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Summary Making accurate functional predictions plays an important role in the
era of proteomics. Reliable functional information can be extracted from orthologs
in other species when annotating an unknown gene. Here a site-based approach
called PORFIS is proposed to predict orthologous relationship. When applied to the
bacterial transcription factor PurR/LacI family and the protein kinase AGC family,
our method was able to identify, with few false positives, the important sites that
agree with those verified by biological experiments. We also tested it on the �-
proteasome family, the glycoprotein hormone family and the growth hormone family
to demonstrate its ability to predict orthologous relationship. Compared with other
prediction methods based on phylogenetic analysis or hidden Markov models, PORFIS
not only has competitive prediction accuracy, but also provides valuable biological
information of functionally important sites associated with orthologs which can be
further studied in biological experiments.
© 2005 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Advanced sequencing technology and various
genome projects have produced an enormous
amount of data waiting to be annotated. A com-
mon strategy for annotation is first to search the
sequence databases for the best-fit homolog, and

find appropriate homologs, different sequence
alignment methods, such as BLAST [1] and hidden
Markov models [2], have been developed and
widely used. Despite that significant homology
usually reflects significant similarity in biological
functions, homologs can be further divided into
orthologs and paralogs. Orthologous sequences
diverged because of speciation. They are under
then to assign this homolog’s functions to the

novel gene (or protein) of interest. In order to

* Corresponding author. Tel.: +886 3
E-mail address: yhu@cis.nctu.edu.

similar regulation and have identical biochemical
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functions. Unlike orthologs, paralogs arose from
duplication events. They do not have the same bi-
ological functions. Therefore, it is not guaranteed
to annotate sequences correctly simply according
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to their homologous relations. Incorrect prediction
may result in the wrong judgment of cellular func-
tions or the erroneous reconstruction of metabolic
pathways. As the advent of functional genomics,
how to distinguish between orthologs and paralogs
has drawn tremendous attention recently [3—5].

clusters of orthologous groups (COGs) are the
first database that stores orthologous proteins in
bacteria and archaea on a genomic scale [6]. Be-
sides COGs, INPARANOID also shows the orthol-
ogous relationship among eukaryotes, including
Homo sapiens, Mus musculus, Caenorhabditis ele-
gans, and Drosophila melanogaster [7]. Both sys-
tems were constructed by applying pairwise BLAST
search for homologs. However, since BLAST is an al-
gorithm based on heuristics rather than phylogeny,
the best hit found by BLAST may not be a true or-
tholog but instead a paralog that shares only partial
evolutionary features [8,9].

To mitigate the limitations of standard sequence
alignment approaches, several methods have been
developed to enhance the detection of orthologous
sequences. For example, Cotter et al. [10] used
closely related sequences as a sequence outgroup
to refine the BLAST search results. Yuan et al. [9]

information is through the comparison of evolution-
arily related sequences [12,13]. The evolutionary
trace method combined the knowledge of protein
structures with sets of homologous sequences to
infer functional interface [14]. Casari et al. [15]
used a principle component analysis of a vector
representation of sequences in space to identify
functional residues. Hannenhalli and Russell [16]
analyzed functional sub-types using relative en-
tropy. Mirny and Gelfand [17] used orthologous
and paralogous proteins to identify specificity-
determining residues. Bickel et al. [18] found the
important residues in phycobiliproteins and verte-
brate globin sequences based on the well-conserved
motifs in homologous families. In spite of their
capability of finding functionally important sites,
most of the methods are too computation-intensive
to be applicable in the prediction of orthologous
relations.

Here we propose a method called PORFIS to pre-
dict orthologous relationship based on functionally
important sites that confer the specificity and con-
servation of different orthologous subgroups within
a set of homologous sequences. The orthologous
relationship of a novel protein sequence to these
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built the reconciled trees to verify the reliability
of phylogenetic trees by applying statistical resam-
pling techniques to multiple related sequences.
Storm and Sonnhammer [11], on the other hand,
introduced the support value for evaluating se-
quence orthology. Though they showed some
positive results, yet several drawbacks still limit
their applicability. Firstly, the performance of
these methods highly depends on the correct phy-
logenetic trees that may not be verified in advance.
Secondly, they often require substantial domain
knowledge, e.g., to select a proper sequence
outgroup, which is not always available. Thirdly,
none of their output results can be easily justified
or further analyzed by biological experiments. To
avoid the limitations, we develop a novel orthol-
ogy prediction method based on the functionally
important sites associated with orthologs. The
motivation is that active protein residues are
under evolutionary pressure to maintain their
functional integrity. They undergo fewer mutations
than less functionally important amino acids. As a
result, functionally important sites may be used to
better characterize orthologous relationships.

2. Background

There is a great deal of work on functionally impor-
tant sites. One possible way to extract functional
ubgroups is inferred from the important sites
ound. We hypothesize that the important residues
hould be conserved in orthologous proteins to
aintain their identical function while divergent

n paralogous proteins to reflect their specificity.
e explore functionally important sites in the
ultiple sequence alignment of orthologous and
aralogous proteins and use these sites to build
model to classify orthologous relations of novel
roteins. Unlike previous works, PORFIS provides
ubstantial information for further biological
xperiments, e.g. site-directed mutagenesis to
erify orthologous relationship. We first applied
ORFIS to the bacterial PurR/LacI family and the
rotein kinase AGC group family to demonstrate
ts ability to identify functionally important sites.
o further evaluate its accuracy of orthology pre-
iction, we compared PORFIS with other current
pproaches on four protein families, including
he AGC family, the glycoprotein hormone family,
he �-proteasome family and the growth hormone
amily.

. Design considerations

e refer the functionally important sites of an or-
hologous family to those residues which are both:
1) well conserved within orthologs and (2) di-
ergent among paralogs. Sites/residues with both
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properties in a multiple sequence alignment of ho-
mologs (orthologs and paralogs) are considered im-
portant and used to construct the classification
model for orthologous subfamilies.

For an alignment of homologous proteins that
have been properly partitioned into orthologous
subfamilies, we evaluate the degree of inter-
paralog divergence and intra-ortholog conservation
of each site by calculating the adjusted Rand index
(ARI) [19] and the entropy.

Given a set of n objects O = {o1, . . ., on}, sup-
pose P = {p1, p2, . . ., pR} and Q = {q1, q2, . . ., qS}
represent two different partitions of the objects in
O such that ∪R

i=1p = ∪S
j=1q = O and pa∩ pb =Ø, qc∩

qd =Ø for 1≤ a �=b≤R, 1≤ c �=d≤ S. For each ob-
ject pair {Oi,Oj} there are four possible outcomes:

Type1: Oi and Oj are in the same partition in P and
in the same partition in Q
Type2: Oi and Oj are in different partition in P but
in the same partition in Q
Type3: Oi and Oj are in the same partition in P but
in different partition in Q
Type4: Oi and Oj are in different partition in P and
in different partition in Q
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Table 1 An example of the limitation of the adjusted
Rand index (ARI)

Ortholog Classes Sequences Site 1 Site 2

Ortholog Class 1 Sequence 1 P P
Sequence 2 Q Q
Sequence 3 Q Q
Sequence 4 Q Q
Sequence 5 Q Q
Sequence 6 Q Q

Ortholog Class 2 Sequence 7 C C
Sequence 8 Y C

Ortholog Class 3 Sequence 9 L Q
Sequence 10 M Q

Ortholog Class 4 Sequence 11 K N
Sequence 12 I N

ARI 0.64 0.47
a (Type 1) 10 15
d (Type 4) 48 38

Compared with Site 1, Site 2 is apparently more conserved
and discriminative in the ortholog classes. However, based
on ARI, Site 1 will be incorrectly favored in the example.

A site may be mistaken for being important be-
cause its adjusted Rand index is relatively high due
to the domination of Type 4 outcome especially
when the homologous proteins are partitioned into
many subfamilies. Suppose we have four ortholog
classes as shown in Table 1. According to the ad-
justed Rand index, Site 1 is preferable to Site 2.
Nevertheless, it is obvious to note that Site 2 is more
conserved and distinctive in the classes. This ex-
ample suggests that ARI alone does not provide suf-
ficient information for selecting correct important
sites. To alleviate the problem, we also use entropy
as a complementary criterion to measure the con-
servation within orthologs. If the weighted average
entropy of a site is high, the conservation is low.

The weighted average entropy of site k, Ek, is
defined as follows:

Ek = 1
T
[−

N∑

i=1

∑

w

Wifi(x) log fi(x)] (2)

∀1≤ k≤ L where N is the number of orthologous
subfamilies that are paralogous to each other, L
stands for the length of multiple sequence align-
m
t
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Let a, b, c, d be the number of object pairs of
ype 1 to Type 4, respectively, and n = a +b + c +d,
and index is defined as the fraction of agree-
ent, i.e. (a +d)/(a +b + c +d) [20]. Rand index

ies between 0 and 1. When the two partitions
and Q are identical, Rand index is 1. A prob-

em with Rand index is that its expected value
ay not be constant. Hubert and Arabie then pro-
osed the adjusted Rand index to solve this prob-
em [19]. The adjusted Rand index is defined as
ollows:

RI = Rand indexed − E(Rand indexed)
max(Rand indexed) − E(Rand indexed)

= n(a + d) − [(a + b)(a + c) + (c + d)(b + d)]
n2 − [(a + b)(a + c) + (c + d)(b + d)]

(1)

djusted Rand index is 1 when the two partitions
and Q are identical and its expected value is 0.
he higher the adjusted Rand index, the higher the
greement between the two partitions. In our case,
may refer to the given orthologous partition of the
omologous proteins, and Q may refer to the par-
ition according to the amino acids in a particular
olumn of the protein sequence alignment. The col-
mn (i.e. the site) with higher adjusted Rand index
uggests that it matches the orthologous partition
etter, and hence can be an important site used to
istinguish paralogs.
ent, x is the amino acid at site k, fi(x) represents
he frequency of x in orthologous subfamily i, Wiis
he number of sequences in orthologous subfam-
ly i, and T is the total number of homologs where

=
N∑

i=1
Wi.
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4. System description

4.1. Evaluation of functional sites

We evaluate sites by the Z-scores of ARI and
weighted average entropy. ZARI and ZE are defined
as the following:

ZARIk = ARIk − �ARI

�ARI
(3)

ZEk
= �E − Ek

�E
(4)

∀k1≤ k≤ L where L is the length of multiple se-
quence alignment. Since ARI and entropy do not
necessarily follow normal distribution, normaliza-
tion of ARI and entropy is required [21]. A site with
high ZARI and ZE is considered a functionally impor-
tant site. To favor the sites that have high ZARI as
well as high ZE, after normalizing their values to
the range between zero and one, we combine both
ZARI and ZE into an F-score [22] to measure the uni-
fied functional importance. The F-score is defined
as follows:

(2) Calculate Si(x), the similarity of x to subfamily
i, for all i:

Si(x) = 1
J

J∑

j=1

Sij(x) (7)

where J is the size of subfamily i.
(3) Assign x to subfamily Cfinal

x ∈ Cfinal if Sfinal(x) ismaximal (8)

The system flow is presented in Fig. 1.

Fig. 1 System control flow.
F-scorek = 2
(1/ZARIk)/(1/ZEk

)
(5)

∀k1≤ k≤ L where L stands for the length of mul-
tiple sequence alignment.

4.2. Prediction of orthologous relations

Given an unknown protein x and a set of homologs
already divided into I orthologous subfamilies that
are paralogous to each other, our goal is to assign x
to the most appropriate subfamily based on the im-
portant sites found. The procedure of classification
is as follows:

(1) Calculate Sij(x), the similarity of x to sequence
j in subfamily i, for all i, j:

Sij(x) = 1
|F |

∑

k ∈ F

M(xk, Cijk)
max(M(xk, xk), M(Cijk, Cijk))

(6)

where xk represents the amino acid of x at site
k, Cij is the jth sequence in subfamily i of train-
ing data, Cijk is the amino acid of Cij at site k,
M is the substitution matrix (e.g. Blosum62), F
represents the set of predicted important sites,
|F| is the total number of predicted important
sites.



Prediction of orthologous relationship by functionally important sites 213

5. Status report

5.1. Data sets

We tested PORFIS on the PurR/LacI family and the
protein kinase AGC group family to demonstrate its
ability to identify functionally important sites. We
later applied PORFIS to the AGC family, the glyco-
protein hormone family, the �-proteasome family
and the growth hormone family to evaluate its per-
formance in the prediction of orthologous relations.

The PurR/LacI family is a large family of bac-
terial transcription factors divided into 15 ortholo-
gous subfamilies [17]. Some of the subfamilies are
relatively small. To avoid the bias incurred by the
skewed subfamily size, we applied random shuffling
techniques to fill in random sequences for balancing
the size among all the subfamilies. The AGC family
is related to phosphorylation in the process of signal
transduction in living organism and is divided into
six orthologous subfamilies [23]. We thank Mirny
and Lee for providing these two datasets. The �-
proteasome family has seven orthologous subfam-
ilies and was downloaded from NCBI according to
Bouzat et al. [24]. The subfamilies in glycoprotein
h
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are defined as follows:

Sensitivity = True positive
True positive + False positive

(9)

PPV = True positive
True positive + False positive

(10)

Higher sensitivity of a prediction algorithm re-
flects its ability to identify more true positives. On
the other hand, higher positive predictive value in-
dicates it is more capable of avoiding false posi-
tives. However, for most prediction algorithms, it is
difficult to obtain a higher score for one of the mea-
sures without sacrificing the other because these
two measures generally contradict each other. To
consider both measures at the same time, we fur-
ther combine them into an F-score [22] to evaluate
the overall performance. The definition of F-score
on prediction is defined as:

Prediction F-score = 2
((1/Senxitivity) + (1 + PPV))

(11)
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ormone family we chose in our study are FSH�,
SH� and LH�. The members of the glycoprotein
ormone family are crucial to the complex en-
ocrine system that regulates normal growth, sex-
al development, and reproductive function. The
rowth hormone family, which plays an important
ole in growth control, is divided into three major
ubfamilies, PL, GH, and PRL. Both the glycopro-
ein hormone family and the growth hormone fam-
ly can be downloaded from NCBI. The datasets are
ummarized in Table 2.

.2. Performance evaluation

ensitivity and positive predictive value (PPV) are
wo commonly used performance measures. They

Table 2 Datasets used in our study

Family (number of sequences) Subfam

PurR/LacI(54) araR(2)
galSR(4

AGC(380) PKA(69)
�-Proteasome(54) A1(7) A
GPH(60) FSHb(20
GH(35) GH(12)

Thanks to Mirny et al. for providing the PurR/LacI and AGC d
(growth hormone) families were downloaded from NCBI.
. Lessons learned

.1. Identification of important sites

e compared PORFIS with Mirny and Gelfand’s
17] in the identification of functionally impor-
ant sites within two families, the PurR/LacI family
nd the AGC family. The results are presented in
ables 3 and 4. The reason for this particular com-
arative study with Mirny and Galfand’s is that their
ethod is one of the most recent studies of impor-
ant sites, and they were kind enough to provide
he same data used in their work so we can keep
he consistency in experiments.
In the PurR/LacI family there are twelve impor-

ant sites published in literature, nine of which are
inding sites (DNA or ligand) and the rest inter-
ct with other residues or contribute to the protein

umber of sequences)

R(2) ccpA(12) degA(4) yjmH(2) rbsR(4) purR(4) cytR(3)
G(4) LacI(2) treR(3) gntR(3) idnR(2) fruR(3)
(23) GRK(58) S6PK(41) PVPK1(50) PKC(139)
A3(7) A4(8) A5(8) A6(10) A7(8)
Hb(20) LHb(20)
1) PRL(12)

ts. The �-proteasome, GPH (glycoprotein hormone) and GH
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Table 3 Important sites identified in the PurR/LacI family

Site Residue Mirny and Gelfand PORFIS Description

15 Thr * + DNA binding site
16 Thr * + DNA binding site
50 Val * + Contact to other residue
53 Ser + Diminish repression
55 Lys * + DNA binding site
85 Cys + Putative important site
91 Thr + Putative important site
98 Trp * + Putative important site

107 Tyr + Putative important site
114 Lys * Putative important site
122 Met + Ligand binding site
124 Ser + Avoid steric clash with the side chain of Arg190
145 Met + Putative important site
146 Asp * + Ligand binding site
147 Trp + Ligand binding site
148 Gly + Putative important site
160 Asp * + Ligand binding site
221 Phe * + Ligand binding site
249 Ile + Ligand binding site

Sites 15, 16, 50, 53, 55, 122, 124, 146, 147, 160, 221 and 249 have been proved to be important [25—27]. Note that the site
numbering conforms to the PurR, PDB code 1WET [26].

conformation. We underscore these twelve impor-
tant sites in Table 3. The sites found by Mirny and
Gelfand are labeled with a ‘*’; the sites identified
by our method, with a ‘+’. As shown in Fig. 2, POR-
FIS successfully identified all the twelve important
sites plus six putative sites that are in the proximity
of the published binding sites. According to previous
studies, Thr15, Thr16 and Lys55 are deeply buried
in the DNA groves forming a dense network of in-
teractions with the bases. Met122, Asp146, Asp160,
Phe221 and Ile249 are within 8 Å from the ligand in
PurR. Val50 forms a hydrophobic contact with its
counterpart. Ser53 diminishes (but not abrogates)
repression, and Ser124 is located directly above the
corepressor-binding pocket and takes this confor-
mation to avoid steric clash with the side chain
of Arg190, which contributes to corepressor bind-
ing affinity. Trp147 is the key switch residue in the
corepressor binding pocket. In the holorepressor,
Trp147 is far from the corepressor binding pocket
and stacks against Tyr126. However, in the open
state, it rotates into the ligand binding pocket, re-
sulting in a 10.7 Å translation of its Nε atom. In this
position, Trp147 hydrogen binds to the side chain
of Tyr73 by its Nε and stacks against Phe74. Thus,

Table 4 presents the result of the AGC family.
The sites labeled with a ‘*’ were identified by Li
et al. [23], and those with a ‘+’ were predicted
by PORFIS. As shown in Table 4, there are 36 pub-
lished important sites which are underlined, includ-
ing the substrate binding sites, the Mg2ATP binding
sites, and some residues that are close to or interact
with these binding sites. PORFIS identified 25 im-
portant sites, seven (Ser53, Leu82, Gln84, Phe129,
Thr183, Thr197 and Pro202) of which are substrate
binding sites or ATP binding sites, two (His87 and
Pro243) of which make direct contact with other
residues, one (Arg133) pack to Arg side chain at P-
3, two (Thr48 and Arg56) of which belong to the nu-
cleotide positioning motif, and four (Lys83, Pro169,
Ala188 and Trp195) of which are next to particu-
lar binding sites. Thr48 and Arg56 located in the
glycine-rich loop (residue 48—57) and are two of
the residues that constitute a nucleotide position-
ing motif, which spans the entire length of the
wedge shaped nucleotide binding pocket and forms
the ceiling of this pocket with the nucleotide fit-
ting snugly against this motif. His87 binds Thr197
under some condition. Phe129 generates the speci-
ficity of Pro or Met at P-3. Pro169 lie in the cat-
a
(
t
n
l
o

Trp147 may play a role as the structural surrogate
of corepressor to stabilize the open conformation,
which controls the operator DNA binding affinity
[17,25—27]. All the residues identified by PORFIS
are either directly or indirectly related to protein
functions.
lytic loop. Our method identified four residues
Ala188, Thr195, Thr197 and Pro202) situated in
he activation loop of cAMP-dependent protein ki-
ase (see Fig. 3). Thr197 coordinates the activation
oop and contributes to the correct configuration
f residues at the active site cleft. The hydropho-
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bic residue Pro202 is one of the residues form-
ing the binding pocket. In mitogen-activated pro-
tein kinases, the corresponding residue of position
202 (Leu) is diagnostic of the obligatory Pro speci-
ficity at P + 1 [28—30]. Sixteen residues identified

by our method have been confirmed with biological
meanings.

The results of sensitivity and positive predictive
value are summarized in Table 5. The sensitivity and
positive predictive value of PORFIS are 1.000 and

Table 4 Important sites identified in the protein kinases AGC family

Site Residue Li et al. PORFIS Description

48 Thr * + Nucleotide positioning Motif
52 Gly Substrate binding site
53 Ser * + Substrate binding site
54 Phe Substrate binding site
55 Gly ATP-binding site
56 Arg * + Nucleotide positioning Motif
72 Lys ATP-binding site
77 Gln + Putative important sites
82 Leu + Substrate binding site
83 Lys * + Next to substrate binding site
84 Gln * + Substrate binding site
87 His * + Bind 197 under some condition
91 Glu ATP-binding site
109 Ser + Putative important sites
115 Asn * + Putative important sites
118 Met + Putative important sites
121 Glu ATP-binding site

123 Val
127 Glu
129 Phe *
130 Ser
133 Arg *
156 Tyr

166 Asp
168 Lys
169 Pro
170 Glu
171 Asn
181 Gln
183 Thr
187 Phe
188 Ala
195 Thr
196 Trp *
197 Thr
198 Leu
201 Thr
202 Pro
203 Glu
204 Tyr
205 Leu
226 Val
230 Glu
243 Pro *
247 Tyr *
249 Lys *

The published important sites are underlined. Note that Li et al. u
Residues underscored are those that contribute to substrate binding
identified more important sites in the activation loop (as shown i
numbering conforms to the cAMP-dependent protein kinase, PDB co
ATP-binding site
Substrate binding site

+ Substrate binding site
Substrate binding site

+ Pack to Arg side chain at P-3
+ Putative important sites
ATP-binding site
ATP-binding site

+ Next to substrate binding site
Substrate binding site
ATP-binding site

+ Putative important sites
+ ATP-binding site

Substrate binding site
+ Next to substrate binding site
+ Next to substrate binding site

Substrate binding site
+ Substrate binding site

Substrate binding site
Substrate binding site

+ Substrate binding site
Substrate binding site
Substrate binding site
Substrate binding site

+ Putative important sites
Substrate binding site

+ Bind 15 under some condition
+ Putative important sites
+ Putative important sites

sed Mirny and Gelfand’s method [17] to find important sites.
, protein structure or the residues next to these sites. PORFIS
n boldface) of the cAMP-dependent protein kinase. The site
de 1ATP [35].
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Fig. 2 Structure of PurR bound to DNA [26]. The im-
portant residues identified by our method are shown as
spheres. The structure is obtained from PDB 1wet. The
figure was generated by VMD [36].

0.667 in the PurR/LacI family, 0.444 and 0.640 in
the AGC family, respectively. In both cases, PORFIS
achieves higher F-scores than Mirny and Gelfand’s
[17,23]. Furthermore, PORFIS requires less CPU
time than Mirny and Gelfand’s, which is hindered
by the complex resampling procedure. Simulated
on an AMD Athlon 1.0G machine with 512 MB RAM,
our computational time was in the order of minutes
compared with hours of Mirny and Gelfand’s.

Fig. 3 The activation loop of cAMP-dependent protein
kinase. Important residues identified by our method in
the loop are shown as spheres. The conditional interac-
tion of His87 and Thr197 is also illustrated as a link. The
figure was generated by VMD [36].

Besides demonstrating PORFIS’s performance of
identifying functionally important sites within real
protein families, we also applied the Monte Carlo
simulation to verify the statistical significance of
the sites found. By random shuffling of the amino
acids in the given protein sequences to keep their
distributions, we create a random protein family
that is later used to generate a multiple sequence
alignment background. For each position in the
background alignment, we compute its F-score. The
same procedure can be repeated, and the F-score
of each position in the alignment is averaged over
10,000 times as shown in Figs. 4 and 5. By compar-
ing the F-score of each position between the real
protein family and the random background, we no-
tice there exists significant difference between the
F-score distributions, which suggests that the pre-
dicted sites are indeed statistical significant. Fur-
thermore, we also conducted an receiver operating

Table 5 Prediction result for the two protein families

Mirny and Gelfand PORFIS

PurR/LacI AGC PurR/LacI AGC

Sensitivity 0.583
Positive predictive value 0.778
F-score 0.667

The total number of published important sites of PurR/LacI and AG
0.250 1.000 0.444
0.563 0.667 0.640
0.346 0.800 0.525

C is 12 and 36, respectively.
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Fig. 4 Results of the Monte Carlo simulations for the F-score distribution in the PurR/LacI family and the background.
The F-score of each site in the alignment is plotted in (a), (b) and (c), respectively along its positions.

characteristic (ROC) analysis, and the results are
summarized in Fig. 6. It shows that PORFIS performs
better on the PurR/LacI family. This may be due to
that the subfamily size variation is smaller in the
PurR/LacI family, so that PORFIS can more easily
identify the correct important sites, compared with
the AGC family as shown in Table 5. Though there
is some difference between the ROC curves for the
two protein families in our experiments, yet both
curves indicate reasonable performance of PORFIS.

6.2. Prediction of orthologous relations

We tested PORFIS on the AGC family, the glycopro-
tein hormone family (GPH), the �-proteasome fam-
ily and the growth hormone family (GH) to demon-
strate its performance in the prediction of orthol-
ogous relations. For comparison, CLUSTALW [31],
profile HMMs [2], PSI-BLAST [32] and Meta-MEME
[33,34] were tested on the same data. Ten times
of three-fold cross validation were used to evalu-
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Fig. 5 Results of the Monte Carlo simulations for the F-score distribution in the protein kinase AGC family and the
background. The F-score of each site in the alignment is plotted in (a) and (b), respectively along its positions.

Table 6 Orthology prediction accuracies of four families

Protein families AGC group
family (� ± �)

G-hormone
family (� ± �)

�-Proteasome
family (� ± �)

Growth hormone
family (� ± �)

CLUSTALW 0.841± 0.036 0.873± 0.066 1.000± 0.000 0.800± 0.070
ProfileHMM 0.987± 0.008 1.000± 0.000 1.000± 0.000 0.913± 0.113
PSI-BLASTa 0.855± 0.056 0.731± 0.103 0.934± 0073 0.859± 0.099
PSI-BLASTb 0.856± 0.051 0.836± 0.133 0.934± 0.073 0.831± 0.071
Meta-MEMEc 0.921± 0.050 0.950± 0.046 0.944± 0.078 0.916± 0.053
Meta-MEMEd 0.988± 0.008 0.992± 0.020 1.000± 0.000 0.859± 0.066
Mirny’s methode 0.828± 0.087 0.709± 0.326 0.956± 0.054 0.773± 0.092
PORFIS 0.976± 0.009 0.977± 0.029 1.000± 0.000 0.937± 0.026

a PSI-BLAST using the default iteration threshold 0.005.
b PSI-BLAST using iteration threshold 1e-10.
c The parameters were set as default: −nmotifs 1 and −maxw 50.
d The parameters were set as −nmotifs 5 and −maxw 20.
e We re-implemented Mirny’s method to find important sites and then applied the same classification procedure as in our

method to make predictions. Note we set cutoff MI = 0.8 and P(I) = 1/L, where L is the length of multiple sequence alignment,
after personal contact with Mirny.
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Fig. 6 Summary of the ROC analysis for important site
prediction; (a) is the ROC curve for the PurR/LacI family;
(b) for the protein kinase AGC family.

ate the prediction accuracy. In each run, we used
one third of the data for testing, and the remaining
data for training. The results were summarized in
Table 6.

The results show that PORFIS is comparable with
others. The likely reason why PORFIS outperforms
CLUSTALW and PSI-BLAST is the following. PORFIS
makes prediction based on functionally important
sites that are associated with subfamilies. Thus, it
avoids being misled by other irrelevant sites dur-
ing classification. On the other hand, to make clas-
sifications based on sequence alignments through
CLUSTAL and PSI-BLAST, we strongly rely on the se-
quence similarity; however, sequence alignments
may inherently contain some irrelevant sites that
can jeopardize the prediction. In addition to the
given protein families, Meta-MEME requires a set
of motif models found by MEME. Meta-MEME com-
bines these models into a single motif-based hid-

Fig. 7 The ROC curve for the classification of the GH
family.

den Markov model. As a consequence, the per-
formance of Meta-MEME in classification highly de-
pends on the motif models, such as the number of
motifs used to form the single HMM and the width
of the motifs, etc. The increase of motif number
and width generally reduces the complexity of the
final HMM produced, but it also incurs the loss of se-
quence information by over-generalizing sequence
segments into motifs. Moreover, as the motif width

F
f

ig. 8 The ROC curve for the classification of the GPH
amily.
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Table 7 Some important residues identified from the four families

Protein families

AGC group family G-hormone family �-Proteasome family Growth hormone family

PKAa 53 FSHa 7 �2a 3 GHa 12
82 24 7 18
84 39 8 62
87 59 9 63

129 96 15
133 LH 71 �3a 4 PLa 60
183 94 8 66
197 95 9 107
202 10 108
243 16

�4a 2
6
7
8

14

Reference [28,29] [37—39] [40,41] [42]

a The important site numbering is as follows: PKA conforms to pdb 1ATP, FSH conforms to gi120552, LH conforms to gi1170834,
�2 conforms to gi130880, �3 conforms to gi130861, �4 conforms to gi730374, GH conforms to gi1070555, and PL conforms to
gi130300.

increases, it is more likely to include non-conserved
positions in a motif. Similar to those irrelevant sites
in alignments produced by CLUSTALW or PSI-BLAST,
these degenerate positions can mislead classifica-
tion. Profile HMMs had an almost perfect prediction

Fig. 9 The ROC curve for the classification of the �-
proteasome family.

of the AGC family, the glycoprotein hormone family,
and the �-proteasome family, but it performs worse
than PORFIS on the growth hormone family. As HMM
methods usually require more training data to tune
the probability parameters, it is no surprise that

Fig. 10 The ROC curve for the classification of the AGC
family.
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Profile HMMs did the worst on the smallest family
(i.e. the growth hormone family). Like most other
methods, profile HMMs provides only classification
results, but lacks comprehensible interpretations of
the orthologous relationship. Unlike others, PORFIS
makes a prediction based on the functionally impor-
tant sites carrying biological meanings. Associations
between functionally important residues and evolu-
tionary relations can be established by our method.
The orthologous relations based on the functional
sites predicted by PORFIS can be further analyzed
by site-directed mutagenesis. By biological verifica-
tion, the functionally important sites prove to char-
acterize orthologs more effectively and efficiently.
Some of the important sites found by PORFIS are
presented in Table 7.

We also did the ROC analysis for the four families
by varying the F-score threshold in PORFIS. Since
each family contains multiple subfamilies, we con-
ducted ROC analysis for each subfamily separately
and put the curves together in a single figure. The
results are presented in Fig. 7 through 10. These fig-
ures show that most of the curves are clustered on
the upper left corner, which suggests that the POR-
FIS’s classification is not only reasonably accurate
b

7
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method is more accurate and efficient in general.
Unlike most previous works, besides the prediction
of orthologous relationship, our method also sug-
gests useful associations between functionally im-
portant sites and orthologous families. This type
of information may provide biologists with new re-
search topics and eventually become useful domain
knowledge.

The current version of PORFIS can be further im-
proved in two directions. Firstly, as multiple se-
quence alignment is essential to the identification
of important sites, we can improve the quality of
sequence alignment by incorporating more back-
ground knowledge to ensure the correctness of the
alignment. Secondly, associations between impor-
tant sites and their physicochemical properties can
be further exploited to refine the prediction accu-
racy.
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