Criteria of backscattering in chiral one-way photonic crystals

Pi-Ju Cheng? and Shu-Wei Chang®"*

®Research Center for Applied Sciences, Academia Sinica, 11529, Taipei, Taiwan.
®Department of Photonics, National Chiao-Tung University, 30010, Hsinchu, Taiwan.

*swchang@sinica.edu.tw

ABSTRACT

Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner,
several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a
strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they
are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering
occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic
crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first—order Born
approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the
expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures.
Numerical examinations using the finite-element method were also performed and the results agree well with the
theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering
critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier
components of scatter cross sections have an order | of 2. Chiral scatters without these Fourier components would not
efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most
significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also
reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to
minimize the backscattering.
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1. INTRODUCTION

Reducing unwanted reflections and backscattering during wave transmissions and propagations is pivotal in photonic
integrated systems. It lowers potential channel noises and interferences and therefore necessitates the photonic device
such as isolators®. Such devices only transmit the optical power unidirectionally but block the energy flow in the reverse
direction. To implement this functionality in a robust manner, various nonreciprocal setups are proposed. In electronics,
the one-way phenomenon is present in the edge states of quantum Hall effect due to a high magnetic field that breaks the
time-reversal symmetry>*. Analogously, in photonics, unidirectional edge modes can be also achieved using photonic
crystals (PhCs) with static magneto-optical effects®’ or dynamic phase modulations®°. Despite various nonreciprocal
schemes targeting at one-way behaviors of waves, their compatibilities with photonic systems nowadays still require
some key progress. Since most of the conventional linear optical devices are reciprocal, enormous efforts have to be
devoted to the integration of nonreciprocal (magnetic) materials or complicated time-variant controls to photonic
structures. These inconveniences motivate the development of reciprocal schemes which isolate energy flows in opposite
directions. For example, asymmetric two-way transmissions may be achieved through designed gratings***. In wave-
guiding structures, reciprocal modes that are backscattering-immune to a variety of scatters are preferred so that energy
flows are not easily reversed. This, however, does not mean only unidirectional modes are supported. In fact, in
reciprocal environments, counter-propagating modes always exist simultaneously, namely, a reciprocal photonic system
is bidirectional™.

Two elements are essential to the immunity of modes (states) to backscattering in reciprocal (time-reversible)
systems. If (1) the counter-propagating modes (states) are firmly associated with some orthogonal degrees of freedom
(DOFs), and (2) elastic scatters do not mix these DOFs, the backscattering is suppressed. Such characteristics can be
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Figure 1. The schematic diagram of the one-way chiral PhC covered by PECs. A chiral scatter is inserted into the wave-guiding
structure. The top inset shows a generic cross section inside the PhC.

found in the edge modes (states) of photonic (electronic) topological insulators*>’. In fact, these prerequisites on one-
way propagations are also present in circularly-polarized (CP) guided modes of one-dimensional (1D) chiral PhCs or
waveguides (WGs)*®%. In this case, the key DOFs are the two circular polarizations rotating in opposite orientations.
Absence of backscattering from simple scatters has also been demonstrated experimentally in 1D chiral PhCs®.

While the aforementioned condition (2) may hold for a broad range of scatters, there are always exceptions. The
breakdown of this condition indicates the onset of backscattering. This point motivates us to examine the robustness of
reciprocal chiral guided modes against the backscattering. Here, we look into the dependencies of backscattering on
geometries of different scatters in a 1D chiral PhC covered by perfect electric conductors (PECs) at microwave
frequencies. We use the first-order Born approximation and coupled-mode theory to develop the criteria of prominent
scattering in the chiral structure. The outcomes indicate that the amount of backscattering closely depends on the cross-
sectional symmetry of scatters. In addition, even if the scatter is placed at positions corresponding to the most intense
parts of mode profiles, the backscattering there is not necessarily the most prominent. The behavior is contrary to that of
typical backscattering in typical WGs. Our studies also point out what types of scatters or defects should be avoided in
one-way applications of chiral structures so that the backscattering could be minimized.

2. ONE-WAY CHIRAL PHOTONIC CRYSTAL

The schematic diagram of the 1D chiral PhC in this study is shown in Fig. 1. This chiral structure is generalized from a
circular PEC WG with a radius R = 1 cm, and its center is coincident with the z axis. The interior of the PhC is filled
with air and has a relative permittivity of unity. A generic cross section of the PhC is shown in the top inset of Fig. 1. A
PEC bump in the form of a truncated sector is present at the circular rim. The chiral PhC is a right-handed (RH) structure
and has a pitch P. Since its cross section does not have any rotational symmetry, the pitch P is also the period of this PhC.

In absence of the bump, eigenmodes of the circular PEC WG are analytically solvable. They can be divided into
transverse-electric (TE) modes TE,,, and transverse-magnetic (TM) modes TM,,, where m and n are the azimuthal and
radial mode numbers, respectively. Hereafter, we adopt the representation exp(img)/~/2~ for azimuthal parts of various
cylindrical field components. The fundamental modes are two degenerate TE modes TE: ;. These two modes are of
interest since their polarization patterns are close to circular polarizations and can properly grasp features of the chirality.
With optic conventions for waves propagating toward the direction of positive z axis, the TE.;; and TE.;; modes are
similar to the left-handed circularly-polarized (LHCP) and right-handed circularly-polarized (RHCP) waves with
polarizations & =(x+iy)/2 and & =&, respectively. On the other hand, upon reversing the propagation toward the

direction of negative z axis, the LHCP and RHCP waves change their polarizations into € and €, , and they are

therefore associated with TE.;; and TE.; ; modes, respectively.
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Figure 2. (a) Bandstructures of the 1D chiral PhC. The dispersion curves of the unperturbed TE modes are split into those of the
LHCP-like and RHCP-like modes. The RHCP-like mode has a chiral band gap at the BZ center. (b) The incidence of a forward-
propagating TE mode from the circular WG into chiral PhC. The cross-sectional distributions of square field magnitudes in the WG
and PhC regions are shown at the top. Except for areas near the bump, the two field patterns appear similar.

The pitch P is set to 6 cm so that the chiral bandgap responsible for one-way propagations is opened between the
cutoff frequencies of TE:; ; and TMy; modes. Figure 2(a) shows bandstructures of the chiral PhC around the frequency
range of interest in the first Brillouin zone (BZ) for wave number k,~0. The calculations are carried out with the
eigenfrequency solver of commercial software COMSOL?. The dispersion curves of TE: ; modes are also shown in the
scheme of reduced zones for comparisons. The chiral bump breaks the degeneracy of TE:; ; modes and turn them into the
LHCP-like and RHCP-like modes. While the dispersion curve of LHCP-like modes is only slightly shifted in frequencies
as compared to that of TE:;; modes, an additional chiral bandgap from 9.90 to 10.42 GHz is developed on the
counterpart of RHCP-like modes at the BZ center due to the RH chiral structure. As an examination of the similarity
between the TE:;; and forward-propagating LHCP-like modes, we monitor the incidence of the TE:; ; mode from the
circular WG to the chiral PhC at a frequency of 10.16 GHz within the chiral bandgap. The cross-sectional view of the
field pattern near the junction of the WG and PhC is illustrated in Fig. 2(b). Only minor reflections and field variations
due to the discontinuity of the wave-guiding structure are observed. As shown at the top of Fig. 2(b), the cross-sectional
distributions of field strengths in the WG and PhC regions are similar except for areas near the bump. This test confirms
the resemblance between the TE.;; mode of the circular WG and forward-propagating LHCP-like mode of the chiral
PhC. Since no significant reflections are observed here, this incidence scheme will be utilized later to excite the forward-
propagating LHCP-like mode.

In the frequency range of this chiral bandgap, only LHCP-like modes can propagate while RHCP-like ones behave
like evanescent waves. Since the forward- and backward-propagating LHCP-like modes have distinct polarizations
patterns similar to €, and € , respectively, the two waves would simply pass by those scatters which cannot mix

polarizations and hence are not effectively reflected. We will focus on chiral scatters with a pitch Ps and cross sections of
different rotational symmetries. As will be shown later, chiral scatters reflect the propagating modes effectively even
though other types of scatters could also result in backscattering.
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3. CRITERIA FOR PROMINENT BACKSCATTERING

In this section, we briefly describe the concepts in constructing the analytical model. In short, we use a perturbative
scheme to investigate the backscattering in the chiral PhC. Details about the theoretical model of backscattering can be
found in Ref. [22].

Instead of solving the full field inside the chiral PhC in the presence of scatters, the first-order Born approximation
is utilized to turn this problem into an effective radiation counterpart. An effective source is present as a result of the
coupling between the incident field and permittivity variation A& «(r,@) due to the scatter. The generalized reciprocity
theorem is utilized to formulate the coupled mode theory for the scattered fields in the chiral PhC. The frequency range
of the chiral bandgap is designed such that only the fundamental modes of the circular PEC WG are required to properly
expand the scattered field. At this frequency in the middle of chiral bandgap, only the LHCP-like modes can propagate.
Coupled mode formulae could be further simplified after some physical approximations. The reflection coefficient which
is the ratio between the back-propagating amplitude and incident amplitude is derived to quantify the amount of
backscattering.

The reflection coefficient r(w) is affected by the interplay between Ag o(r, @) and other two factors. Its functional
dependence can be expressed as

2
r(@) e [, dr'exp[2i(¢ +az)]-Ac, (1, w)ﬂ%f)} —[J;(klp')JZ} , (1)
t

where q=2n/P; k~1.84/R; J, is Bessel function of the first-kind; and € is the scatter region. The first factor is the phase
part exp[2i(¢'+qz)], and the second one is related to the transverse fundamental TE mode profile. For the former, the
cancelation of the phase part generally enhances the volume integral in Eq. (1) even though the effect is relatively minor
for small scatters. In other words, the prominent backscattering would occur if A& «(r,®) can cancel the phase factor. To
result in the strong backscattering, we expect an effective scatter to be a LH chiral structure with (1) a pitch P close to P
and (2) a significant azimuthal Fourier component of A& (r,@) at an order I=—2. Let us further write the permittivity
variation Ag ¢(r, @) of such a LH chiral scatter as

Ag, (r'w)=U(r") Z Agr(l's) (p', w) "%, )
|=—
where U denotes an indicator function which is unity in the scatter region Qg but zero elsewhere; and gs=2x/Ps. From Eq.
(2), if Ags(r,m) has the f-fold rotational symmetry along the z-axis, only the components with their order | that are
multiples of f would exist. If f is larger than 2, the component with I=—2 vanishes. Therefore, the prominent
backscattering is most likely to occurs for proper LH chiral scatters with two-fold rotationally symmetric or rotationally
asymmetric cross sections (f=1, 2).

For the effect of the second factor, we may consider a small scatter Qs at radial position ps with a narrow range Ap
in the radial direction. In this case, the reflection coefficient has an approximate radial dependency characterized by a
function g(p,) =[J,(k.0.)/ k0> —[J,' (kp.)], that is, we may rewrite Eq. (1) as

A+Apl2 dp’ Agr,s (I", a))

r(@) ~ p. A0,9(p,)] [], 3)

A-Apl2 A%

where the radial integral is an average of A& «(r', @) around p'=p,; and [...] represents details other than the radial integral.
The behavior of g(ps) indicates that the prominent backscattering in the chiral PhC takes place as the scatter is near the
rim of the structure, at which the modal intensity is low.
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4. NUMERICAL RESULTS

With a LHCP-like incident mode of the circular PEC WG at 10.16 GHz, we solve the scattered field inside the chiral
PhC using the three-dimensional finite-element method implemented in COMSOL. Both ends of the computation
domain are set to perfectly matched layers to make the scattered field outgoing. The power reflectivity |r(o)[® is then
obtained from the incident and total fields. Unless otherwise mentioned, there are 32 pitches of chiral structures at each
side of scatters. We first consider fictitious chiral scatters with f-fold (f =2 to 4) rotationally symmetric cross sections,
which are composed of 2f identical truncated sectors with permittivity variations alternating in signs [A& s(r, @) =tA& 4]
For conveniences, we will simply call the scatters as f-fold LH/RH scatters. The radii Rs of these scatters will be varied,
but for fair comparisons, their radial widths are adjusted accordingly so that their cross-sectional areas remain unaltered.

The cross-sectional geometry of the 2-fold LH scatters as the radius R, increases is shown in Fig. 3(a) (arrow
indicates the handedness). The cross-sectional areas are fixed at 0.3nR2. The side view of the scatter is shown in Fig. 3(b).
The scatter pitches P, and lengths of the scatters are both set to P. The reflectivities versus R at different permittivity
variations Ags = 0.5, 0.6, and 0.7 are shown in Fig. 4. Although these variations are comparable to the background
permittivity set as unity, the trends of reflectivities versus Rs qualitatively follow the function |g(ps), indicating that the
first-order Born approximation and coupled-mode theory work well in these cases. As R~0.27R, the scatter cross
sections are filled circles and have the best overlap with the most intense portion of the LHCP-like mode. However, the
corresponding power reflectivities are minimal. As R, becomes large, the reflectivities significantly increase. This
characteristic indicates that to avoid the prominent backscattering in this chiral PhC, the fluctuations and defects near the
rim of the wave-guiding structure should be reduced. On the other hand, the 2-fold RH scatters only backscatter weakly,
as shown in Fig. 4(b). They exhibit small power reflectivities that do not seem to have a consistent trend as R increases,
partly due to the compromise between computational accuracies and dense meshes used in calculations. However, it is
certain that the smallness of reflectivities originates from the inability of 2-fold RH scatters to compensate the phase
factor in Eq. (1). Similar to the 2-fold RH scatter, the 3-fold and 4-fold LH scatters do not backscatter significantly
because they only have the azimuthal Fourier components at | > 3 and hence cannot compensate the phase factor. The
power reflectivities of these two scatters as a function Ry at different Ag; s are shown in Fig. 4(c) and (d), respectively.

In Fig. 5(a) and (b), we show the field distributions |E(r)[* around the 2-fold LH and RH scatters with R, = 0.7R and
Ag&s = 0.7 on the y-z plane. The RH scatter seems to backscatter little, as can be told from seemingly unaltered
magnitudes of the propagating waves at its two sides. The field distributions near the 3-fold and 4-fold LH scatters with
Rs = 0.3R and A& = 0.7 are depicted in Fig.5(c) and (d). There are significant local fields confined in the two scatters.
However, the local fields mostly correspond to the evanescent modes in the chiral PhC. One can tell that the magnitudes
of the propagating waves in the front and backsides of the two scatters remain nearly identical.

At last, we model the numerical reflection coefficient of a small scatter as a function of its position ps from the
center of the chiral PhC using the functional form of g(ps). As shown in the inset of Fig. 6, we consider a small copper
block with a size of 0.3R x 0.5R x 0.5R and move it along the direction perpendicular to the line joining the centers of
the circular WG and bump. Since the true LHCP-like propagating modes in the chiral PhC slightly deviate from the
guiding modes of the circular PEC WG, and the copper block is not infinitesimally small, a finite residual reflection is
expected at p; =0 even though the complete transparency is suggested by g(ps)=0. Therefore, we approximate the realistic
reflection coefficient r(w) of the copper scatter in the form of r(w)~ag(ps)+b where a is a proportional factor; and b
accounts for the residual reflection. The numerical data are then fitted with |r(w)[? based on this relation. As shown in Fig.
6, the fitting curve agrees well with the numerical data. The result also indicates that an arbitrary scatter, even if it is not
chiral, also backscatters more efficiently as it is farther away from the center of the chiral PhC.
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Figure 3. (a) Cross sections of 2-fold scatters as the radius R; is varied. The cross-sectional areas are fixed at 0.37R2 (b) The side
view of a 2-fold left-handed scatter. The red arrow indicates handedness. P denotes the helical pitch.
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Figure 4. The reflectivities of the (a) 2-fold LH scatters, (b) 2-fold RH scatters, (c) 3-fold LH scatters and (d) 4-fold LH scatters as a

function of R at various A& s. Prominent backscattering takes place when the 2-fold LH scatters are present. Their RH counterparts
show the much smaller reflectivities. Both 3-fold and 4-fold LH scatters do not backscatter significantly.
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Figure 5. The field distributions on the y-z plane in the presence of (a) 2-fold LH scatters and (b) 2-fold RH scatters with Rs=0.7R at
A& ¢ =0.7, and the counterparts corresponding to (c) 3-fold LH scatters and (d) 4-fold LH scatters with R=0.3R at Ag¢ =0.7. The
incident field is hardly backscattered by the RH scatter. Except for the strong local fields around the scatters, the magnitudes of the
propagating waves change little in these two cases.
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Figure 6. The reflectivity of a small copper block with a size of 0.3R x 0.5R x 0.5R versus the position ps. The fitting curve shows a
decent agreement with the numerical data.

5. CONCLUSIONS

While the propagation modes in a strongly-guided chiral one-way photonic crystal are immune to backscattering from
many types of obstacles, they are, nevertheless, not really scattering-proof. We use the perturbative method to obtain the
criteria for the prominent backscattering in such chiral structures. A few chiral/achiral scatters are numerically studied,
and the trends of scattering agree well with our analytical approach. In absence of nonreciprocity, the scattered amplitude
depends on the azimuthal Fourier components of scatter cross sections at order I=+2. Chiral scatters without these
Fourier components would not reflect the chiral propagating modes efficiently. In addition, for these chiral photonic
modes, the disturbance at the most intense point on the modal profile does not necessarily lead to the most efficient
backscattering. These characteristics reveal what types of defects or scatters should be avoided in one-way applications
of chiral structures in order to minimize the backscattering.
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