributed
(i.i.d.) random variables having a general distribution function S(¢) (¢t = 0)
with a mean service time us and a finite variance 3. The server is subject
to breakdowns at any time with Poisson breakdown rate « when he is turned
on and working. When the server fails, he is immediately repaired at a repair
facility, where the repair times are independent and identically distributed
random variables obeying a general distribution function R(?) (¢ > 0) with
a mean repair time pug and a finite variance o3. Arriving-customers form a
single waiting line based on the first-come, first-served (FCFS) discipline.
The server can serve only one customer at a time and the service is independ-
ent of the arrival of the customers. A customer who arrives and finds the ser-
ver busy or broken down must wait in the queue until a server is available.
Although no service occurs during the repair period of the server, customers
continue to arrive following a Poisson process. Furthermore, when the num-
ber of customers in the system reaches a specific level, denoted by N, the ser-
ver is immediately turned on (i.e. begin startup) but is temporarily
unavailable to the waiting customers. He requires a startup time with random
length before starting service. The startup times are independent and identi-
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cally distributed random variables obeying a general distribution function
U(t) (+ = 0) with a mean startup time pp and a finite variance o7,. Once
the startup is over, the server begins serving the waiting customers until there
are no customers in the system. Service is allowed to be interrupted if the ser-
ver breaks down, and the server is immediately repaired. Once the server is
repaired, he immediately returns to serve customers until the system becomes
empty.

The previous work is divided into two parts according to whether the server
is reliable or unreliable. In the first part we review previous papers which deal
with reliable server. For a reliable server, the concept of the N policy was first
proposed by Yadin and Naor [29]. The N policy M/G/1 queueing system was
first studied by Heyman [6] and was investigated by several researchers such as
Bell [3], Tijms [18], Wang and Ke [24], and others. Exact steady-state solutions
of the N policy M/E,/1 queueing system were first developed by Wang and
Huang [23]. Recently, Wang and Yen [27] proposed the N policy M/H;/1
queueing system. Exact steady-state solutions of the N policy M/M/1 queueing
system with exponential startup times were first derived by Baker [2]. Bor-
thakur et al. [4] extended Baker’s model to general startup times. The N policy
M/G/1 queueing system with startup times was examined by several researchers
such as Medhi and Templeton [14], Takagi [17], Lee and Park [13], Krishna
et al. [12], Hur and Paik [7] and others. Recently, Ke [8] analyzed the N policy
G/M/1/K queueing system with exponential startup times. The second part
considers previous papers dealing with the unreliable server. For an unreliable
server, Wang [19,20], and Wang et al. [22] derived exact steady-state solutions
of the N policy M/M/1, the N policy M/E,/1, and the N policy M/H,/1 queue-
ing systems, respectively. Wang and Ke [25] analyzed three control policies in
an M/G/1 queueing system and proved that in three control policies, the prob-
ability that the server is busy in the steady-state is equal to the traffic intensity.
Recently, Ke [9] investigated the N policy M/G/1 queueing system with server
vacations, startup and breakdowns. Exact steady-state solutions of the N pol-
icy M/M/1 queueing system with exponential startup times were first developed
by Wang [21].

The maximum entropy principle is applied to analyze the ordinary queue-
ing systems by several researchers such as Shore [15,16], Arizono et al. [1], Wu
and Chan [28], El-Affendi and Kouvatsos [5], Kouvatsos [11], and so on. The
maximum entropy principle has been widely applied to the study of more
complicated ordinary queueing systems having general interarrival times, or
general service times, or general interarrival times and general service times.
Wang et al. [26] used the maximum entropy principle to examine the N policy
M/G/1 queueing system with a reliable server. Many of the exact steady-state
solutions to the control queueing problems with service times or repair times
or startup times distribution of the general type have not been found. It is ex-
tremely difficult, if not impossible, to obtain the explicit formulas such as the
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steady-state probability mass function of the number of customers and the ex-
pected waiting time for the N policy M/G/1 queueing system with repair times
and startup times are generally distributed. However, one can utilize the max-
imum entropy principle to approximate the N policy M/G/1 queueing system
with general repair times and general startup times. This becomes particularly
helpful when some system performance measures (for instance, the expected
number of customers in the system, the probability that the server is busy,
broken down, etc.) are known. In this paper, we utilize the maximum entropy
principle associated with five basic known results from the literature to study
the N policy M/G/1 queueing system with general repair times and general
startup times.
The purpose of this paper is

(i) to provide the maximum entropy formalism for the N policy M/G/1
queueing system with general repair times and general startup times;

(i1) to develop the maximum entropy (approximate) solutions for the N policy
M/G/1 queueing system with general repair times and general startup
times by using Lagrange’s method;

(iii) to obtain approximate results for the expected waiting time in queue;

(iv) to perform a comparative analysis between the exact results and the
approximate results obtained through maximum entropy principle.

2. The expected number of customers in the system

Let Go(z) denote the probability generating function (p.g.f.) of the number
of customers in the ordinary M/G/1 queueing system with reliable server. From
Kleinrock [10, p. 194], we have

(1= (- 2B ()
B*(A—Az) —z ’

Go(z) = (1)
where p = Aug and B*(-) is the Laplace-Stieltjes transform (abbreviated LST)
of service time.

Let H be a random variable representing the completion time of a customer,
which includes both the service time of a customer and the repair time of a ser-
ver. Applying the well-known formula for the p.g.f. of the number of customers
in the ordinary M/G/1 queueing system with reliable server, the p.g.f. of the
number of customers in ordinary M/G/1 queueing system with unreliable ser-
ver is given by
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where pz = AE[H] (E[H] is the mean completion time) and H*(’) is the LST of
completion time. Note that pg is traffic intensity and it should be assumed to
be less than unity. It should be noted that expression (2) is obtained only by
replacing service times by completion times in the formula of the ordinary
M/G/1 queueing system with reliable server.

We consider that the server is on ‘extended vacation’ during the turned-off
period F, and startup period S, the lengths of which equal (£}, + S;,). Follow-
ing the result of Medhi and Templeton [14], we obtain

[1 - B(2)IG(2)
G = 3
N<Z) ﬁ/(l)(l_z) Y ( )
where
Gn(2) = the p.g.f. of number of customers in the NV policy M/G/1
queueing system with server breakdowns and general startup
times;
B(2) = the p.g.f. of the number of customers that arrive during a

vacation of length F, + S;
= [the p.g.f. of the number of customers that arrive during Fy]

x [the p.g.f. of the number of customers that arrive during Sy,]
= zNU*(). — Jz), where U*(’) is the LST of startup time.

We have f'(z) = NzV'U*() — Jz) + ZNU*' () — Jz)(=2). Tt follows that
p'(1) =N+ Auy =N + py, where py = Auy. From (2) and (3), we obtain
[1—2U*(A— 22)](1 — py)H* (/. — 22)

(N + py)[H" (7. — 22) — 2] '
Let Ly denote the expected number of customers in the N policy M/G/1

queueing system with server breakdowns and general startup times. Thus we
have

GN(Z) =

LN = G;V(Z) z=1
1 [N(N-1) FE[U?Y FE[H?
“Ni | 2 Vet | A s

(4)
where E[H] = ps(1 + o) and E[H?] = (1 + apg)’E[S”] + apsE[R’].
3. The maximum entropy results
In this section, we will develop the maximum entropy solutions for the stea-

dy-state probabilities of the N policy M/G/1 queueing system with server
breakdowns and general startup times. Let us define
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Py ((n) = probability that there are n customers in the system when the
server is turned off, where n =0,1,...,N — 1.

Py s(n) = probability that there are n customers in the system when the
server is startup, where n=N,N+ 1,N+2,...

Pi(n) = probability that there are n customers in the system when the
server is turned on and working, where n =1,2,3,...

P>(n) = probability that there are n customers in the system when the
server is in operation but found to be broken down, where
n=123,...

In order to derive the steady-state probabilities Py [(n), Py s(n) and Pfn)
(i =1,2) by using the maximum entropy principle, we formulate the maximum
entropy model in the following. Following El-Affendi and Kouvatsos [5], the
entropy function Y can be illustrated mathematically as

00

ZP()] hlP()[ ZPOS IHP()S ) ZP](VZ)IHPl(I’l)

n=1
—ZPZ lIle

or equivalently

o0

Y = —NPy,(0)In Py, (0 ZPOS )InPos(n) = > Pi(n)InPy(n)

There are five basic known results from the literature (see [4] and [25]) that
facilitate the application of the maximum entropy formalism to study the N
policy M/G/1 queueing system with server breakdowns and general startup
times. The maximum entropy solutions are obtained by maximizing (5) subject
to the following five constraints, written as,

(1) normalizing condition

NP01(0)+iPoys(n)—}—iPl(n)—i—in(n) = 1, (6)

(i1) the probability that the server is startup

ZPO,S( N+ oy (1= p(1 +apug)] = pyO(1 — py), (7)

where @ = NJPU and pg = p(1 + apg).
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(iii) the probability that the server is busy

> P =

(iv) the probability that the server is broken down

[o¢]

S Pan) = pr

n=1

(v) the expected number of customers in the system
N-1 00 00 00
Z nPy;(n) + Z nPys(n) + Z nPi(n) + Z nPy(n) = Ly,
n=0 n=N n=1 n=1
where Ly is given by (4).
It yields from (6) to (9)
Po;i(0) =Po;(n)=0O(1 —py), n=12,....N—1.

51

(11)

In (6)—(10), (6) is multiplied by 0; (7) is multiplied by 6,, (8) is multiplied by
03, (9) is multiplied by 64 and (10) is multiplied by 6s. Thus the Lagrangian

function y is given by

y= —NPOJ (0) lnPo,, (0) — ipo’g(l’l) lnPO,S(n)

n=N

—i 11’1P1 ZPz 1IlP2
n=1

n=1

im(m—p]

-0

— 0, | S Pasn) — pu©(1 - m] — 0,

— 04 ZPZ(”) — POy
n=1

N(N

— 05

LN‘|a

(12)

where 0,05 are the Lagrangian multipliers corresponding to constraints (6)—

(10), respectively.
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3.1. The maximum entropy solutions

To get the maximum entropy solutions Py s(n), P1(n), P»(n), maximizing in
(5) subject to constraints (6)—(10) is equivalent to maximizing (12).

The maximum entropy solutions are obtained by taking the partial deriva-
tives of y with respect to Py (0), Py s(n), P{n) (i =1,2), and setting the results
equal to zero, namely,

by NN-1), _
aPOJ(O) = 7N11’1P0,1(0) —N 7N01 — 3 65 = 07 (13)
Qy
aPO‘S(n) = —lnpoﬁg(l’l) —-1- 91 — 02 — n05 = 0, (14)
O nPyn)— 10— 05— n0s =0 (15)
6P1(n) = 1\n 1 3 — hbs =Y,
o _ InPy(n) — 1 — 0, — 04 — nls = 0 (16)
6P2(n) = 2 1 4 —nUs = U.
It implies from (13)-(16) that we obtain
Po;(0) = Pos(n) = e H0e=V=D092 =y — 12 N — 1, (17)
Pos(n) = e*(”(’l*“?)e’”gﬂ n=N,N+1,... (18)
Pi(n) = e (H0t0e=nls =y — 12 . (19)
Py(n) = e IH0t0a)e=nds 1 — 12 (20)

Let ¢y =e "), dpy =e ™, ¢y =e", ¢y =e" and ¢ =e ™.
We transform (17)—(20) in terms ¢y, ¢, ¢3, ¢4 and ¢5 given by

Pos(n) = 98" n=0,1,....N —1, (21)
POS(”):¢1¢2¢27 n:N7N+17 (22)
Pl(n):¢l¢3¢)§7 n= 1127'“ (23)
Py(n) = dr¢ads, n=12,... (24)
Substituting (22)—(24) into (7)—(9), respectively, yields
610, :PU@(l _pg)(l _(155)7 (25)
b5
1 —
15 = M, (26)

Ps
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popip(l — ¢
iy =L, @7)
5
Substituting (11) and (22)—(24) into (10) and taking the algebraic manipula-

tions, we obtain

o1 —
b=l @/Zlvtpll;(l(— pHp)}E)% +pu) %)
Finally, we get
Py,(n)=0(1—-py), n=0,1,2,...,N—1, (29)
Pos(n) = py@(1 — p,)(1 — ds)p2™, n=N,N+1,... (30)
Pi(n)=p(1 —¢5)op7", n=1.2,... (31)
Py(n) = pog(1 — p5)pt™', n=1,2,... (32)

4. The exact and approximate expected waiting time in the queue

In this section, we develop the exact and the approximate formulae for the
expected waiting time in the N policy M/G/1 queueing system with server
breakdowns and general startup times as follows.

4.1. The exact expected waiting time in the queue

Let W, denote the exact expected waiting time in the queue. Using (4) and
Little’s formula, we obtain

Ly NN - 1)

JE[U?] JE[H?]
> | Yan—EE]

+Nyuy + (33)

4.2. The approximate expected waiting time in the queue

We define the idle state, the startup state, the busy state, and the repair state
as follows:

(1) Idle state denoted by I: the server is turned off and the number of custom-
ers waiting in the system is less than or equal to N — 1.

(i1) Startup state denoted by U: the server begins startup and the number of
customers waiting in the system is greater than or equal to N.
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(iii) Busy state denoted by B: the server is busy and provides service to a
customer.
(iv) Repair state denoted by R: the server is broken down and being repaired.

Following Borthakur et al. [4], we find the expected waiting time of cus-
tomer C at the states I, U, B and R as follows. Suppose that a customer C finds
n customers waiting in the queue for service in front of him, while the system is
at any one of the states I, U, B and R are described, respectively, as follows:

(1) In idle state I: The server will begin startup after (N — n — 1) customers
arrive in the system. Thus customer C will be served until (N — n — 1) cus-
tomers arrive and n customers in front of him waiting for service. The
expected waiting time of customer C at the idle state is (N —n — 1)/
A+ pyt nps.

(i1) In startup state U: We derive the expected waiting time of customer C at
the startup state in the following. Let us define

U,(t) = remaining startup time for the server begin startup.

Following Borthakur et al. [4], the cumulative distribution function
(c.d.f.) of U(¢) is given by

t
Fu(t) =P{U,(t) <t} = L / [1 — D(x)]dx,
Hy Jo
where D(x) is the c.d.f. of startup time. Let E(U,) be the mean remaining
startup time. It implies that E[U,] = E[U*/2uy. Thus we obtain the ex-
pected waiting time of customer C at the startup state is nus + E[U*/2u0.
(iii) In busy state B: Since the server is turned on and working, customer C
only waits n customers in front of him to be served. The expected waiting
time of customer C at the busy state is nug.
(iv) In repair state R: Using the same argument as (ii), we have the expected
waiting time of customer C at the repair state is nus + E[R*)/2ux.

Finally, using the listed above results, we obtain the approximate expected
waiting time in the queue given by

. R /N-n-1
wy= 30 (N g ) s (0)

n=0 A

+ Ei; <n:“s +E[U ])Po,s(n) =+ i(n,us)Pl (n)

2’uU n=1
00 ER2
3 (s 5 ) Pat, (34)
n=1 'uR

where Py (0), Py s(n), Pi(n), and P,(n) are given in (29)—(32), respectively.
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5. Comparative analysis

The primary objective of this section is to examine the accuracy of the max-
imum entropy results. We present specific numerical comparisons between the
exact results and the maximum entropy (approximate) results for the N policy
M/G/1 queueing system with general service times, general repair times and
general startup times. Conveniently, we represent this queueing system as the
N policy M/G(G, G)/l queueing system where the second, third, fourth symbols
denote the general distribution of service time, repair time, and startup time,
respectively.

This section includes the following three subsections:

(1) Comparative analysis for the N policy M/M(M,M)/1 and M/D(D, D)/1
queueing systems.

(i) Comparative analysis for the N policy M/E3(E4, E3)/1 and M/M(E3, E,)/1
queueing systems.

(iii)) Comparative analysis for the N policy M/E3(E4, D)/1 and M/E5(E4, M)/1
queueing systems.

5.1. Comparative analysis for the N policy MIM(M, M)/l and MID(D, D)/1
queueing systems

Here we perform a comparative analysis between the exact W, and the
approximate (maximum entropy) W; for the N policy M/M(M,M)/l and
M/D(D,D)/1 queueing systems. For the N policy M/M(M,M)/1 queueing
system, we obtain us=1, E[S*]=2/12, ug=1/8, ER* =2 puy=1/,
and E[U*]=2/y. For the N policy M/D(D,D)/1 queueing system, we
havze ws= 1w, E[S*]=1/1% pgr=1/p, E[R]=1/8% uy=1/y, and E[U*]=
1/y~.

We set N=5 and N =10, and choose the various values of A, u, o, f3,
and y. The numerical results are obtained by considering the following
parameters:

Case I: Wefix u=1.0, 2 =0.05, p = 3.0, y = 3.0, and vary the values of 4 from
0.2 to 0.8.

Case 2: Wefix 21=0.3,2=0.05, f =3.0,y = 3.0, and vary the values of u from
0.5 to 2.0.

Case 3: Wefix 1=0.3, 2 =1.0, = 3.0, y = 3.0, and vary the values of o from
0.05 to 0.2.

Case 4: Wefix A =0.3, u=1.0, 2 =0.05, y = 3.0, and vary the values of §§ from
2.0 to 6.0.

Case 5: Wefix 2=0.3, u=1.0, 2 =0.05, f = 3.0, and vary the values of y from
2.0 to 5.0.



Table 1

Comparison of exact W, and approximate /' for the N policy M/M(M, M)/l and M/D(D,D)/1 queueing systems

M/M(M,M)/1 M/D(D,D)/1

N=5 N=10 N=5 N=10

Wy /4 jl % Error Wy W:l % Error Wy /4 (*] % Error Wy /4 ; % Error
A Case 1. (u=1.0, 2=0.05, f=3.0, y=3.0)
0.2 10.4626 10.4244 0.3657 22.9452 22.8653 0.3481 10.3300 10.3955 0.6345 22.8137 22.8376 0.1049
0.4 5.9040 5.8579 0.7815 12.1359 12.0482 0.7225 5.5494 5.7124 2.9363 11.7834 11.9048 1.0302
0.6 5.1372 5.0756 1.1979 9.2850 9.1820 1.1095 4.3314 4.5880 5.9242 8.4824 8.6975 2.5358
0.8 7.1603 7.0513 1.5226 10.2658 10.1154 1.4654 4.9251 5.2593 6.7861 8.0347 8.3274 3.6437
u Case 2. (A=0.3, « =0.05, $=3.0, y = 3.0)
0.5 10.0582 9.9373 1.2022 18.3737 18.1696 1.1107 8.4605 8.9757 6.0898 16.7776 17.2097 2.5752
1.0 7.3178 7.2762 0.5695 15.6334 15.5501 0.5325 7.0903 7.2048 1.6150 15.4074 15.4804 0.4733
1.5 7.0437 7.0179 0.3654 15.3592 15.3057 0.3480 6.9532 6.9967 0.6252 15.2704 15.2861 0.1031
2.0 6.9617 6.9431 0.2683 15.2773 15.2378 0.2583 6.9122 6.9324 0.2924 15.2294 15.2288 0.0038
o Case 3. (A=0.3, u=1.0, $=3.0, y=3.0)
0.05 7.3178 7.2762 0.5695 15.6334 15.5501 0.5325 7.0903 7.2048 1.6150 15.4074 15.4804 0.4733
0.10 7.3384 7.2546 1.1408 15.6539 15.4870 1.0660 7.1006 7.1794 1.1102 15.4177 15.4134 0.0282
0.15 7.3594 7.2333 1.7140 15.6750 15.4241 1.6005 7.1111 7.1540 0.6041 15.4282 15.3464 0.5302
0.20 7.3810 7.2121 2.2890 15.6966 15.3613 2.1359 7.1219 7.1288 0.0968 15.4391 15.2796 1.0328
p Case 4. (A1=0.3, u=1.0, =0.05, y = 3.0)
2.0 7.3298 7.2672 0.8549 15.6454 15.5204 0.7991 7.0963 7.1930 1.3625 15.4134 15.4478 0.2226
3.0 7.3178 7.2762 0.5695 15.6334 15.5501 0.5325 7.0903 7.2048 1.6150 15.4074 15.4804 0.4733
4.0 7.3123 7.2811 0.4269 15.6279 15.5655 0.3993 7.0875 7.2109 1.7411 15.4047 15.4969 0.5986
6.0 7.3072 7.2864 0.2845 15.6227 15.5811 0.2661 7.0850 7.2172 1.8670 15.4021 15.5136 0.7238
y Case 5. (A=0.3, u=1.0, = 0.05, =3.0)
2.0 7.4211 7.3789 0.5685 15.7269 15.6432 0.5323 7.1895 7.3035 1.5858 15.4989 15.5714 0.4675
3.0 7.3178 7.2762 0.5695 15.6334 15.5501 0.5325 7.0903 7.2048 1.6150 15.4074 15.4804 0.4733
4.0 7.2667 7.2253 0.5700 15.5869 15.5039 0.5326 7.0406 7.1553 1.6299 15.3617 15.4348 0.4762
5.0 7.2362 7.1949 0.5702 15.5591 15.4762 0.5327 7.0107 7.1256 1.6390 15.3342 15.4075 0.4779

9¢

19-S# (S00Z) §91 ndwo) yppy 1ddy | v 32 Suby H-"Y



Table 2

Comparison of exact W, and approximate 7 for the N policy M/E3(E4, E;)/1 and M/M(E3, E»)/1 queueing systems

M/E;(Eq, E3)/1

M/M(Es, E,)/1

N=5 N=10 N=5 N=10
Wwq WZ % Error Wy W; % Error Wy W; % Error Wy W; % Error

A Case 1. (u=1.0, «=0.05, f=3.0, y=3.0)

0.2 10.3742 10.4051 0.2982 22.8575 22.8468 0.0467 10.4611 10.4228 0.3657 22.9442 22.8643 0.3481
0.4 5.6675 5.7607 1.6454 11.9007 11.9524 0.4344 5.9006 5.8545 0.7815 12.1335 12.0459 0.7225
0.6 4.5996 4.7502 3.2733 8.7496 8.8586 1.2465 5.1311 5.0696 1.1981 9.2805 9.1775 1.1095
0.8 5.6692 5.8557 3.2895 8.7774 8.9224 1.6524 7.1482 7.0393 1.5230 10.2557 10.1054 1.4655
u Case 2. (A=0.3, «=0.05, p=3.0, y=3.0)

0.5 8.9927 9.2959 3.3715 17.3093 17.5293 1.2711 10.0537 9.9328 1.2022 18.3700 18.1660 1.1107
1.0 7.1660 7.2285 0.8714 15.4827 15.5035 0.1348 7.3154 7.2737 0.5695 15.6318 15.5485 0.5325
1.5 6.9833 7.0037 0.2921 15.2999 15.2926 0.0478 7.0416 7.0158 0.3654 15.3579 15.3045 0.3480
2.0 6.9287 6.9359 0.1046 15.2453 15.2318 0.0888 6.9598 6.9411 0.2683 15.2761 15.2367 0.2583
o Case 3. (A=0.3, u=1.0, $=3.0, y=3.0)

0.05 7.1660 7.2285 0.8714 15.4827 15.5035 0.1348 7.3154 7.2737 0.5695 15.6318 15.5485 0.5325
0.10 7.1796 7.2043 0.3433 15.4962 15.4377 0.3776 7.3351 7.2514 1.1409 15.6515 15.4846 1.0660
0.15 7.1936 7.1802 0.1863 15.5102 15.3720 0.8907 7.3554 7.2293 1.7141 15.6717 15.4209 1.6005
0.20 7.2079 7.1562 0.7175 15.5245 15.3064 1.4045 7.3761 7.2073 2.2892 15.6925 15.3573 2.1359
p Case 4. (1=0.3, u=1.0, 2=0.05, y =3.0)

2.0 7.1739 7.2175 0.6073 15.4905 15.4717 0.1214 7.3264 7.2638 0.8549 15.6427 15.5177 0.7991
3.0 7.1660 7.2285 0.8714 15.4827 15.5035 0.1348 7.3154 7.2737 0.5695 15.6318 15.5485 0.5325
4.0 7.1624 7.2343 1.0033 15.4790 15.5197 0.2628 7.3103 7.2791 0.4269 15.6266 15.5642 0.3993
6.0 7.1590 7.2403 1.1350 15.4756 15.5361 0.3907 7.3054 7.2846 0.2845 15.6217 15.5801 0.2661
y Case 5. (A=0.3, u=1.0, 2 =0.05, = 3.0)

2.0 7.2666 7.3285 0.8525 15.5748 15.5952 0.1310 7.4166 7.3744 0.5685 15.7242 15.6405 0.5323
3.0 7.1660 7.2285 0.8714 15.4827 15.5035 0.1348 7.3154 7.2737 0.5695 15.6318 15.5485 0.5325
4.0 7.1159 7.1786 0.8811 15.4367 15.4578 0.1367 7.2650 7.2236 0.5700 15.5856 15.5026 0.5326
5.0 7.0858 7.1486 0.8870 15.4091 15.4303 0.1378 7.2348 7.1935 0.5703 15.5580 15.4751 0.5327
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Table 3

Comparison of exact W, and approximate W for the N policy M/E;(E4, D)/1 and M/E3(E4, M)/1 queueing systems

M/E3(E4, D)/1

M/E;(Eq, MY/1

N=5 N=10 N=5 N=10
Wq W: % Error Wq W; % Error Wy W(*l % Error Wy W: % Error

A Case 1. (u=1.0, «=0.05, f=3.0, y=3.0)

0.2 10.3734 10.4044  0.2983 22.8571 22.8464  0.0467 10.3756 10.4065  0.2981 22.8582  22.8475  0.0467
0.4 5.6660 5.7593 1.6460 11.9000 11.9517  0.4345 5.6703 5.7636 1.6443 11.9022 11.9539  0.4343
0.6 4.5975 4.7481 3.2753 8.7485 8.8575 1.2467 4.6039 47544  3.2693 8.7517 8.8608 1.2459
0.8 5.6664 5.8529  3.2917 8.7760 8.9210 1.6529 5.6748 5.8612  3.2849 8.7803 8.9253 1.6515
u Case 2. (A=0.3, « =0.05, p=3.0, y=3.0)

0.5 8.9916 9.2948 3.3720 17.3087 17.5288 1.2712 8.9949 9.2980  3.3704 17.3104 17.5304 1.2710
1.0 7.1650 7.2274  0.8716 15.4821 15.5030  0.1348 7.1682 7.2307  0.8710 15.4838 15.5046  0.1347
1.5 6.9822 7.0026  0.2922 15.2994 15.2920  0.0478 6.9855 7.0059  0.2919 15.3010 15.2937  0.0479
2.0 6.9276 6.9349  0.1047 15.2448 15.2312  0.0888 6.9309 6.9381 0.1045 15.2464 15.2329  0.0889
o Case 3. (A1=0.3, u=1.0, $=3.0, y=3.0)

0.05 7.1650 7.2274  0.8716 15.4821 15.5030  0.1348 7.1682 7.2307  0.8710 15.4838 15.5046  0.1347
0.10 7.1785 7.2032  0.3435 15.4957 15.4372  0.3776 7.1818 7.2064  0.3429 15.4973 15.4388  0.3777
0.15 7.1925 7.1791 0.1861 15.5096 15.3715  0.8907 7.1957 7.1823  0.1867 15.5113 15.3731 0.8908
0.20 7.2068 7.1551 0.7173 15.5239 15.3059 1.4045 7.2100 7.1583  0.7178 15.5256 15.3075 1.4046
p Case 4. (A=0.3, u=1.0, 2 =0.05, y =3.0)

2.0 7.1728 7.2164  0.6076 15.4900 154712  0.1214 7.1761 7.2196  0.6069 15.4916 15.4728  0.1214
3.0 7.1650 7.2274  0.8716 15.4821 15.5030  0.1348 7.1682 7.2307  0.8710 15.4838 15.5046  0.1347
4.0 7.1613 7.2332 1.0035 15.4785 15.5192  0.2628 7.1646 7.2365 1.0029 15.4801 15.5208  0.2627
6.0 7.1579 7.2392 1.1352 15.4751 15.5355  0.3907 7.1612 7.2424 1.1346 15.4767 15.5372  0.3907
y Case 5. (4=0.3, p=1.0, 2 =0.05, f=3.0)

2.0 7.2642 7.3261 0.8529 15.5736 15.5940  0.1311 7.2714 7.3334  0.8516 15.5773 15.5977  0.1309
3.0 7.1650 7.2274  0.8716 15.4821 15.5030  0.1348 7.1682 7.2307  0.8710 15.4838 15.5046  0.1347
4.0 7.1152 7.1779  0.8812 15.4363 15.4574  0.1367 7.1171 7.1798  0.8809 15.4373 15.4584  0.1366
5.0 7.0854 7.1482  0.8871 15.4089 15.4301 0.1378 7.0866 7.1494  0.8868 15.4095 15.4307  0.1378
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Numerical results for the N policy M/M(M, M)/1 and M/D(D, D)/1 queue-
ing systems are shown in Table 1 for the above five cases. The relative error
percentages are very small (0-6.8%).

5.2. Comparative analysis for the N policy MIE;(E, E3)l1 and MIM(E3, E>)/1
queueing systems

Here we perform a comparative analysis between the exact W, and the
approximate (maximum entropy) W; for the N policy M/Es(E4, E3)/1 and
M/M(E;, E»)/1 queueing systems. For the N policy M/E;(E4, E3)/1 queueing
system, we have ug= 1/u, E[S?|=4/31% ugr=1/p, E[R?|=5/418 uy= 1/,
and E[U’] = 4/3)>. For the N policy M/M(E;,E,)/l queueing system, we
get ps = Vp, E[S? =202 ug=1/p, E[R=4/3* uy=1/y, and E[U*]=
3/2y°.

Numerical results for the N policy M/E3(E4, E3)/1 and M/M(E3, E,)/1 queue-
ing systems are shown in Table 2 for the above five cases. The relative error
percentages are also very small (0-3.5%).

5.3. Comparative analysis for the N policy MIE;(E, D)/l and MIE;(E;, M)/1
queueing systems

Here we perform a comparative analysis between the exact W, and the
approximate (maximum entropy) W7 for the N policy M/E3(E4, D)/1 and M/
E5(E4, M)/1 queueing systems. For the N policy M/E3(E4, D)/1 queueing sys-
tem, we get us= 1/u, E[S*]=4/3/1%, ug=1/p, E[R’]=5/48>, uy=1/y, and
E[U?] = 1/7*. For the N policy M/Es(E4, M)/l queueing system, we obtain
s = Up, E[S*)=4/3/1%, ug = 1/B, E[R*] = 5/4f°, uy = 1/y and E[U*] = 2/7*.

Numerical results for the N policy M/E5(E4, D)/1 and M/E3(E4, M)/1 queue-
ing systems are shown in Table 3 for the above five cases. Again, the relative
error percentages are very small (0-3.5%).

6. Conclusion

We have utilized maximum entropy principle to develop the maximum en-
tropy (approximate) solutions for the N policy M/G/1 queueing system with
general service times, general repair times, and general startup times. We per-
form a comparative analysis between the approximate results obtained using
maximum entropy principle and established exact results. We have demon-
strated that the relative error percentages are very small (below 6.8%). The
numerical results indicate that the use of maximum entropy principle is accu-
rate enough for practical purposes and provides a helpful method for analyzing
complex queueing systems.



60 K.-H. Wang et al. | Appl. Math. Comput. 165 (2005) 45-61

References

[1] 1. Arizono, Y. Cui, H. Ohta, An analysis of M/M/S queueing systems based on the maximum
entropy principle, J. Oper. Res. Soc. 42 (1991) 69-73.

[2] K.R. Baker, A note on operating policies for the queue M/M/1 with exponential startup,
INFOR 11 (1973) 71-72.

[3] C.E. Bell, Characterization and computation of optimal policies for operating an M/G/1
queueing system with removable server, Oper. Res. 19 (1971) 208-218.

[4] A. Borthakur, J. Medhi, R. Gohain, Poisson input queueing systems with startup time and
under control operating policy, Comput. Oper. Res. 14 (1987) 33-40.

[5] M.A. El-Affendi, D.D. Kouvatsos, A maximum entropy analysis of the M/G/1 and G/M/1
queueing systems at equilibrium, Acta Inform. 19 (1983) 339-355.

[6] D.P. Heyman, Optimal operating policies for M/G/1 queueing system, Oper. Res. 16 (1968)
362-382.

[7]1 S. Hur, S.J. Paik, The effect of different arrival rates on the N-policy of M/G/1 with server
setup, Appl. Math. Model. 23 (1999) 289-299.

[8] J.-C. Ke, The operating characteristic analysis on a general input queue with N policy and a
startup time, Math. Methods Oper. Res. 57 (2003) 235-254.

[9] J.-C. Ke, The optimal control of an M/G/1 queueing system with server vacations, startup and
breakdowns, Comput. Ind. Eng. 44 (2003) 567-579.

[10] L. Kleinrock, Queueing Systems, vol. I, Wiley, New York, 1976.

[11] D.D. Kouvatsos, Maximum entropy and the G/G/1/N queue, Acta Inform. 23 (1986) 545-565.

[12] R.G.V. Krishna, R. Nadarajan, R. Arumuganathan, Analysis of a bulk queue with N-policy
multiple vacations and setup times, Comput. Oper. Res. 25 (1998) 957-967.

[13] H-W. Lee, J.O. Park, Optimal strategy in N-policy production system with early set-up,
J. Oper. Res. Soc. 48 (1997) 306-313.

[14] J. Medhi, J.G.C. Templeton, A Poisson input queue under N-policy and with a general startup
time, Comput. Oper. Res. 19 (1992) 35-41.

[15] J.E. Shore, Derivation of equilibrium and time-dependent solutions to M/M/oo/N and M/M/co
queueing systems using entropy maximization, in: Proceedings, National Computer Confer-
ence, AFIPS, 1978, pp. 483-487.

[16] J.E. Shore, Information theoretic approximations for M/G/1 and G/G/1 queueing systems,
Acta Inform. 17 (1982) 43-61.

[17] H. Takagi, A M/G/1/K queues with TV-policy and setup times, Queueing Syst. 14 (1993) 79—
98.

[18] H.C. Tijms, Stochastic Modelling and Analysis, Wiley, New York, 1986.

[19] K.-H. Wang, Optimal operation of a Markovian queueing system with a removable and non-
reliable server, Microelectron. Reliab. 35 (1995) 1131-1136.

[20] K.-H. Wang, Optimal control of an M/E,/1 queueing system with removable service station
subject to breakdowns, J. Oper. Res. Soc. 48 (1997) 936-942.

[21] K.-H. Wang, Optimal control of a removable and non-reliable server in an M/M/1 queueing
system with exponential startup time, Math. Methods Oper. Res. 58 (2003) 29-39.

[22] K.-H. Wang, K.-W. Chang, B.D. Sivazlian, Optimal control of a removable and non-reliable
server in an infinite and a finite M/H»/1 queueing system, Appl. Math. Model. 23 (1999) 651—
666.

[23] K.-H. Wang, H.-M. Huang, Optimal control of an M/E;/1 queueing system with a removable
service station, J Oper. Res. Soc. 46 (1995) 1014-1022.

[24] K.-H. Wang, J.-C. Ke, A recursive method to the optimal control of an M/G/1 queueing
system with finite capacity and infinite capacity, Appl. Math. Model. 24 (2000) 899-914.

[25] K.-H. Wang, J.-C. Ke, Control policies of an M/G/1 queueing system with a removable and
non-reliable server, Int. Trans. Oper. Res. 9 (2002) 195-212.



K.-H. Wang et al. | Appl. Math. Comput. 165 (2005) 45-61 61

[26] K.-H. Wang, S.-L. Shuang, W.-L. Pearn, Maximum entropy analysis to the N policy M/G/1
queueing system with a removable server, Appl. Math. Model. 26 (2002) 1151-1162.

[27] K.-H. Wang, K.-L. Yen, Optimal control of an M/H,/1 queueing system with a removable
server, Math. Methods Oper. Res. 57 (2002) 255-262.

[28] J.-S. Wu, W.C. Chan, Maximum entropy analysis of multiple-server queueing systems,
J. Oper. Res. Soc. 40 (1989) 815-825.

[29] M. Yadin, P. Naor, Queueing systems with a removable service station, Oper. Res. Quart. 14
(1963) 393-405.



	Maximum entropy analysis to the N policy M/G/1 queueing system with server breakdowns and general startup times
	Introduction
	The expected number of customers in the system
	The maximum entropy results
	The maximum entropy solutions

	The exact and approximate expected waiting time in the queue
	The exact expected waiting time in the queue
	The approximate expected waiting time in the queue

	Comparative analysis
	Comparative analysis for the N policy M/M(M,M)/1 and M/D(D,D)/1 queueing systems
	Comparative analysis for the N policy M/E3(E4,E3)/1 and M/M(E3,E2)/1 queueing systems
	Comparative analysis for the N policy M/E3(E4,D)/1 and M/E3(E4,M)/1 queueing systems

	Conclusion
	References


