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ABSTRACT

The spatial discontinuity of physical parameters at an abrupt interface may increase numerical errors when solv-
ing partial differential equations. Rather than generating boundary-adapted meshes for objects with complicated
geometry in the finite-element method, the subpixel smoothing (SPS) replaces discontinuous parameters inside
square elements that are bisected by interfaces in, for example, the finite-difference (FD) method, with homoge-
neous counterparts and matches physical boundary conditions therein. In this work, we apply the idea of SPS
to the eight-band effective-mass Luttinger-Kohn (LK) and Burt-Foreman (BF) Hamiltonians of semiconductor
nanostructures. Two smoothing approaches are proposed. One stems from eliminations of the first-order pertur-
bation in energy, and the other is an application of the Hellmann-Feynman (HF) theorem. We employ the FD
method to numerically solve the eigenvalue problem corresponding to the multiband Schrodinger’s equation for
circular quantum wires (QWRs). The eigenenergies and envelope (wave) functions for valence and conduction
states in III-V circular QWRs are examined. We find that while the procedure of perturbation theory seems
to have the better accuracy than that of HF theorem, the errors of both schemes are considerably lower than
that without smoothing or with direct but unjustified averages of parameters. On the other hand, even in the
presence of SPS, the numerical results for the LK Hamiltonian of nanostructures could still contain nonphysical
spurious solutions with extremely localized states near heterostructure interfaces. The proper operator ordering
embedded in the BF Hamiltonian mitigates this problem. The proposed approaches may improve numerical
accuracies and reduce computational cost for the modeling of nanostructures in optoelectronic devices.

Keywords: Subpixel smoothing, multiband k ·p method, first-order perturbation, Hellmann-Feynman theorem,
quantum wires

1. INTRODUCTION

The discontinuity of physical parameters at an abrupt interface is a known source of errors in numerical solutions
to partial differential equations. For the finite-difference (FD) method, with spatially smooth parameters and
proper approximations of the first- and second-order derivatives, the numerical errors scale as O(N−2), where N
is the number of grid points along one dimension. However, the discontinuity often increases the errors over this
level and enhances the computational cost to reach a given level of accuracies. Hence, the treatments for spatial
discontinuities may be necessary when numerically solving partial differential equations.

The treatment of the spatial discontinuity is often implemented prior to computations, for example, gen-
erations of boundary-adapted meshes in the finite-element method. Rather than adapting computation grids
to the complex geometry of objects, the subpixel smoothing (SPS) replaces discontinuous parameters inside
an interface-bisected element with locally homogeneous counterparts, which eliminate errors perturbatively but
respect the physical BCs there. The further usage of simple Cartesian grids in the FD method eases many
calculations afterwards. In this way, the computational accuracy may be improved without significantly al-
tering the intuitive implementation of the FD method. In fact, these concepts have been utilized to compute
Maxwell’s equations in electromagnetism for reductions of the errors caused by the discontinuities to the second
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order in isotropic1,2 and anisotropic media.3,4 The SPS algorithm is also built into software package MEEP for
computations in optics and electromagnetism.5

In this paper, we generalize the concept of SPS to the calculations of envelope (wave) functions in semiconduc-
tor nanostructures to enhance the accuracy of FD computations. The partial differential equations originate from
the multiband Hamiltonian operators of semiconductors under the effective-mass approximation (k · p method).
For example, the eight-band Luttinger-Kohn (LK) Hamiltonian6 corrected by Bir-Pikus (BP) strain terms7 gives
a useful technique for the modeling of semiconductor bulks and nanostructures.8,9 The numerical results of this
Hamiltonian, however, occasionally contain two types of nonphysical spurious solutions:10 (1) wing-band solu-
tions which exhibit highly oscillatory patterns and energies located in the bandgap due to inadequate material
parameters,11–13 and (2) extremely localized solutions near interfaces of heterostructure.14,15 The proper opera-
tor ordering provided by Burt and Foreman (BF)16–18 could remove this problem14,15 and has been implemented
in the four- and six-band valence Hamiltonians.19,20 We note, on the other hand, that the SPS schemes only
improve the numerical accuracy but cannot eliminate the spurious solutions.

The proposed SPS schemes for the effective-mass Hamiltonians are based on the continuity of envelop func-
tions and effective probability flux densities normal to interfaces. The idea is to express the deviation in energy
(or its variations with some external variables) with the substitution of unknown smoothed parameters in terms
of continuous fields and associated transformed parameters. The discontinuity is included in those transformed
parameters, and one can average them while demanding the deviation to vanish. The smoothed parameters
are then calculated in the condition of vanishing deviations. If the target is the energy, the SPS procedure is
similar to eliminations of the first-order energy change in the perturbation theory (PT). Alternatively, if energy
variations with external variables are considered, the scheme is given in the form of Hellmann-Feynman (HF)
theorem.1,3 We will use the FD method to demonstrate the SPS schemes for circular quantum wires (QWRs).
The numerical errors of two SPS schemes are lower than that without smoothing or with direct averages of
original parameters.

The remaining context of the paper is organized below. In Section 2, we introduce the general form of multi-
band Hamiltonian operator of nanostructures for eigenenergy and envelop-function computations. In Section 3,
we first describe the concepts of SPS using the grid points for FD calculations. Two SPS procedures based
on the elimination of energy perturbations and HF theorem are then expressed. In Section 4, based on the
eight-band BF Hamiltonian, we calculate relative errors in eigenenergies of circular QWRs with two developed
SPS schemes. These errors will be compared to those without smoothing and with direct averages (DA) of
untransformed parameters. A conclusion is presented in Section 5, and details of the formulation will be given
in the appendix.

2. MULTIBAND EFFECTIVE-MASS HAMILTONIAN

The multiband effective-mass Hamiltonian based on k · p method is a useful technique for bandstructure com-
putations of bulk semiconductors near the Brillouin zone (BZ) center. In the eight-band spaces, two conduction
(C) and six valence bands are included. The six valence bands contain two heavy-hole (HH), two light-hole (LH),
and two spin-orbit split-off (SO) bands. Because of Loẅdin’s perturbations from remote ones other than these
eight bands, the bulk Hamiltonian includes second-order corrections of the real wave vector k.8 In Appendix A,
we present matrix elements Hjj′ [k] (j, j

′ = 1−8 are band indices) of the eight-band BF Hamiltonian of semicon-
ductor nanostructures. The eight-band LK counterpart could be treated as a special case of the BF Hamiltonian
and is only briefly discussed there. The band labels and Bloch parts are listed in Table 3 in the same appendix.

The matrix element Hjj′ [k] of the multiband effective Hamiltonian of bulk semiconductors could be presented
in Cartesian components (kx, ky, kz) of wave vector k as21 (x, y, z axes are aligned with main crystal axes)

Hjj′ [k] =
∑
α,β

kαD
αβ
jj′kβ+

1

2

∑
α

(
kαT

α
jj′+T

‡α
jj′kα

)
+Wjj′ , Wjj′ =Vjδjj′+H

(BP)
jj′ , (1)

where superscripts α, β indicate indices x, y, z; Dαβ
jj′ and T

α
jj′ (and T

‡α
jj′) are material parameters associated with

the quadratic and linear terms of k, respectively; symbol ‡ denotes a hermitian conjugate (h.c.) to be explained
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below; Wjj′ is a matrix which is hermitian in indices j, j′; Vj indicates the unstrained energy of band j at the BZ

center; δjj′ is the Kronecker delta; and H
(BP)
jj′ is a hermitian matrix which includes the BP strain terms.8,9 In

the eight-band scheme, parameter Dαβ
jj′ contain the modified inverse effective mass γc in conduction bands and

three modified Luttinger parameters γ1, γ2, and γ3 in valence bands, and Tα
jj′ and T

‡α
jj′ are proportional to the

interband momentum matrix element Pcv.

There are two sets of indices j, j′ ∈ {1−8} and α, β ∈ {x, y, z} in parameters Dαβ
jj′ and T

α
jj′ (T

‡α
jj′). We denote

the symbol “T” for the transposition in indices α, β:

DTαβ
jj′ = [DT

jj′ ]
αβ ≡ Dβα

jj′ = [Djj′ ]
βα, TTα

jj′ = [TT
jj′ ]

1,α ≡ Tα
jj′ = [Tjj′ ]

α,1, (2)

where Djj′ and DT
jj′ are space tensors including matrix elements Dαβ

jj′ ; Tjj′ and TT
jj′ indicate column and

row vectors composed of Tα
jj′ , respectively; and 1 is a column/row index of unity size. In order to avoid the

confusion with notation † which is conventionally reserved for the conjunction of transposition “T” and complex
conjugation “∗”, we adopt an another symbol ‡ for the hermitian conjugation related to band indices j, j′:

D‡αβ
jj′ ≡ Dαβ∗

j′j , T ‡α
jj′ ≡ Tα∗

j′j . (3)

For nanostructures, the Hamiltonian matrix element Hjj′ [k] contains the dependency on position r, and kα
is replaced by −i∂/∂α≡−i∂α. From Ref. 21, we have the condition

D‡αβ
jj′ ≡ Dαβ∗

j′j = Dβα
jj′ (not Dαβ

jj′ ), (4)

indicating that Dαβ
jj′ need not be hermitian in j, j′. Rewriting Eq. (4) as D

(T‡)αβ
jj′ = Dαβ

jj′ shows that Dαβ
jj′ is

hermitian in joint indices (α, j) and (β, j′). The BF and LK Hamiltonian operators both satisfy Eq. (4). The

LK Hamiltonian has another hermiticity D‡αβ
jj′ =Dαβ

jj′ in indices j, j′ and symmetry DTαβ
jj′ =Dαβ

jj′ in indices α, β.
However, only the matrix condition in Eq. (4) has to be preserved in SPS schemes. We note that the simultaneous

presences of Tα
jj′ and T

‡α
jj′ which are h.c. to each other in Eq. (1) hold the hermiticity of the Hamiltonian operator.

For dimensionless computation, we define the normalized parameters with a length scale Lnor and normaliza-
tion energy Enor=~2/(2m0L

2
nor), where ~ is Planck’s constant divided by 2π, and m0 is the free-electron mass,

as below:

qα=kαLnor, Γαβ
jj′ =

Dαβ
jj′

L2
norEnor

, Λα
jj′ =

Tα
jj′

2LnorEnor
, W̃jj′ =

Wjj′

Enor
, Ṽj=

Vj
Enor

, H̃
(BP)
jj′ =

H
(BP)
jj′

Enor
. (5)

The unit-free Hamiltonian matrix element H̃jj′ [q]≡Hjj′ [k]/Enor is described as

H̃jj′ [q]=
∑
α,β

qαΓ
αβ
jj′qβ+

∑
α

(
qαΛ

α
jj′+Λ‡α

jj′qα

)
+W̃jj′ , (6)

where qα is a dimensionless differential operator qα → −iLnor∂α in the real space. For QWRs, we indicate
the z axis as the wire axis and rewrite the matrix element H̃jj′ [q] with new normalized parameters for QWRs
(subscripted with “wr”) as

H̃jj′ [q] =
∑

α,β=x,y

qαΓ
αβ
jj′qβ +

∑
α=x,y

[
qαΛ

α
wr,jj′(kz) + Λ‡α

wr,jj′(kz)qα

]
+ W̃wr,jj′(kz),

Λα
wr,jj′(kz) = Λα

jj′ + Γαz
jj′qz, ∀ α = x, y, W̃wr,jj′(kz) = W̃jj′ + q2zΓ

zz
jj′ + qz(Λ

z
jj′ + Λ‡z

jj′), (7)

where the wave number kz is a label for QWR states.

For nanostructures, the dependency on position r appears in parameters Dαβ
jj′ (r), T

α
jj′(r), Wjj′(r), and Vj(r)

in Eq. (1), and normalized ones Γαβ
jj′(r), Λ

α
jj′(r), W̃jj′(r), and Ṽj(r) in Eq. (6). The wave function Ψ(n)(r) of

state |n⟩ and associated Schrodinger’s equation in an inhomogeneous space are given as

Ψ(n)(r) =
∑
j

ψ
(n)
j (r)uj(r),

∑
j′

Hjj′
[
k = −i∇, r

]
ψ
(n)
j′ (r) = Enψ

(n)
j (r), (8)
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Figure 1. (a) The 2D computation domain discretized by the square grid points (black circles). The QWR is composed of
material 1, and the region outside it is made up of material 2. The grids are located at the centers of pixels. A boundary
element e is circumscribe in blue. (b) Details of element e. The purple line is the approximate flat boundary which
replaces the original curved one (red dots). This new boundary divides Ωe into Ω̃1

e (material 1) and Ω̃2
e (material 2). Unit

vector n̂e,3 is the surface norm of the new boundary while n̂e,1 (pointing out of paper) and n̂e,2 are tangential ones.

where ψ
(n)
j (r) and uj(r) are the envelope function and position representation of Bloch part |uj⟩ for band j,

respectively; k is replaced with the differential operator −i∇; and En is the eigenenergy of state |n⟩. For QWRs,
we rewrite the wave function Ψ(n,kz)(r), and Schrodinger’s equation of state |n, kz⟩ are given as

Ψ(n,kz)(r) =
eikzz

√
Lwr

∑
j

ψ
(n,kz)
j (ρ)uj(r),

∑
j′

Hjj′
[
kx,y=−i∂x,y, kz,ρ

]
ψ
(n,kz)
j′ (ρ)=En,kzψ

(n,kz)
j (ρ), (9)

where index n is now the subband label; Lwr is the length of the QWR; ρ = xx̂+yŷ is the transverse coordinate;

ψ
(n,kz)
j (ρ) is the component of envelop functions aside to the phase factor exp(ikzz); and En,kz is the eigenenergy

of state |n, kz⟩.
The multiband Schrodinger’s equations in Eqs. (8) and (9) are presented as the eigenvalue problems. We will

implement the FD method22,23 to solve eigenenergies En,kz and envelop functions ψ
(n,kz)
j (ρ) of states in circular

QWRs. Moreover, if the anisotropy on the xy plane is small, the axial approximation will be utilized.8,24

3. SUBPIXEL SMOOTHING IN MULTIBAND HAMILTONIANS

In Fig. 1(a), the two-dimensional (2D) computation domain of the cross section of a QWR is discretized by
square mesh grids (black circles), on which the values of material parameters are assigned. The grid points
for FD calculations are located at centers of square elements (pixels). The wire extends out of Fig. 1(a). Its
boundary (red curve) is a surface. The regions inside and outside the boundary are made up of materials 1 and
2, respectively. In Fig. 1(a), a boundary element e is circumscribed in blue, and its detail is plotted in Fig. 1(b).
Since the element is small, the true boundary surface (red curved dots) can be approximated as a flat surface
(purple straight line) locally. This surface divides element area Ωe into two regions Ω̃1

e (material 1) and Ω̃2
e

(material 2). The local flat surface has a unit surface norm n̂e,3 and two tangential unit vectors n̂e,1 and n̂e,2.
We assign the vector n̂e,1 parallel to the QWR axis (pointing out of the paper) as ẑ. The three unit vectors n̂e,w
(w = 1− 3) form a right-hand coordinate system.
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From SPS procedures, we replace the inhomogeneous material parameters in boundary elements with ho-
mogeneous counterparts which are set to grid points. The continuity condition across the boundary has to be
considered.1,3 In the following context, we will neglect the state symbol n of envelop functions. In a boundary
element e, both (1) the envelope functions ψj(r) at two sides of the interface and (2) their effective probability
flux density normal to the interface have to be continuous. They are related to the BCs of gradient fields defined
as Kj(r)≡qψj(r) → −iLnor∇ψj(r). The expression of the effective probability flux density based on Eq. (1) can
be found in Ref. 21. From there, condition (2) is equivalent to the requirement that a vector field ηj(r), which
is related to the probability flux density and defined as

ηj(r) =
∑
j′

[Γjj′(r)Kj′(r) +Λjj′(r)ψj′(r)] , (10)

has a continuous normal component across the interface. In boundary element e, the normal component η
(3)
j (r)

is given as

η
(3)
j (r) = n̂e,3 · ηj(r) =

∑
j′

[
Γ
(33)
jj′ (r)K

(3)
j′ (r) + Γ

(3t)
jj′ (r)K

(t)
j′ (r) +Λ

(3)
jj′(r)ψj′(r)

]
, (11)

where symbols t and 3 denote the tangential and normal directions to the interface, respectively. Using this

relation, we present the discontinuous field K
(3)
j (r) with other continuous fields as

K
(3)
j (r)=

∑
h

Ξjh(r)η
(3)
h (r)−

∑
h,l

Ξjh(r)Γ
(3t)
hl (r)K

(t)
l (r)−

∑
h,l

Ξjh(r)Λ
(3)
hl (r)ψl(r), Ξjj′(r)≡

[
Γ(33)(r)

]−1

jj′
, (12)

where Ξjj′(r) is the inverse of Γ
(33)
jj′ (r) in the eight-band space.

With the normalization of envelope functions to unity, the normalized energy Ẽ≡E/Enor is presented as

Ẽ =
∑
j,j′

∫
drψ∗

j (r)H̃jj′ [k = −i∇, r]ψj′(r)

=
∑
j,j′

∫
dr

[
K†

j(r)Γjj′(r)Kj′(r)+K†
j(r)Λjj′(r)ψj′(r) +ψ∗

j (r)Λ
(T‡)
jj′ (r)Kj′(r)+ψ

∗
j (r)W̃jj′(r)ψj′(r)

]
, (13)

where the operation a†b between column vectors a and b indicates a∗ ·b. The integrand in Eq. (13) represents
quadratic terms of envelop functions ψj(r), gradient fields Kj(r), and their complex conjugates (c.c.). We may

rewrite the normalized energy Ẽ in the general form as

Ẽ =
∑
j,j′

∫
dr

[∑
p

f∗p,j(r)λp,jj′(r)gp,j′(r)

]
, (14)

where p is the label of parameters in the set {Γjj′(r), Λjj′(r), Λ
(T‡)
jj′ (r), W̃jj′(r)}; λp,jj′(r) is the parameter

corresponding to p; and f∗p,j(r) and gp,j′(r) are fields associated with λp,jj′(r), which include {ψ∗
j (r),K

†
j(r)}

and {ψj′(r),Kj′(r)}, respectively. Equations (13) and (14) are utilized to calculate the smoothed parameters in
boundary elements.

3.1 Subpixel smoothing based on perturbation theory

We first study the first-order perturbation in normalized energy for the smoothing of material parameters in
boundary elements e. The smoothed parameters ΓPT

e,jj′ , Λ
PT
e,jj′ , and W̃

PT
e,jj′ in the PT scheme are different from

heterogeneous ones Γjj′(r), Λjj′(r), and W̃jj′(r) there. The deviations are

∆Γjj′(r)=ΓPT
e,jj′−Γjj′(r), ∆Λjj′(r)=ΛPT

e,jj′−Λjj′(r), ∆W̃jj′(r)=W̃
PT
e,jj′−W̃jj′(r). (15)
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The first-order perturbation ∆Ẽ(1) in Ẽ due to these parameter deviations is described as

∆Ẽ(1) =
∑
e

∑
j,j′

{∫
Ωe

dr

[∑
p

f∗p,j(r)λ
PT
e,p,jj′gp,j′(r)

]
−
∫
Ωe

dr

[∑
p

f∗p,j(r)λp,jj′(r)gp,j′(r)

]}
, (16)

where a smoothed parameter λPT
e,p,jj′ belongs to the set {ΓPT

e,jj′ , Λ
PT
e,jj′ , Λ

PT(T‡)
e,jj′ , W̃PT

e,jj′} of boundary element e.

In boundary element e, we substitute the material tensors referenced to n̂e,w (w = 1−3) and tangential/normal

components K
(t)
j (r)/K

(3)
j (r) of the gradient field Kj(r) into the perturbation ∆Ẽ(1). The substitutions are

related to a transformation from the Cartesian coordinate to local one in element e. We then substitutes the
discontinuous field K

(3)
j (r) with the continuous one η

(3)
j (r) through Eq. (12). The new integrand still maintains

a quadratic form in terms of ψj(r), K
(t)
j (r), and η

(3)
j (r). The detail of derivations is shown in Ref. 21. In brief,

the generic form of ∆Ẽ(1) is presented as

∆Ẽ(1) =
∑
e

∑
j,j′

Ve⟨∆IPT
e,jj′(r)⟩e, ⟨∆IPT

e,jj′(r)⟩e ≡
1

Ve

∫
Ωe

dr∆IPT
e,jj′(r),

∆IPT
e,jj′(r) =

∑
s

F ∗
s,j(r)

[
κe,s,jj′{λPT

e,p,ll′ , λa,hh′(r)} − κs,jj′{λp,ll′(r)}
]
Gs,j′(r), (17)

where ∆IPT
e,jj′(r) is the integrand corresponds to parameter deviations; ⟨. . .⟩e is the average in region Ωe with

volume Ve; s is the label of transformed parameters; F ∗
s,j(r) and Gs,j′(r) include sets of continuous fields {ψ∗

j (r),

K
†(t)
j (r), η

(3)∗
j (r)} and {ψj′(r), K

(t)
j′ (r), η

(3)
j′ (r)}, respectively; κe,s,jj′{λPT

e,p,ll′ , λa,hh′(r)} is the effective parameter

transformed from original smoothed parameters λPT
e,p,ll′ ; and κs,jj′{λp,ll′(r)} is the counterpart transformed from

λp,ll′(r).

As element e is small enough, the continuous fields F ∗
s,j(r) andGs,j′(r) do not vary much within Ωe, and we can

factor them out of the volume integral in Eq. (17) so that the volume average is only applied to the discontinuous
transformed parameters. To eliminate the first-order perturbation ∆Ẽ(1), the averages of parameter deviations
in Eq. (17) are required to vanish term by term for each parameter label s:

⟨κe,s,jj′{λPT
e,p,ll′ , λa,hh′(r)}⟩e = ⟨κs,jj′{λp,ll′(r)}⟩e, (18)

Equation (18) stands for a set of linear equations for smoothed parameters λPT
e,p,ll′ , which could be calculated

self-consistently with the procedures provided in Ref. 21.

3.2 Subpixel smoothing based on Hellmann-Feynman theorem

Assume that material parameters Γjj′(r), Λjj′(r), and W̃jj′(r) are parameterized by a set of external variables
{νM}. Both the envelop functions ψj(r) and gradient fields Kj(r) depend on {νM} implicitly from Eq. (8). For a
variable νem in the subset {νM} associated with boundary element e, the HF theorem indicates that the variation
of the normalized energy Ẽ with νem is25

∂Ẽ

∂νem
≡

∑
j,j′

∫
Ωe

drIHF
e,jj′(r) =

∑
j,j′

Ve⟨IHF
e,jj′(r)⟩e, IHF

e,jj′(r) =
∑
p

f∗p,j(r)
∂λp,jj′(r)

∂νem
gp,j′(r), (19)

where IHF
e,jj′(r) is the associated integrand. With similar procedures in Section 3.1, the substitution of K

(3)
j (r)

with η
(3)
j (r) transforms the integrand IHF

e,jj′(r) into

IHF
e,jj′(r) =

∑
s

F ∗
s,j(r)κe,s,jj′

{
∂λp,ll′(r)

∂νem
, λa,hh′(r)

}
Gs,j′(r), (20)
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Table 1. Material parameters in eight-band calculations8,26

Parameter Symbol (unit) GaAs InAs InP GaP

Lattice constant a (Å) 5.6533 6.0584 5.8688 5.4505
Bandgap energy at 300K Eg (eV) 1.424 0.354 1.344 2.78
Spin-orbit split-off energy ∆ (eV) 0.34 0.38 0.11 0.08
Deformation potential av (eV) 1.16 1.00 1.27 1.70
Optical matrix parameter Ep (eV) 25.7 22.2 20.7 22.2
Modified optical matrix parameter E′

p (eV) 21.36 18.17 16.53 13.70
Average energy of three valence bands Ev,av (eV) -6.92 -6.67 -7.04 -7.40
Relative conduction effective mass mc (m0) 0.0665 0.023 0.077 0.17
Luttinger parameters26 γL1 7.65 19.67 6.28 4.20

γL2 2.41 8.37 2.08 0.98
γL3 3.28 9.29 2.76 1.66
κL 1.72 7.68 1.47 0.34

Inverse of modified relative γc 1.0 1.0 1.0 1.0
conduction effective mass15

Modified Luttinger parameters γ1 3.018 7.067 2.290 2.573
γ2 0.094 2.069 0.085 0.166
γ3 0.964 2.989 0.765 0.846
κ -0.596 1.379 -0.525 -0.474

Table 2. Material parameters in compound Ga0.18In0.82As0.4P0.6

Eg (eV) γ1 γ2 γ3 κ
1.058 3.934 0.742 1.515 0.097

where the functional forms of the transformed parameters κe,s,jj′{. . .} in Eq. (17) show up here. One can show

IHF
e,jj′(r) =

∑
s

F ∗
s,j(r)

∂τs,jj′{λp,ll′(r)}
∂νem

Gs,j′(r),
∂τs,jj′{λp,ll′(r)}

∂νem
= κe,s,jj′

{
∂λp,ll′(r)

∂νem
, λa,hh′(r)

}
, (21)

where τs,jj′{λp,ll′(r)} belong to the set of transformed parameters provided in Ref. 21.

To determine the smoothed parameters λHF
e,p,jj′ , we define an integrand ∆IHF

e,jj′(r) analogous to ∆IPT
e,jj′(r) in

Eq. (17) as

∆IHF
e,jj′(r) ≡

∑
s

F ∗
s,j(r)

[
∂τs,jj′{λHF

e,p,ll′}
∂νem

− ∂τs,jj′{λp,ll′(r)}
∂νem

]
Gs,j′(r), (22)

One may take fields F ∗
s,j(r) and Gs,j′(r) out of the average ⟨∆IHF

e,jj′(r)⟩e. The volume integral is only applied to

the variations in transformed parameters. We then proceed to set ⟨∆IHF
e,jj′(r)⟩e = 0 and obtain

∂

∂νem

⟨
τs,jj′{λHF

e,p,ll′} − τs,jj′{λp,ll′(r)}
⟩
e
= 0. (23)

Since Eq. (23) needs to be correct for an arbitrary external variable νem, we have

τs,jj′{λHF
e,p,ll′} = ⟨τs,jj′{λp,ll′(r)}⟩e. (24)

Equation. (24) represents a set of nonlinear equations for smoothed parameters λHF
e,p,ll′ , which can be calculated

self-consistently. The detail is shown in Ref. 21.

4. RESULTS AND DISCUSSION

In this section we calculate the eigenenergies and the envelope functions ψ
(n,kz)
j (ρ) for semiconductor circular

QWRs. The numerical errors in eigenenergies En,kz based on the PT and HF smoothing schemes will be studied.
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Figure 2. The relative errors δN as a function of the pixel numberN for the (a) bound valence state with the highest energy
at kz = 0 nm−1, and (b) bound conduction state with lowest energy at kz = 0.5 nm−1 for the Ga0.18In0.82As0.4P0.6/InP
QWR under the axial approximation. In (a) and (b), the upper and lower dashed lines in red indicate the trends of
O(N−1) and O(N−2), respectively. For the valence state, the PT and HF smoothing schemes result in the lower relative
errors than others do. For the conduction state, all but the one without smoothing show relative errors close to each
other.

The material parameters in eight-band computations are listed in Table 1.8,26 The modified Luttinger parameters
γi (i = 1 − 3) and parameter κ in the eight-band Hamiltonian are extracted from the Luttinger parameters
γLi (i = 1 − 3) and κL for decoupled conduction (two-band) and valence bands (six-band) for the effective
Hamiltonian.9 The modified inverse effective mass γc in the conduction bands of eight-band Hamiltonians can
be also extracted from the conduction-band effective mass mc.

9 However, all values of γc for the materials in
Table 1 are negative if they are computed in this way. Nonphysical spurious solutions are presented, in which
the eigenenergies lie within the forbidden band gap, and envelope functions show rapid spatial oscillations. In
order to remove this wing-band type of spurious solutions, we adopt the technique in Ref. 15 by setting γc=1,
which is equivalent to the neglect of remote bands. The modified optical matrix parameter E′

p which keeps the
effective mass mc invariant needs to be modified. Its expression is given as

E′
p =

(
m0

mc
− 1

)
Eg(Eg +∆)

Eg + 2∆/3
, (25)

where m0 is the free electron mass; Eg is the bandgap energy; and ∆ is the spin-orbit split-off energy. The
valence-band offsets in semiconductor heterojunctions are computed by Ev,av using the model-solid theory.8,27

Linear interpolations are used in parameter calculations of III-V compound materials except for bandgap energies
which are estimated from Ref. 8. As an example, we examine compound semiconductors Ga0.18In0.82As0.4P0.6

which are lattice-matched to InP. The energy gaps Eg, modified Luttinger parameters γi (i = 1 − 3), and κ of
this compound are listed in Table 2.

The QWR is grown along the [001] (z) crystal axis, and its diameter is 8 nm. The computation domain has
a region of 38× 38 nm2 divided into square elements of N by N pixels, where N is the the numbers of pixels in
both the x ([100] axis) and y ([010] axis) directions. The material parameters inside boundary elements which
are sliced by the circumference of the QWR are averaged based on the PT and HF smoothing schemes for the
BF Hamiltonian. For comparisons, we also perform the computations without smoothing (NS, no smoothing)
and with direct averages λDA

p,e,jj′ ≡ ⟨λp,jj′(r)⟩e of heterogeneous material parameters inside boundary elements.
The central-difference scheme of the FD method is utilized to solve the eigenvalue problem of QWRs in Eq. (9).
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Figure 3. The numerical magnitudes |ψ(n,kz)
j (ρ)| (nm−1) of the valence state with the highest energy at kz=0 nm−1 and

N=200 in the PT smoothing scheme for the Ga0.18In0.82As0.4P0.6/InP QWR. (a) to (h) correspond to j = 1− 8. These
magnitudes are nearly circularly symmetric due to the axial approximation.

With the axial approximation (γ3− γ2 ∼ 0), analytical solutions for the eigenenergies and envelope functions
of eigenstates can be obtained accurately.20,21,28 We denote the mesh-dependent eigenenergy and exact energy
of a QWR state as EN and Eexact, respectively. The relative error δN is defined as

δN =

∣∣∣∣EN − Eexact

Eexact

∣∣∣∣ . (26)

By plotting the behavior of δN with the pixel number N in the logarithmic scale, we can investigate how rapidly
the numerical EN converges to the exact value Eexact.

Figure 2(a) and (b) shows the relative errors δN for the bound valence state with the highest energy at
kz = 0 nm−1 and the counterpart of the bound conduction state with the lowest energy at kz = 0.5 nm−1,
respectively, as a function of the pixel number N with/without smoothing for the Ga0.18In0.82As0.4P0.6/InP
QWR. The trends of O(N−1) and O(N−2) are also depicted for comparisons. All of the relative errors decrease
as the pixel number N increases since the cross section of the QWR becomes closer to an ideal circular shape in
all cases. However, the relative errors without smoothing are generally more significant. For the valence state,
all relative errors present more or less oscillatory variations with the pixel number N since the mesh-dependent
energy EN tends to jump up and down around the exact energy Eexact with N . The relative errors in the PT,
HF, and DA schemes are lower than that without smoothing. As shown in Fig. 2(a), the relative errors from the
two proposed SPS methods become lower than that from the DA approach. Moreover, the PT scheme exhibit
lower errors than the HF counterpart does. We denote δN ∼ O(N−m), in which m is the order of accuracy.
The PT scheme exhibit the largest order m > 2 while the HF scheme has a m ≈ 2. For the conduction state,
all of the cases still show oscillatory variations on δN , but the trends of PT, HF, and DA schemes are close to
each other. If the material parameters inside and outside the nanostructures do not deviate largely, we find the
advantages of two proposed SPS schemes are more observable for valence states than for conduction ones.

Figure 3(a) to (h) shows the eight numerical magnitudes |ψ(n,kz)
j (ρ)| (j = 1− 8) of the valence state with the

highest energy at kz=0 nm−1 and N=200 based on the PT smoothing scheme for the Ga0.18In0.82As0.4P0.6/InP

QWR under the axial approximation. From (a) to (h), the envelop functions |ψ(n,kz)
j (ρ)| (j = 1 − 8) have

the components of C, C, HH, LH, LH, HH, SO, and SO in Bloch parts consecutively. All the magnitudes of
envelope functions exhibit almost circularly symmetric patterns in the xy plane due to the axial approximation.
The dominant magnitudes at j = 4, 5 show that this valence state is LH-like. However, because of the band
mixing, the magnitudes of C, HH, and SO components are only lower than the LH counterpart by one order of
magnitudes and hence are not negligible.
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Table 3. The Bloch parts in eight-band effective Hamiltonians. The angular distributions of S, X, Y , and Z are similar
to those of the s, x, y, and z orbitals in hydrogen atoms, and the two spin states are indicated as ↑ and ↓.

|uj⟩ |jj , jz,j⟩ Another formulation Type
|u1⟩ |1/2, 1/2⟩ |iS, ↑⟩ C
|u2⟩ |1/2,−1/2⟩ |iS, ↓⟩ C

|u3⟩ |3/2, 3/2⟩ −
∣∣∣X+iY√

2
, ↑
⟩

HH

|u4⟩ |3/2, 1/2⟩ − 1√
3

∣∣∣X+iY√
2
, ↓
⟩
+
√

2
3 |Z, ↑⟩ LH

|u5⟩ |3/2,−1/2⟩ 1√
3

∣∣∣X−iY√
2
, ↑
⟩
+
√

2
3 |Z, ↓⟩ LH

|u6⟩ |3/2,−3/2⟩
∣∣∣X−iY√

2
, ↓
⟩

HH

|u7⟩ |1/2, 1/2⟩
√

2
3

∣∣∣X+iY√
2
, ↓
⟩
+ 1√

3
|Z, ↑⟩ SO

|u8⟩ |1/2,−1/2⟩
√

2
3

∣∣∣X−iY√
2
, ↑
⟩
− 1√

3
|Z, ↓⟩ SO

In general, we observe that two proposed SPS procedures result in the better numerical accuracy than the
unjustified DA method does due to the inclusion of the continuity of effective probability flux densities normal
to interfaces. In addition, the PT scheme has the higher accuracy than the HF counterpart does. At a given
level of accuracy, the fewer grid points in computation domains of nanostructures may be achieved by using SPS
procedures, which could bring about the less computation time and fewer computer memories.

5. CONCLUSIONS

In summary, we have proposed two SPS schemes based on the perturbation theory and Hellmann-Feynman
theorem for eight-band effective-mass Hamiltonians of semiconductor nanostructures. In these schemes, the
heterogeneous material parameters in boundary elements of nanostructures are smoothed with the condition
of the continuity of effective probability flux densities normal to interfaces. We implement the FD method to
numerically solve the eigenenergy problem corresponding to the multiband Schrodinger’s equation for circular
QWRs. The eigenenergies, the relative errors versus the pixel number, and envelope functions for valence and
conduction states in circular QWRs are examined under the axial approximation. Both of the proposed SPS
schemes generally lead to the lower numerical errors than those with direct averages of untransformed material
parameters or without smoothing. In addition, the PT approach seems to have the better accuracy than the HF
procedure in inhomogeneous structures. The two developed SPS schemes may lower numerical errors and reduce
the computational cost at a given level of accuracies for the modeling of semiconductor nanostructures.

APPENDIX A. MATRIX ELEMENTS OF EIGHT-BAND BURT-FOREMAN
HAMILTONIAN

In eight-band Hamiltonians, the related Bloch parts |uj⟩ are denoted as |jj , jz,j⟩ (j = 1−8), where jj and jz,j
indicate the total angular momentum and magnetic quantum numbers of band j, respectively, which are similar
to those of hydrogen atoms with spin-orbit coupling. The Bloch parts contain two conduction (C) bands and
six valence bands, and they are listed in Table 3.8 The six valence bands are composed of two heavy-hole (HH),
two light-hole (LH), and two spin-orbit split-off (SO) bands.

The BF operator ordering is often needed for valence bands in heterostructures so that the boundary condi-
tions across interfaces are represented correctly.15,17,18 The matrix H[k] of the eight-band BF Hamiltonian can
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be expressed as20,21

H[k] = H(BF)[k] +H(BP)[ε],

H(BF)[k] =

Ec+Pc,k 0 −
√
3V+

√
2U V− 0 U

√
2V−

0 Ec+Pc,k 0 −V+
√
2U

√
3V−

√
2V+ −U

−
√
3V h.c.

+ 0 Ev−Pk−Qk S− −Rk 0 1√
2
S− −

√
2Rk

√
2Uh.c. −V h.c.

+ Sh.c.
− Ev−Pk+Qk −C −Rk

√
2Qk −

√
3
2Σ−

V h.c.
−

√
2Uh.c. −Rh.c.

k −Ch.c. Ev−P ∗
k+Q

∗
k −Sh.c.

+ −
√

3
2Σ+ −

√
2Q∗

k

0
√
3V h.c.

− 0 −Rh.c.
k −S+ Ev−P ∗

k−Q∗
k

√
2Rh.c.

k
1√
2
S+

Uh.c.
√
2V h.c.

+
1√
2
Sh.c.
−

√
2Qk −

√
3
2Σ

h.c.
+

√
2Rk Ev−Pk−∆ −C

√
2V h.c.

− −Uh.c. −
√
2Rh.c.

k −
√

3
2Σ

h.c.
− −

√
2Q∗

k
1√
2
Sh.c.
+ −Ch.c. Ev−P ∗

k−∆


, (27)

where H(BF)[k] consists of the k-dependent terms related to the BF operator ordering; energies Ec and Ev on
the diagonal of H(BF)[k] are the unstrained conduction and valence bandedge energies, respectively; ∆ is the
spin-orbit split-off energy; the superscript h.c. indicates the hermitian conjugate of an operator, which treats kα
(α = x, y, z) and spatial functions noncommutable; and H(BP)[ε] is related to the strain tensor ε and corresponds
to BP strain terms Pc,ε, Pε, Qε, Rε, and Sε.

8,9 For valence bands, the terms Pk, Qk, Rk, S±, Σ±, and C in
the BF operator ordering can be found in Refs. 20 and 21. In addition, the symmetric operator ordering are
adopted for Pc,k in conduction bands and U and V± for the coupling between conduction and valence bands, as
provided in Ref. 21.

The matrix H[k] is hermitian in the eight-band space due to the relations P h.c.
c,k = Pc,k, P

h.c.
k = Pk, and

Qh.c.
k =Qk (but P ∗

k ̸=Pk, Q
∗
k ̸=Qk). For semiconductor bulks, the BF Hamiltonian H[k] in Eq. (27) is reduced

to the LK Hamiltonian21 since the wave-vector component kα is simply a number rather than an operator.
Moreover, under the axial approximation, the matrix Rk is approximated as8

Rk =

(
~2

2m0

)√
3 [−k−γ̄k− + k+µk+] ≃ −

(
~2

2m0

)√
3k−γ̄k−, (28)

where γ̄=(γ3+γ2)/2 and µ=(γ3−γ2)/2 are the sum and difference between γ3/2 and γ2/2.
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