
An efficient load balancing strategy for scalable WAP gateways

Te-Hsin Lin, Kuochen Wang*, Ae-Yun Liu

Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan, ROC

Received 13 May 2003; revised 25 November 2004; accepted 7 December 2004

Available online 20 December 2004

Abstract

Clustering provides a promising way to build a scalable, reliable, and high-performance WAP gateway architecture. However, this

requires an efficient load balancing mechanism for assigning a request to a suitable gateway in the cluster, that can offer the best service. In

addition, unpredictable connection time and nonuniformity of incoming load from different mobile clients are big obstacles to load balancing

among real gateways. In this paper, we propose a load balancing strategy that has the following features: (1) estimating the potential load of

real gateways with small computation time and no communication overhead, (2) asynchronous alarm sent when the utilization of a real

gateway exceeds a critical threshold, and (3) WAP-awareness. We also propose a scalable WAP gateway (SWG) architecture that consists of

a WAP dispatcher and a cluster of real gateways. The WAP dispatcher is a front-end distributor with our load balancing strategy. To prevent

the WAP dispatcher from becoming a bottleneck, the WAP dispatcher distributes mobile clients’ requests in kernel space and does not

process outgoing gateway-to-client responses. Experiment results show that our SWG has better load balancing performance, throughput,

and delay compared to the LVS and the Kannel gateway.

q 2004 Elsevier B.V. All rights reserved.

Keywords: WAP gateway; Load balancing; Clustered architecture; Asynchronous alarm
1. Introduction

The WAP gateway has been introduced by the WAP

Forum [1] to provide efficient wireless access to the Internet.

It performs protocol translation and content conversion to

reduce the size of data transmitted over the wireless

network. The growth of the demand for wireless data

services will raise great challenges in terms of performance,

scalability and availability of the WAP gateway. Since

protocol translation and content conversion are computation

intensive, a monolithic gateway will become overloaded

and is not sufficient to conquer these challenges. An efficient

way to cope with the growing demand is adding extra

hardware resources to provide clustered architecture.

Upgrading the gateway with a faster model usually results

in high price/performance and can not scale up with the

demand. That is, turning a monolithic WAP gateway into a

clustered gateway is a cost effective alternative to build a

scalable, reliable, and high-performance WAP gateway.
0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.12.001

* Corresponding author. Tel.: C886 3 5131363; fax: C886 3 5721490.

E-mail address: kwang@cis.nctu.edu.tw (K. Wang).
However, it requires an efficient load balancing mechanism

for assigning a request to a selected gateway in the cluster,

that can offer the best service. In the WAP model, a WAP

client needs to establish a connection with a WAP gateway

before it can access Internet resources. The WAP gateway

maintains the connection state information until the

connection is terminated. In the connection period, the

client can make unlimited number of requests to the WAP

gateway. Both unpredictable connection time and nonuni-

formity of incoming load from different mobile clients bring

challenges to load balancing among gateways in the cluster.

These peculiarities may result in some gateways in the

cluster having heavy load, but some with light load.

The WAP standard [1] has suggested that the assignment

decision can be taken at the client side through random

selection of several configured gateways, or at the gateway

side through a WSP redirection mechanism [4] to redirect a

connection request from an overloaded gateway to a light-

loaded one in the cluster. These two mechanisms have some

drawbacks. The client side approach is not scalable and may

result in a skewed load on a gateway if too many clients use

the same gateway. The WSP redirection mechanism,
Computer Communications 28 (2005) 1028–1037
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom


T.-H. Lin et al. / Computer Communications 28 (2005) 1028–1037 1029
achieved by returning the address of the new selected

gateway instead of returning connection success, provides

scalability and availability. However, it increases the

wireless network traffic and response time because of the

continued message exchange [4].

A clustered architecture is composed of real gateways. It

usually integrates a front-end distributor, which is a load

balancer and is used to forward a mobile client’s request to a

proper real gateway. The front-end distributor is transparent

and provides a single user-view interface to a WAP client.

The Kannel gateway [3] is based on this architecture. This

architecture can provide scalability and load balancing

among real gateways. However, the main problem of this

architecture is that the front-end distributor may become a

bottleneck under heavy request load.

In this paper, we design and implement a scalable WAP

gateway (SWG) which is also a clustered architecture. The

SWG consists of a group of real gateways connected by a

fast interconnection network. It integrates a kernel-level

front-end distributor, called WAP dispatcher, which is

different from the front-end distributor of the Kannel

gateway. The distributor of the Kannel gateway is running

at the application level and it modifies incoming requests

and outgoing responses. To prevent the WAP dispatcher

from becoming a bottleneck, our WAP dispatcher forwards

incoming request to a proper real gateway in kernel space

and does not handle gateway-to-client responses. This is

particularly useful for WAP services that are characterized

by small sizes of client requests that may generate large

sizes of responses. The WAP dispatcher uses the Weighted

Round Robin (WRR) scheduling algorithm [6] which uses

weights provided by the load balancing algorithm to

allocate connections among real gateways in the cluster.

Our load balancing algorithm has the following features:
†
 Estimating potential load with small computation time

and no communication overhead.
†
 Asynchronous alarm, which is a feedback alarm

mechanism, sent when the utilization of a real gateway

exceeds a critical threshold.
†
 WAP-awareness, which is useful in performing load

balancing based on WAP request types.

The paper is organized as follows. We review existing

approaches in Section 2. The design of the proposed load

balancing mechanism is presented in Section 3. In Section 4,

the performance of the proposed mechanism is evaluated.

Finally, Section 5 gives concluding remarks and future work.
2. Existing methods

2.1. Linux virtual server

The Linux Virtual Server (LVS) [6] is a highly scalable

server built on a cluster of real servers, with the load
balancer running on the Linux operating system [7]. The

architecture of the cluster is transparent to end users. The

end users only see a single virtual server. A real server can

be any server, such as a WAP gateway or an HTTP server.

The real servers may be interconnected by a high-speed

LAN or by a geographically dispersed WAN. The front-end

of the real servers is a load balancer, called LinuxDirector,

which distributes requests to different servers and makes

parallel services of the cluster to appear as a single virtual

service using a single IP address [6]. Scalability is achieved

by transparently adding or removing a real server in the

cluster. The LVS uses the Weighted Round-Robin (WRR)

and Weighted Least-Connection (WLC) scheduling algor-

ithms to allocate session connections among real servers.

2.2. Kannel gateway

The Kannel gateway is an open source WAP gateway

with built-in load balancing capability. It is based on a

clustered architecture and consists of two components: a

bearer box and a group of WAP boxes. The bearer box,

a front-end distributor, provides a unified interface to the

WAP clients and implements the WDP layer of the WAP

protocol stack. The WAP box runs the upper layers (e.g.

WTP and WSP) of the WAP protocol stack. The bearer box

will rewrite the WAP request and passes it to the selected

box among the WAP boxes via TCP. The bearer box uses

the random scheduling algorithm to allocate session

connections among the WAP boxes. The drawback of the

Kannel gateway is that rewriting is done at the application

level, and both request packets and response packets need to

be rewritten by the bearer box.
3. Design approach

3.1. Overview of the proposed scalable WAP gateway

We propose a scalable WAP gateway (SWG) that can

provide system scalability coupled with load balancing

capability in the presence of the explosive growth of WAP

service. The SWG architecture is shown in Fig. 1. It consists

of a WAP dispatcher and N homogeneous real gateways that

provide the same WAP services. The SWG uses one public

IP address to provide a single interface for WAP clients.

Each real gateway can employ any WAP gateway software

available on the market. This implies that our architecture is

transparent to not only WAP clients but also real gateways.

This is different from the Kannel gateway which is

transparent to WAP clients but requires to configure

specialized software on each real gateway.

For a WAP packet that represents a new WAP connection

request, the WAP dispatcher chooses a real gateway from the

cluster, and then forwards the packet to that gateway.

Subsequent client-to-gateway WAP packets for an

existing connection are forwarded to the same gateway.



Fig. 1. Scalable WAP gateway architecture.

T.-H. Lin et al. / Computer Communications 28 (2005) 1028–10371030
Outgoing gateway-to-client packets do not need to flow

through the WAP dispatcher but are directly sent to the WAP

client. This half-connection forwarding method [5] is

particularly useful for WAP services that are characterized

by small sizes of client requests that may result in large sizes

of responses. That is, the WAP client packets are typically

very short, e.g. requests to get a new content, and acknowl-

edgements for the data received. Gateway-to-client packets

are usually large, as they include encoded content data. The

WAP dispatcher handles only incoming packets, and real

gateways send the responses directly to the clients and are not

aware of the existence of the WAP dispatcher. In contrast, the

front-end distributor of Kannel gateway must handle and

modify both incoming and outgoing packets in user space,

which makes the distributor a bottleneck.

The WAP dispatcher, modified from the LinuxDirector

in LVS [6], is a WAP-aware software router. The

characteristic of WAP-aware is useful in achieving better

load balance performance. Fig. 2 shows the architecture of

our WAP dispatcher. The network interface includes the

network hardware and the device driver, which can transmit

and receive packets over a network. The IP input module

deals with the received IP packets, either delivering them to

the upper TCP/UDP module or to the Executor module if

they are WAP packets. The Executor module manipulates

the connection table and the destination table, which will be

described later, to forward WAP packets. The IP forward

module and IP output module play the same role to ask
Fig. 2. Architecture of th
the network interface to transmit the outgoing IP packet, but

the IP output module needs to create a new IP packet for

outgoing data first. The TCP/UDP module provides two

transport services: TCP and UDP. The socket interface is an

interface between the application layer and the transport

services, which can let an application interact with the

transport services. The Manager module manages the

destination table and implements the proposed load

balancing mechanism. The timer module checks whether

any entry in the connection table is expired.

When the WAP dispatcher receives an IP packet from the

network interface, the kernel calls the IP input module.

Modifications are made to this module to be able to handle

WAP packets. In this module, the IP packet is examined. If

it contains a UDP datagram and the UDP destination port is

a port listed in Table 1, we know that the IP packet is a WAP

packet and the kernel calls the Executor module to handle it.

If the IP packet is not a WAP packet, the kernel calls the

TCP/UDP module and the socket interface to handle this

packet. After the Executor decides the destination of the

WAP packet, the kernel calls the IP forward module to

forward the WAP packet to the selected real gateway.

The operation of the WAP dispatcher is based on the

following two data structures that hold fundamental infor-

mation for forwarding a WAP packet: destination table and

connection table. They are illustrated in Fig. 3. Each entry in

the destination table represents one real gateway in the cluster.

The fields of each destination entry in the destination table
e WAP dispatcher.



Table 1

WAP services

Port number Service/Protocol

9200 WAP connectionless session service

Protocol: WSP/Datagram

9201 WAP session service

Protocol: WSP/WTP/Datagram

9202 WAP secure connectionless session service

Protocol: WSP/WTLS/Datagram

9203 WAP secure session service

Protocol: WSP/WTP/WTLS/Datagram

T.-H. Lin et al. / Computer Communications 28 (2005) 1028–1037 1031
include the IP address and the port number of the real gateway,

a current weight, a connection count, and a request count. Each

destination entry is identified by the IP address and the port

number of a real gateway. The current weight is used by

the WRR to allocate new connections. The request count is the

total number of the requests handled by the real gateway. The

connection count is the number of active connections present in

the real gateway. Any real gateway whose current weight

equals to zero will not be allocated any new connections. The

WAP dispatcher maintains and manipulates the connection

table for forwarding a WAP packet to the selected gateway.

Each entry in this table is hashed by the client IP address and

the client port number, and also includes the following fields:

the real gateway IP address and the real gateway port number,

and a timeout to indicate when the connection entry will expire.
3.2. The Executor

The Executor is a kernel-level extension to the TCP/IP

stack. Fig. 4 shows the Executor procedure. The Executor,

which realizes the feature of WAP-awareness, inspects an

incoming WAP packet and deals with it either discarding or

forwarding it to a real gateway for a new or an existing

connection. If the target WAP service is not defined in the

WAP dispatcher, or if there is no real gateway currently

configured for this service, the packet is discarded. To

explain the operations of the Executor, we illustrate the

sequence of associated events when a WAP client accesses

the Internet through the WAP gateway, and then show how

the Executor deals with the packet exchange.
Fig. 3. Data structures of t
3.2.1. Connection establishment

In Table 1, the protocol in boldface letters of each

service is the dominating connection protocol of the service.

We define a dominating connection protocol of a WAP

service as a protocol that is responsible for connection

establishment and connection termination of the service.

When a WAP client wants to access the Internet, the client

first chooses one of the WAP services and opens a new

connection to the WAP gateway according to the dominat-

ing connection protocol of the selected service. If the

dominating connection protocol of the selected service is

the Datagram protocol, the WAP client sends a packet that

contains the S-Unit-MethodInvoke.req information to rep-

resent that the client wants to establish a new connection to

the WAP gateway. If the dominating connection protocol of

the selected service is the WTLS (WSP) protocol, the

connection request is a packet containing the SEC-

Create.req (S-Connect.req) information (see position (1)

in Figs. 5–7).

For each incoming packet, the connection table is

consulted to find the corresponding connection information.

If no information about this packet is found, the Executor

checks whether it represents a new connection request

according to the dominating connection protocol. If a new

connection request arrives, the Executor creates an entry in

the connection table and uses the WRR scheduling

algorithm to select a target real gateway for this new

connection request.
3.2.2. Subsequent requests

For each incoming packet, a hash value is computed

based on the source (client) address and the source port

number to find an existing connection information about the

packet in the connection table. If no entry is found and the

packet does not represent a connection request, the packet is

discarded. If the packet is for an existing connection, the

Executor forwards it to the selected gateway by invoking

the IP forward module. The responses, which produces by

the real gateway for the requests, does not flow through

the WAP dispatcher but are directly sent to the client (see

position (2) in Figs. 5–7).
he WAP dispatcher.



Fig. 4. Flowchart of the Executor procedure.

Fig. 5. Operation of the Executor in the case of Datagram protocol.

T.-H. Lin et al. / Computer Communications 28 (2005) 1028–10371032
3.2.3. Connection termination

If the Executor receives a disconnection request, accord-

ing to the dominating connection protocol, the corresponding

entry in the connection table will be deleted and the Executor

will not forward subsequent requests unless it is a new

connection request. If the dominating connection protocol of

the selected service is the Datagram protocol, the WAP client

sends a packet which contains the S-Unit-MethodInvoke.req

information to disconnect an existing connection. If the

dominating connection protocol of the selected service is the

WTLS (WSP) protocol, the disconnection request is a packet

containing SEC-Terminate.req (S-Disconnect.req) infor-

mation (see position (3) in Figs. 5–7).

If a client loses the connection with its real gateway, the

disconnection request may not arrive. This will result in a

stale entry in the connection table. To solve this problem,

each connection entry has a configurable timeout period.

When a request flows through the Executor, the Executor

assigns the maximum idle time period to the timeout field of

the request’s corresponding connection entry. The timer
module periodically checks and will delete expired entries

from the connection table.
3.3. The Manager

The Manager, a user-space management module, realizes

the load balancing algorithm for allocation of WAP service

connections among real gateways based on their load.

Table 2 shows the definition of various system parameters

used in the load balancing algorithm. The Manager uses two

mechanisms for load balancing: (1) estimating potential



Fig. 6. Operation of the Executor in the case of WTLS protocol.

Table 2

Definition of system parameters

Notation Definition

N Total number of real gateways

K Number of last measurements retained

T Length of the measurement period, in seconds

ci Current weight of real gateway i

p
j
i

Potential number of requests for real gateway i during

the jth measurement period

r
j
i

Number of requests for real gateway i during the jth

measurement period

wi Default weight of real gateway i

T.-H. Lin et al. / Computer Communications 28 (2005) 1028–1037 1033
number of requests, (2) asynchronous alarm, which are

described as follows.

3.3.1. Estimating potential number of requests

The Manager performs data collection for each real

gateway every T seconds. At the end of the jth measurement

period, the Manager computes the number of requests each

real gateway i handled, r
j
i , and then estimates the potential

number of requests to each real gateway i at next T seconds

by [8,10]

p
jC1
i Z

1PK
mZ1 aKm=2

� � XK

nZ1

aKn=2r
jKnC1

i

 !
;

where a is a constant factor and typically is an exponential

constant e. We use exponential normalization [8,10] to

estimate the potential number of requests, and the observed

value of each measurement is combined with a different

weight (higher weight for more recent observation) obtained

by a decay distribution. The current weight of each real

gateway i at next T seconds is computed as follows,

ci Z

wi if p
jC1
i Z 0

XN

mZ1

p jC1
m

 !
wi

p
jC1
i

otherwise:

8>><
>>:

ci is assigned to the current weight field of the destination

entry for real gateway i in the destination table and used by

the Executor to select a proper real gateway for new

connection requests.

3.3.2. Asynchronous alarm

Because estimating the potential number of requests

does not require tracking or monitoring the actual load

condition on the real gateways, a real gateway may become
Fig. 7. Operation of the Executor in the case of WSP protocol.
overloaded even if its estimated load is not high. We use the

concept of asynchronous alarm [11] to provide additional

information about the actual load. Each real gateway is

allowed to send asynchronous alarms, which signal the

beginning and end of an overloading state, to the WAP

dispatcher. Thus the WAP dispatcher can make decisions

with this feedback information.

We deploy two user processes on each real gateway. One

is a Web server process which returns a constant WML

content. The other is an advisor process [9] which is a fake

WAP client periodically sending requests to the real

gateway. To get local load information, the advisor process

connects to the real gateway, sends a request to retrieve the

constant WML content provided by the Web process,

disconnects the connection, and then measures the delay. If

the delay exceeds a threshold, the advisor process sends an

alarm indicating the beginning of an overloading state to the

Manager. When the Manager receives the alarm from the

real gateway, it then temporarily quiesces the real gateway

by assigning the current weight of the real gateway zero.

The overloaded gateway is taken off the pool of active real

gateways and no new connection is assigned to it. Later on if

the delay falls within the given threshold, the advisor

process will send an alarm to inform the Manager the end of

an overloading state. The Manager then puts the real

gateway back to the pool of active real gateways.
4. Evaluation and discussion
4.1. Experiment setup

We compare our scalable WAP gateway (SWG) with the

Kannel gateway [3] and the LVS [6] by observing how they

perform under heavy request load on a high-speed network.

To carry out this, we construct a hardware and software

testbed consisting of a Benclient, a Benserver, and a

clustered WAP gateway, as shown in Fig. 8. We developed

the Benclient and Benserver to simulate clients and origin

servers, respectively.

The Benclient, running on a Linux host, can simulate

thousands of concurrent WAP clients. The Benclient is

responsible for generating the client-side WAP traffic.



Fig. 8. Experiment environment.

T.-H. Lin et al. / Computer Communications 28 (2005) 1028–10371034
Each simulated WAP client transmits a series of WAP

requests to the WAP gateway to download WAP contents on

the origin servers. The Benserver, also running on a Linux

host, can simulate multiple concurrent origin servers. Each

simulated origin server generates HTTP responses accord-

ing to the WAP gateway requests. Each WAP gateway is

composed of a front-end distributor and a group of real

gateways, as shown in Table 3. For the Kannel gateway, the

front-end distributor is the bearer box and the real gateway

is the WAP box. The front-end distributors of our SWG and

the LVS are the WAP dispatcher and the LinuxDirector [6],

respectively. The real gateway of our SWG and that of the

LVS are modified from the Kannel gateway, named

Standalone Kannel gateway. The Standalone Kannel gate-

way removes the built-in load balancing capability from the

Kannel gateway and moves the WDP layer from the bearer

box to the WAP box. The Standalone Kannel gateway is

thus a monolithic gateway handling a client’s request

independently, like the Ericsson (Nokia) WAP gateway [2].

The experiment environment includes the following

machines connecting through 100 Mbps Fast Ethernet

Switch: one Pentium MMX 233 MHz serving as a front-end

distributor, six Pentium III 500 MHz machines serving

as real gateways, one Pentium III 500 MHz machine

serving as a Benclient, and one Duron 700 MHz machine

serving as a Benserver. The memory size of these

machines is 128 Mbytes and the operating system of these

machines is the Linux.

Table 4

Parameters of the simulation environment

Category Parameter Value

Request

generation

Pages per

session

Inverse Gaussian

(mZ7.52, lZ9.46)

User think time Pareto (aZ1.4, kZ1)

Embedded

objects per page

Pareto (aZ1.245, kZ1)

Origin Server Number of

servers

200
4.2. Simulation model and parameters

The parameters of the simulation environment are

summarized in Table 4 [13,18] The WAP client in Fig. 1

is modeled as follows. New WAP client session arrivals

follow the Poisson distribution [14,18]. A client session

arrival corresponds to the time when a client decides to use

the WAP service for retrieving WAP contents [12].
Table 3

Configuration of each WAP gateway

Gateway Front-end distributor Real gateway

Kannel Bearer box WAP box

LVS LinuxDirector Standalone Kannel

SWG WAP Dispatcher Standalone Kannel
The number of consecutive WAP pages which a WAP

client requests during a session follows the inverse Gaussian

distribution [13,14]. The client’s user think time (silent

time) between the retrieval of two successive WAP pages is

modelled as the Pareto distribution [14,15]. The number of

embedded objects per WAP page, including WMLScript

and WBMP files, is also modelled as Pareto distribution

[14]. In addition, the Origin Server in Fig. 1 is modelled as

follows. The number of the simulated origin servers is 200.

The delay of the origin servers follows the Exponential

distribution [14,16]. The Manager of the WAP dispatcher

(in Fig. 1) performs data collection for each real gateway

and estimates potential load every 2 s. There are 10

measurements retained for estimating the potential load of

each real gateway.

Note that the use of different combinations of

distribution will not affect our findings or simulation

results in Section 4.3. The reasons are as follows. There

are two distinct characteristics of our approach that

contribute to the superiority of our approach over the

Kannel and LVS. One characteristic is that the backend

servers directly send the outgoing gateway-to-client

packets to the clients. This can reduce the processing

time of the WAP dispatcher. The other characteristic is

that the estimation of the potential load of each real

gateway can help distribute a request to a proper backend
Delay Exponential (bZ1 s)

WAP Gateway Number of real

gateways

NZ6

WAP Measurement

period

2 s

Dispatcher Number of

measurements

retained

10



Fig. 9. The effect of client arrival rate on LBM using WAP connectionless

session service.

Fig. 12. The effect of client arrival rate on LBM using WAP secure session

service.

T.-H. Lin et al. / Computer Communications 28 (2005) 1028–1037 1035
server with the least load. Such estimation needs very

low computation overhead.

4.3. Experimental results

To analyze performance of our load balancing

mechanism, we use a metric, Load Balance Metric
Fig. 10. The effect of client arrival rate on LBM using WAP session service.

Fig. 11. The effect of client arrival rate on LBM using WAP secure

connectionless session service.
(LBM) [17]. The LBM is the weighted average value of

the peak-to-mean ratio that is defined as peak_loadj=Pn
iZ1 loadi;j where peak_loadj is the peak load at the jth

sampling period and loadi,j is the total number

of requests received by real gateway i between the

(jK1)th and jth sampling periods. The definition of the
Fig. 13. The effect of client arrival rate on throughput using WAP

connectionless session service.

Fig. 14. The effect of client arrival rate on throughput using WAP session

service.



Fig. 16. The effect of client arrival rate on throughput using WAP secure

session service.

Fig. 15. The effect of client arrival rate on throughput using WAP secure

connectionless session service.

Fig. 19. The effect of client arrival rate on content request delay using WAP

secure connectionless session service.

Fig. 18. The effect of client arrival rate on content request delay using WAP

session service.

T.-H. Lin et al. / Computer Communications 28 (2005) 1028–10371036
LBM for a cluster of N real gateways and M sampling

periods is:

LBM Z

PM
jZ1

peak_loadjPN

iZ1
loadi;j

� �
=N
�

PN

iZ1
loadi;j

N

� �
PM

jZ1

PN
iZ1 loadi;j=N

:

Fig. 17. The effect of client arrival rate on content request delay using WAP

connectionless session service.
The value of the LBM may range from 1 to at most N,

the number of real gateways. Small values of the LBM

indicate better load balancing performance (smaller peak-

to-mean load ratios) than large values [17].

As shown in Figs. 9–12, our load balancing mechanism

(SWG) outperforms the other two methods in terms of LBM,
Fig. 20. The effect of client arrival rate on content request delay using WAP

secure session service.



T.-H. Lin et al. / Computer Communications 28 (2005) 1028–1037 1037
especially in the WAP connectionless session service. This is

due to that each request from the same WAP clients can be

forwarded by the WAP dispatcher to different real gateways. In

the Kannel gateway and the LVS, once the front-end distributor

decides the served real gateway for a WAP client, the requests

from the WAP client will be handled by the same real gateway

until the WAP client closes the session. It is hard for them to

reassign the requests from the same WAP client to a different

real gateway that has light load. As a result, the SWG can

provide better load balancing performance compared to the

LVS and the Kannel gateways. In addition, the experimental

results in Figs. 9–12 have also shown that the use of exponential

normalization can estimate potential requests from clients with

high accuracy. These results justify the use of exponential

normalization. In addition, the exponential normalization is

easy to implement and needs low computation time, which can

prevent the WAP dispatcher from becoming a bottleneck.

Figs. 13–16 show that the throughput achieved with our

SWG outperforms the throughputs of the other two gate-

ways. Figs. 17–20 show that the content request delay of our

SWG is also shorter than the delays of the other two

gateways. Since our SWG has a smaller LBM compared to

the other two gateways, it results in our SWG having higher

throughput and shorter delay.
5. Conclusions and future work

5.1. Concluding remarks

Clustering is a suitable technique for constructing a

scalable, reliable, and high-performance WAP gateway. We

have presented a scalable WAP gateway (SWG) which is a

clustered gateway. The SWG integrates a WAP dispatcher

which distributes mobile clients’ requests to real gateways

in kernel space and does not handle outgoing gateway-to-

client responses. The WAP dispatcher realizes our efficient

load balancing strategy. In our WAP-aware strategy, we

estimate the potential load of real gateways in order to

allocate new connection requests among the real gateways

and apply an asynchronous alarm approach to provide

feedback information of the actual load of real gateways.

Experimental results have shown that our SWG has better

load balancing performance, throughput, and delay com-

pared to the LVS and the Kannel gateway.

5.2. Future work

Our efficient load balancing strategy can be integrated

with a dynamic timeout assignment scheme which allows the

WAP dispatcher to disconnect idle connections actively

when the potential load of the corresponding real gateways is
high. This approach can release real gateway resources and

prevent potential imbalance. Although the real gateways

of our SWG are fault tolerant, the fault tolerance of the WAP

dispatcher deserves to further study.
Acknowledgements

This work was supported by the MOE program of

Excellence under Grant 89-E-FA04-1-4 and NCTU EECS-

MediaTek Research Centre under Grant Q583.
References

[1] WAP Forum, http://www.wapforum.org.

[2] Ericsson WAP Gateway, http://www.ericsson.com.

[3] Open Source Kannel Project, http://www.kannel.org.

[4] Wireless Session Protocol Specification, http://www.wapforum.org/

what/technical.htm.

[5] G. Goldszmidt, G. Hunt, NetDispatcher: a TCP Connection Router,

IBM Research Technical Report, RC 20853, July 1997.

[6] Linux Virtual Server Project, http://www.linuxvirtualserver.org.

[7] Linux Online, http://www.linux.org.

[8] V. Cardellini, M. Colajanni, P.S. Yu, Efficient State Estimators for

Load Control Policies in Scalable Web Server Clusters, Proceedings

of COMPSAC ’98, 1998 pp. 449–455.

[9] K. Shen, T. Yang, L. Chu, Cluster Load Balancing for Fine-

Grain Network Services, Proceedings of IPDPS, April, 2002

pp. 493–500.

[10] B.A. Julstrom, D.H. Robinson, Simulating Exponential Normalization

with Weighted k-Tournaments, Proceedings of 2000 Congress on

Evolutionary Computation, vol. 1, 2000 pp. 227–231.

[11] V. Cardellini, M. Colajanni, P.S. Yu, Redirection Algorithms for Load

Sharing in Distributed Web-server Systems, Proceedings of 19th

IEEE International Conference on Distributed Computing Systems,

June, 1999, pp. 528–535.

[12] S. Floyd, V. Paxson, Difficulties in Simulating the Internet,

IEEE/ACM Transactions on Networking 9 (2001) 392–403.

[13] V. Cardellini, P.S. Yu, Collaborative Proxy System for Distributed

Web Content Transcoding, Proceedings of 9th International Con-

ference on Information Knowledge Management CIKM 2000,

November, 2000, pp. 520–527.

[14] J.E. Pitkow, Summary of WWW Characterizations, http://decweb.

ethz.ch/WWW7/1877/com1877.htm.

[15] P. Barford, M.E. Crovella, A Performance Evaluation of HyperText

Transfer Protocols, Proceedings of ACM Sigmetrics 1999, May, 1999,

pp. 188–197.

[16] L. Breslau, P. Cao, S. Shenker, Web Caching and Zipf-like

Distributions: Evidence and Implications, Proceedings of IEEE

INFOCOM, vol. 1, 1999, pp. 126–134.

[17] R.B. Bunt, D.L. Eager, G.M. Oster, C.L. Williamson, Achieving

Load Balance and Effective Caching in Clustered Web Servers,

Proceedings of 4th International Web Caching Workshop, April,

1999.

[18] J.J. Huang, M.S. Chen, H.P. Hung, A QoS-Aware Transcoding Proxy

Using On-demand Data Broadcasting, Proceedings of IEEE INFO-

COM, March, 2004.

http://www.wapforum.org
http://www.ericsson.com
http://www.kannel.org
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.linuxvirtualserver.org
http://www.linux.org
http://decweb.ethz.ch/WWW7/1877/com1877.htm
http://decweb.ethz.ch/WWW7/1877/com1877.htm

	An efficient load balancing strategy for scalable WAP gateways
	Introduction
	Existing methods
	Linux virtual server
	Kannel gateway

	Design approach
	Overview of the proposed scalable WAP gateway
	The Executor
	The Manager

	Evaluation and discussion
	Experiment setup
	Simulation model and parameters
	Experimental results

	Conclusions and future work
	Concluding remarks
	Future work

	Acknowledgements
	References


