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SELECTING THE NUMBER OF CLASSES UNDER LATENT CLASS REGRESSION:
A FACTOR ANALYTIC ANALOGUE
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Recently, the regression extension of latent class analysis (RLCA) model has received much atten-
tion in the field of medical research. The basic RLCA model summarizes shared features of measured
multiple indicators as an underlying categorical variable and incorporates the covariate information in
modeling both latent class membership and multiple indicators themselves. To reduce complexity and
enhance interpretability, one usually fixes the number of classes in a given RLCA. Often, goodness of fit
methods comparing various estimated models are used as a criterion to select the number of classes. In this
paper, we propose a new method that is based on an analogous method used in factor analysis and does
not require repeated fitting. Two ideas with application to many settings other than ours are synthesized
in deriving the method: a connection between latent class models and factor analysis, and techniques of
covariate marginalization and elimination. A Monte Carlo simulation study is presented to evaluate the
behavior of the selection procedure and compare to alternative approaches. Data from a study of how
measured visual impairments affect older persons’ functioning are used for illustration.

Key words: categorical data, factor analysis, finite mixture model, goodness of fit test, latent profile model,
marginalization, residuals in generalized linear models, Monte Carlo simulation.

1. Introduction

Latent class analysis (LCA), originally described by Green (1951) and systematically devel-
oped by Lazarsfeld and Henry (1968), Goodman (1974), has been found useful for classifying
subjects based on their responses to a set of categorical items. The basic model postulates an
underlying categorical latent variable with, say, J categories, and measured items are assumed
independent of one another within any category of the latent variable. Observed relationships
among measured variables are thus assumed to result from the underlying classification of the
data produced by the categorical latent variable. Recently, several authors extended the LCA
model to describe the effects of measured covariates on the underlying mechanism (Dayton and
Macready, 1988; Van der Heijden, Dessens, and Bokenholt, 1996; Bandeen-Roche, Miglioretti,
Zeger, and Rathouz, 1997), or on measured item distributions within latent levels (Melton, Liang,
and Pulver, 1994). This paper studies the problem of determining the number of latent variable
levels in latent class models that incorporate covariate effects both on the latent variable and the
measured indicators themselves (Formann, 1992; Hagenaars, 1993; Vermunt, 1996; Muthén, and
Muthén, 1998; Vermunt, and Magidson, 2000).

To reduce complexity and enhance interpretability, one usually fixes the number of levels or
“classes” in a given latent class model. When prior knowledge does not mandate the number of
classes, selecting the number of classes to fit becomes an analytic challenge. Standard practice is
to base selection on either the Pearson XZ or the likelihood ratio goodness of fit test, and to fix J at
the lowest number of classes that yields acceptable fit (Goodman, 1974; Bartholomew, and Knott,
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1999; Formann, 1992). One well-known problem of this procedure is that when a large number
of response patterns have low expected frequencies, the x> approximation for the test distribution
loses validity (Titterington, Smith, and Makov, 1985). In latent class models that build in regression
on covariates [henceforth, regression extension of latent class analysis (RLCA)], asymptotic x>
inferences certainly fail if covariates are continuous (one individual per response-covariate “cell’”).

Instead of testing the goodness of fit of a specified model, we might use a criterion for select-
ing among different numbers of classes. Unfortunately, the standard generalized likelihood ratio
statistic for testing Hy : J = Jo versus Hy : J = Jo + 1 is not asymptotically distributed as 2,
because the null hypothesis corresponds to a boundary of the parameter space of the alternative
hypothesis (Titterington et al. 1985, Section 5.4). The AIC criterion (Akaike, 1987), which trades
off the value of the likelihood at the maximum likelihood solution and the number of estimated
parameters, is an appropriate and commonly used alternative approach (Moustaki, 1996; Wedel,
Desarbo, Bult, and Ramaswamy, 1993). However, the use of AIC criterion has been proven to
favor models with a greater number of parameters. Moreover, researchers have shown that AIC
is not a consistent method because it does not depend on the sample size N (Kashyap, 1982,
Schwarz, 1978). Schwarz (1978) proposed an alternative method that replaces the number of
estimated parameters in the AIC (say, T') by T log N. This selection process, known as the BIC
criterion, was motivated by a Bayesian approach, and was proven to obtain a consistent estimate
of the parameter number.

One common feature of the above methods is that they all must fit the latent class model
repeatedly under different numbers of classes. Due to the slow convergence of commonly used
fitting methods (e.g., EM algorithm: Dempster, Laird, and Rubin, 1977; Gibbs sampler: Geman
and Geman, 1984), these procedures may be infeasible in practical applications. We develop a
tool for identifying the number of latent classes, which requires no model fit based on the assumed
class number and synthesizes ideas from factor analysis, latent variable theory and generalized
linear model residuals. In the next section, we briefly describe the RLCA model that this paper
studies. Section 3 motivates the proposed method with an analogy between finite mixture and
factor analytic models. To implement this connection, we also develop techniques of marginaliz-
ing and eliminating covariate effects from both the latent variable and the measured indicators.
Monte Carlo simulation is provided in Section 4 to evaluate the behavior of the proposed selection
procedure and the comparison to alternatives. In Section 5, data from a visual functioning study
are used to illustrate the proposed methods. We conclude by discussing procedure assumptions
and proposing areas that need future study.

2. Model

Let (Yi1, ..., Yim) denote a set of M observable polytomous outcome indicators and S;
denote the unobservable class membership, for the ith individual in a study sample of N per-
sons. Y;,, can take values {1, ..., K,;}, where K,,, > 2, m = 1,..., M, and §; can take values
{1, ..., J}. The LCA model is based on the concept of conditional independence in the sense that
the observed variables are assumed to be statistically independent within latent classes. Therefore,
the distribution for (Y1, ..., ¥Y;)) can be expressed as the finite mixture density:

J M KI)l
Pr(Yn=y1,...,nM=ym>=Z{n,-1'[1"[p,¥2§-}, e))

j=1 m=1k=1

where n; = Pr(S; = j) are mixing probabilities, p;uxj = Pr(Yim = k[S; = j) and yyr = I(ym =
k) = 1if y,;, = k; 0 otherwise.

To incorporate covariate effects into LCA, let (x;, z;) be the associated covariate vector for
the ith person, where x; = [1, xj1, ..., X; p]T are predictors associated with latent class S;, and
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z; = [Zi1, ..., Zim]; Zim = [1, Zimis - - - ,z,-mL]T with m = 1,..., M are covariates used to
build direct effects on measured indicators. The two sets of covariates may include any combi-
nation of continuous and discrete measures. To derive an appropriate selection process, we begin
by assuming that the two sets of covariates are mutually independent. In the provided simulation
study, we will address how sensitive our approach is to this assumption. The basic RLCA equation
can be stated as

j M Klll
Pr(Yii =yi.... . Yiu = ym|Xi 2) = ) {nj(x» [ ]"[p,ﬁz’;xzim)} : )

j=1 m=1 k=1

with 77;(x;) and puk;j(2im) as in the generalized linear framework (McCullagh and Nelder, 1989).
Often, (2) is implemented assuming generalized logit (Agresti, 1984) link functions:

n;(X;)
log | =———| = Boj + B1jxi1 +---+ Bpjxip 3)
nJ(x;)
and
[ pmkj’(zim)
log| ———
memj’(Zim)
i=1,...,N; m=1,... , M; k=1,...,(K,; —1);
j=1,...,J0=1; j'=1,...,1. @

:| = Ymkj’ + QmkZim1 + -+ + CLmkZimL

Notice that in the conditional probability model (4), we allow unrestricted intercepts and
level- and item-specific covariate coefficients, but we do not allow the coefficients to vary across
classes (i.e., agmi is dependent on m, k but independent of j). This constraint is logical if the
primary purpose of modeling conditional probabilities is to prevent possible misclassification by
adjusting for characteristics associated with item measurements. It is also necessary to unambig-
uously distinguish covariate effects on measured response probabilities from covariate effects on
class probabilities. Three assumptions complete (2):

C) Pr(Yii=y1,.... Yim = ymlSi, X, 2;)) =Pr(Yi1 = y1, ..., Yise = ymlSi, 2i);
(C2) Pr(S; = jlIxi,z;) =Pr(S; = jIxi);
(C3) Pr(Yii=y1, - Yim = ymlSi, z) = [1V_ Pe(Yim = Y |Si, Zim)-

For more detail on model assumptions, identifiability and parameter estimations, readers
may reference Huang and Bandeen-Roche (2004).

3. Selecting the Number of Classes to Fit

Latent class analysis may legitimately be viewed as the categorical variable analog of factor
analysis (Bartholomew and Knott, 1999). Both the number of factors in factor analysis and the
number of classes in latent class models can be seen as the number of dimensions needed to
characterize the systematic part of the response distribution. (Notice that the number of classes
required does not need to be the same as the number of latent variables required. In this paper, we
focus on the models that has one categorical latent variable with J categories.) This suggests that
procedures used to determine the number of factors to extract in factor analysis might provide a
useful basis for choosing the number of classes to fit in LCA and RLCA.

To motivate our model selection procedure, a commonly used criterion for determining the
number of components to retain in factor analysis is based on a fact derived by Guttman (1954):
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the number of eigenvalues of the population correlation matrix greater than or equal to unity
is a lower bound for the number of factors. This suggests using the eigenvalues of the sample
correlation matrix as a criterion for selecting the number of factors. We proceed to build a process
that uses Guttman’s criterion to determine the number of classes to fit in the regression extension
of latent class model. Building an RLCA selection process is complicated by the introduction of
predictor variables. In the case where covariates are only incorporated in the mixing probabilities
n; (i.e., no z;;;), Bandeen-Roche et al. (1997) found that, marginalizing over covariates, the joint
distribution of observed variables of RLCA had the form of LCA (1). As a result, the number of
classes may be inferred as for LCA ignoring the covariates. Model (2) is more complex because
of the additional covariate effects on conditional probabilities, and therefore needs further work.

In the rest of this paper, we first briefly define and justify Guttman’s eigenvalue method of
determining the number of components in factor analysis. We then build the connection between
finite mixture models and factor analysis, thereby extending Guttman’s factor analytic criterion to
determine the number of classes in a LCA model. To implement this connection to the proposed
RLCA, a method of marginalizing over the covariate effects of model (2) is developed to reduce
the complexity of the selection process nearly to the level of standard LCA.

3.1. Linear Factor Models and Guttman’s Selection Criterion

The general philosophy of factor analysis is to replace M-dimensional data by L-dimen-
sional data where L is much smaller than M. To be more specific, let r be an observable M x 1
random vector with mean g, and covariance matrix D(r). The linear factor model postulates that
r is linearly dependent upon an unobservable L x 1 random vector f and a M x 1 random error
& (Bartholomew and Knott, 1999):

r=pu.+4f+e, 5
where £ is a M x L matrix of coefficients with linearly independent columns, and f and ¢ satisfy
1. f and € are independent;

2. E(f) =0, Cov(f) =1I; and
3. E(¢) =0, Cov(e) = ¥, where ¥ is a diagonal matrix.

It follows that the covariance matrix of r
D(r) = £ + . (6)

The principal component method provides one way to estimate £ and ¥ in (6), as well as to
choose the number of components of f. D(r) is specified in terms of its eigenvalue—eigenvector
pairs (A1, eq), ..., (Ap,ey) with Ay > --- > Ay and eTe./ =1, eJT.em = 0 for j # m. By the
spectral decomposition theorem, and neglecting the contribution of the last M — L eigenvalues,
D(r) can be approximated by

Jire! v .
D) =[ VAer, -, Jirer | : + §
N L

—7 4+ ¥, )
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where ¥; = Var(r;) — Zj 12

of £. Analytically, we have

i i is the ith component of r, and ¢;; ; 1s the (i, j)th component

sum of squared entries of D(r) — ((N’,ET + ‘i’) < )‘%H + -4 )‘%v[ (8)

(Bartholomew and Knott, 1999, pp. 55-56). Consequently, a small value for sum of squares of the
neglected eigenvalues implies a small value for the sum of squared errors of approximation in (7).
If the number of components L is not determined by a prior consideration, then it is reasonable
to choose L equal to the number of eigenvalue-eigenvector pairs that gives a reasonable approxi-
mation in (7) (i.e., )L% gttt )‘%v[ reasonably small). Guttman (1954) recommended setting the
number of common factors L as the number of sample correlation matrix eigenvalues greater than
or equal to one. He claimed that this selected number could represent the actual structure of the
data. He also showed that the true number of common factors is bounded below by the number of
population correlation eigenvalues > 1, which gives theoretical support to this selecting method.

3.2. Connection between Finite Mixture Models and Linear Factor Analysis

Bartholomew and Knott (1999, pp. 151-155) built an important link between finite mixture
models and linear factor analysis. This connection was based on moment estimations for finite
mixture models as proposed by Lazarsfeld and Henry (1968). For the polytomous, categorical
response Y, in (1, 2), it is usually represented as a vector with elements being the indicators of
each category. To implement Bartholomew and Knott’s connection to our latent class models (1,
2), we need to further extend it to the case where each measured item is a vector.

Specifically, let (R;, ..., Rjy) be M observed “vectors”, where R;;, is a (K;; — 1) x 1
vector, m = 1, ..., M. Therefore, under the finite mixture model
J M
Pr(R;. ... ,RiM>=Z!n,»1"[fmj<R,-m|si=j) , ©)
j=1 m=1

where f,;(-|-) is a multivariate distribution with E(R;;|S; = j) = m,,(j) and Var(R;,|S; =
7)) =Zn(j),

J
E[Rip Rim) T =Y " (0j[En () + o (D (DT},

j=1
J
E[Rin(Rig)"1 =Y "(njp (g (N,
j=1
wherem,q =1, ..., M; m # g. We then have

Var(Riz) = E[Rim (Rin) "] — ERip) [E(R;) 1"

J J
=Y 0 Zn D+ Y LR () = ) By () = )T} (10)

j=1

Cov(Rim, qu) zm(qu)T] - E(Rtm)[E(qu)]

j=1
E[R,
J
Z T () — B (g () — )T, (m # @), (1)
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where i, = Z]JZ 1 MMy (7). The covariance matrix for (R;q, ... , R;y) may thus be written as
D(R;1, ..., Riy) =LL" + ¥, (12)

where W is a Z,IZIZI(K,,1 —1) x Znﬂf:l(l(m — 1) diagonal block matrix with mth block ¥,, =
ij-zl{nj):m(j)} (a(Ky — 1) x (K, — 1) matrix), and the elements of ZZIZI(K,,1 -1 xJ
matrix L = (L) are given by L,; = /nj{in,,(j) — Ry} m = 1,... , M;j = 1,...,J.
Notice that D(R;1, ... , Rjpr) is of exactly the same form as the covariance matrix for the linear
factor model, but with one important difference: columns of L are linearly dependent because

le /Tjlmj = 0, Vm. For this reason, the principal component approach (7) is not applicable,

where columns of £ are linearly independent. However, by Graybill (1983), Theorem 1.7.7, there
existsay ’1;12 1 (Kin— 1) x J* matrix  with linearly independent columns such that LLT = QT
where J* = rank(L) < J. This completes the correspondence. We can then write

DRil,... ,Riy) =QQT +¥. (13)

By applying the principal component method and Guttman’s selection criterion used in linear
factor models to (13), then, it might be reasonable to choose J* equal to the number of sample
correlation matrix eigenvalues greater than or equal to one.

3.3. Marginalization of the Regression Extension of Latent Class Model

The connection (13) is based on the finite mixture model (9), where no covariates are incor-
porated. To apply the connection (13) to the RLCA model (2), we develop a process to “eliminate”
the covariate effects, hence “marginalize” the model (2). The marginalization process we propose
includes two stages. Stage 1 aims to eliminate z;. We then apply the marginalization property
used in Bandeen-Roche et al. (1997) to average x; effects out of the latent prevalences.

3.3.1. Marginalizing the Covariate Effects on Conditional Probabilities

The key to marginalizing over z; is that the process must yield random variables that follow
a finite mixture distribution that is both independent of z; and has J mixing components. One
strategy for achieving such marginalization can be motivated by the properties of added variable
plots for linear regression models. In the following, we first introduce and extend this strategy
to extract z; from model (4); second, we develop the residuals for the generalized linear models,
which are needed for implementing the above strategy; third, we formulate the orthogonal condi-
tion under model (4), which is sufficient for completing the extension; and fourth, we generalize
the result from the binary-measured-indicator case to the polytomous case.

Consider the linear model

Y=x{B, +x1B; +e, (14)

where & has mean 0 and variance matrix V. Let Y denote the residuals of regressing Y on Xj,
and W = V! be the weight matrix. Then, it is well-known that if x; and x, are orthogonal
(i.e., X1Wx2 = 0), Y has mean x ﬁ 1 and variance V. Hence, the simple linear regression of Y
on x; yields exactly the same mferences about f, as if we performed the analysis on the more
complicated model (14) (Cook and Weisberg, 1982). Viewing the just-described stability of 8, as
analogous to the desired stability of latent class dimension, J, we now apply the added variable
property to model (4) to obtain marginalized conditional probabilities.

To present the key ideas more clearly, henceforth, the measured indicators (Y;q, ... , Yip)
are assumed to be binary (i.e., K| = --- = Kj = 2). We then generalize the result to polyt-
omous indicators as a final step. To make the analogy to (14), notice that (4) can be viewed as
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fitting a logistic regression of Y;,, on S; adjusting for z;,,, separately for each m. To see this, let
Sij=1S=j)fori=1,...,N; j=1,...,J — 1. We can reparameterize (4) as

logit[E(Yim|Si, Z5, ) =S  y,y + (Z5,) 0y fori=1,... ,N; m=1,..., M, (15)

m

where

- - - N
S; =11, Si1, ..., Si(J—l)]T;ZiCm = [Zim1—Zm1), - - (ZimL_ZmL)]T’Zmp = (1/N) Zi:] Zimp
(“centered” covariate matrix); ¥, = [Vim0, Vi1, --- ym(J,l)]T; and oy = [ctimy - 5 &rm]T.

Therefore, for any realization of S;, (15) is a logistic regression with dependent variable: Y;;, and
predictors: S;, Z¢, .
Next, the problem becomes how to calculate residuals from the generalized linear model
logit[E(Yim|Z5,)] = (me)Tot’k fori=1,...,N; m=1,... , M. (16)

m

If we estimate o}, by the method of iteratively reweighed least-squares (IRLS), and using the fact
that logit is the canonical link function for binomial data, &:‘n as of the (¢ + 1)th iteration can be
written

@t +1) = [ZEVuOEE) T ZEV, OYE (0], form=1,..., M. (17)

Here, “hat” represents the estimated values; Y,, = [Yim, - - . , Yml LV, = diag(Vim, - -- s Vam),
Vim = Var(Yin); L, = [Z5,,, . .. , L%, ]; and

Y5, (1) = (Z5) 6 (1) + Vi, ' (O1Y 0 — i (D] (18)

with iy, (1) = E(Yn|Z5,)| o =" (1) Comparing with the ordinary weighted linear regression, \A’m,

Y and (Z,)T &, can be thought of as the weight matrix, “pseudo-observation” and “pseudo-fit-
ted-value”. So, “pseudo-residuals” are given by

Ry = [Rims - » Ryml =Y, — (ZE) 6k, = Vo L (Y — i) (19)

A logistic regression version of the partial residual plot based on the pseudo-residuals (19) was
suggested by Landwehr, Pregibon, and Shoemaker (1984). They used both simulated data and
real examples to show that the partial residual plot based on (19) can detect possible nonlinearity
between outcomes and predictors.

To extend the orthogonality property in the linear model (14), we need to assume that

(C4) S and Z¢, are orthogonal, that is, SW,, (Zf”)T =0,

where S = [Sy,...,Sy], and W, = V,, is the weight matrix in the model (15). This assump-
tion cannot be verified because S is unobservable. However, by assumption (C2), S; and z; are
independent of given x;. Thus, if

(CS) x; and z;,, are independent,

then S and Z, are mutually uncorrelated. Since E[W,l,,/ 2 (an)T] = 0, thisimplies E[SW, (Z, yI =
0. Thus, if (C5) is true, (C4) holds to an increasingly close approximation as N — o0. (C5) can
be verified empirically by calculating the sample correlation matrix among covariates. As x; seeks
to estimate the effects of risk factors on the conceptual outcome and z;,, aims to adjust for charac-
teristics associated with measured indicators to prevent possible misclassification of latent classes
(Huang and Bandeen-Roche, 2004), analysts may select two exclusive sets of covariates based on
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study objects and data characteristics. Appropriate statistical methods (e.g., principal component
analysis) can also be used to uncover approximate linear dependencies among covariates.

Under assumption (C5), we can then extract the Z{, from conditional probabilities by treat-
ing the residuals from the model (16) as new response variables and regressing them on S;. We
propose to substitute the estimate of 7, in the linear model

Rim =S} yi +éeim i=1,....,N; m=1,...,M (20)

for the estimate of y,, in the model (15). A formal justification (Appendix A) shows that y and
¥ can be very close under reasonable regularities.

The above results can be extended to the cases where (Y1, ... , Y;)) are polytomous as in
(1) and (2). Under polytomous item responses, the pseudo-residuals for mth item can be written
as

Ry =[RI)T ... RE T = V)Y — D). 1)
where
“p” denotes polytomous responses and “hat” denotes the estimated values;
R = [Rimi.- - Rimk, -0 Y = (YD), .., (YR, TT with Y! = [Yipn, ...,
Yimkn—01T and Yipx = 1Y = k); Vi, = diag(VP ..., V¥ ) with VI = Var(Y! );
wh =EYh|ZS);andi =1,... Nom=1,... ,M,k=1,..., K. Thus, (20) becomes

R), =) v+, (22)
Kp—1
——

where 8}, = [1Kn=D g{fn=D g T with AKn—D = diag(A, ... A)and A =1
or Sijs vin = [rp) s ) s )T Withy ) = Wt s Yk, —1;1"; and

i=1,...,Nm=1,... M,j=1,...,(J—1).

Notice that the variance of efm in (22) varies through the associated covariates (X;, Z;;;) and
latent class S;. Therefore, the marginalization process does not marginalize the covariate effects
from the variance. However, Liang and Zeger (1986) showed that, using generalized estimating
equations, the parameter estimate is still consistent even if we specify an incorrect variance struc-
ture. Since the maximum likelihood approach is used for parameter estimates, we can assume
that the variance of efm does not depend on associated covariates while still maintaining the
consistency of y,. Therefore, it is reasonable to think of the marginalization of model (2) over
z; as

J M
Pr(R. ... . RO Ix) =) !n,»(x?ﬂ) [T @RS =t (23)

j=1 m=1

where f,,j(:|") is a multivariate distribution with ER! [S; = j) = w,(j) = >, + yf;j if

j=1...,J =1yl if j = J;and Var(R! |S; = j) = Z,,(j). The conditional independence

mm
of (R, ... R/ given S; holds in equation (23) because R? =R? (Y! Yform =1,... M,
and therefore (Rﬁ, ce Rl.'J ) are conditionally independent given S;, z; and approximately inde-

pendent of z; given S; due to marginalization. Since the estimators of y,, in (15) and p}, in (20)
are asymptotically equivalent, this marginalization process keeps the number of classes fixed.

3.3.2. Marginalizing the Covariate Effects on Latent Prevalences

Next, we need to marginalize x; effects from the latent prevalences of (23) to use the con-
nection built in the previous section. The latent variable regression model (23) possesses the nice
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property that the covariates associated with class prevalences, X;, can be ignored. This is seen by
marginalizing over the covariates X;:

PrR/,... ., R} = /Pr(Rfl,... . R7,Ix)dG (x;)

J

M
= {[/ nJ»(x?ﬂ)dG(xi)} [1‘[ Fnj RS 1Si = j)“
=1 m=1

J M
=y {njf [ @IS = j)} (24)

m=1

with G (x;) representing the probability distribution of x;. Thus, the finite mixture model (24) can
be thought as the marginalized version of model (2) over (x;, z;).

The proposed two-stage marginalization procedure can be applied to the entire range of
RLCA models. For RLCA that only incorporates covariates in latent prevalences, stage one is
skipped, so that R = Y! and f;,;(:|") is a multinomial distribution in (23). The marginal-
ized model of RLCA which only allows covariate effects in conditional probabilities is (24) with
n;=nj.

3.4. The Eigenvalue Criterion of Selecting the Number of Classes in RLCA

By implementing the connection between finite mixture models and linear factor analysis
to (24), we thereby recommend a method of choosing the number of classes to fit in RLCA (2),
similar to Guttman’s eigenvalue criterion in linear factor models.

Before we describe the method, let R(R/}, ... , R/, ) = V7I/2DRY, ... R, H)V™1/2 de-
note the correlation matrix for (R, ... ,R/},), where V = diag(Var(R/), ..., Var(R})).
Further, let

wi()y - w(Jd) U
U= : : = :
mp (D) oo () Uy

with p,,,(j) as defined in the text following equation (23) for all m, j.

Theorem 1. Suppose that

(C6) Yo (Ky—1 > —D=max{(Ki —1),...,(Ky — D}
(C7) therank of Uy, is (K, — 1), form =1, ..., M,
(C8) the columns of U are linearly independent; and

(C9) the conditional variance X, (j) as defined in the text following Equation (23) is positive
definite, and '77 in (24) is greater thanO,m = 1,... , M, j=1,...,J.

Then, the number of latent classes J > (r + 1), where r denotes the number of R(Rﬁ e Rf u)’s
eigenvalues that are greater than or equal to one.

The proof of Theorem 1 is detailed in Appendix B. In assumption (C6), we assume that the
dimension of the parameter space for the latent structure is not less than the one for the marginal
distribution of any given pseudo-residual Ripm, but it is not greater than the one for the marginal
distribution of all M pseudo-residuals. This assumption is reasonable if we think of latent variable
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modeling as a dimension reduction process. Assumption (C7) requires all K, — 1 elements of Ripm
to have distinct conditional distributions given on the latent class, and assumption (C8) requires
that distributions for pseudo-residuals are distinct across latent classes. Assumption (C9) excludes
degenerate conditional distributions and latent classes. In practice, it is difficult to check these
assumptions because the latent variable distribution is unknown. However, if f,,; (-|-) in (24) fol-
lows a multinormal distribution, Yakowitz and Spragins (1968) showed that, under assumptions
(C7), (C8) and (C9), the finite mixture model (24) is identifiable. Therefore, this theorem works
for an identifiable regression extension of latent class model (2), which implies the identifiability
of the finite mixture model (24), with the true number of latent classes met assumption (C6).

In large samples, the theorem provides a theoretical justification of how the proposed selec-
tion criterion approximates the true number of classes. This result is based on the population
correlation matrix, not the sample correlation matrix. In practice, we recommend using the fol-
lowing algorithm to estimate the number of latent classes:

Step 1. Calculate the pseudo-residual of ith participant’s mth response item
P (\iP \-lyP _ P P yP ~p : P .
R;, = (V;, )" (Y;,—M;,),where V. Y. andji; asdefinedin(21),andi =1,...,N;
m=1,... M
Step 2. Create the sample correlation matrix
C := T '/?HT'/2, where H = (H,,,) with elements H,,;, = 1/N — 1Y (R} —
R,ﬁ)(Rl.’;—Rg)T,R,ﬁz NN R? m,g=1,..., M;and T = diag(Hy1, ... , Hym).

im’
Step 3. Select the number of classes as one plus the number of C’s eigenvalues that are greater
than or equal to one.

This algorithm also works for the straightforward finite mixture model, where observed outcomes
Yim’s can follow any distribution and no covariate effects are added. In Step 1, let Rfm = Yim,
and then Step 2 and Step 3 can be used and are valid because of the link between finite mixture
models and factor analysis (Section 3.2).

4. Simulation Study

The simulation study contains two parts. The first part aims to examine the performance of
the proposed method, and the second part focuses on the comparison to alternative approaches.

4.1. Performance of the Proposed Method

Here, we specifically aim to address three issues. First, we aim to compare how the estimated
numbers of classes vary under different true numbers of classes and different parameter (i.e., &, 8
and p) structures. Second, the proposed method assumes that S and Z, are mutually uncorrelated
for each m, which excludes the common situation of correlations among x; and z;. Thus, a second
aim is to evaluate the sensitivity of the proposed method to this assumption. Third, the sample
correlation matrix is used to approximate the actual population correlation matrix. Therefore, the
larger the sample size, the more accurate the approximation. How the sample size affects the
estimating procedure is also studied.

Two different RLCA (2) models were simulated. One was a three-class RLCA with five two-
level measured indicators, two covariates associated with conditional probabilities, and two cova-

riates associated with latent prevalences (i.e., J =3, M =5, K1 =---=Ks =2, P =L =2).
The other was a six-class RLCA with five three-level measured indicators and the same covar-
iate setting as the three-class model (/ = 6,M = 5Ky = --- = K5 =3,P = L = 2).

For each model, the model parameters §,; were determined through four methods. For each
pef0,1,...,P}
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e equal parameters: 8,; = ki, j=1,...,(J —1);

e randomly selected: 8,; = koU;, U; ~U(0,1), j=1,...,(J—=1);

e moderately decreasing: B,; = k3/j, j=1,...,(J —1); and

e rapidly decreasing: 8); = k4/2j, j=1...,(J—-1),
where ki, ... , kg were constants such that Zf;ll Bpj equaled the preselected total. These methods
were also applied to create {yjmr, j =1, ..., J} forall m, k, and lagme, m=1,... ,M; k=
L,...,(Kwu— D}forall g. All (Bpj, Vjmk» ¢gmi) pairs were generated by the same method.

To determine the effect of assuming mutually uncorrelated S and Z¢,, the covariates associ-

ated with conditional probabilities (z;,1, zim2,m = 1,...,5) and latent prevalences (x;1, xj2)

were generated to be

e independent:
zim1 ~ Bernoulli(0.4), z;;»» ~ Normal(0, 1),i =1, ..., N for each m,
xj1 ~ Bernoulli(0.6), x; ~ Normal(0, 1),i =1,... , N,
all zj;ug and x;, are mutually independent;

e weakly correlated:
(Xi1, Zills - - - » 2i51) ~ Multinomial(1; 0.1, 0.18, ... , 0.18),
(xi2, Zi12, - - - » Zis2) ~ Multinormal(x = 0, “%,2)’ where 03'2 has 1 in the diagonal and
0.2 in others; and

e highly correlated:
(xi1, Zi11s - - - » Zi51) ~ Multinomial(1; 0.5, 0.1, ..., 0.1),
(xi2, Zi12, - - - » Zi52) ~ Multinormal(p = 0, oG g).

We fit each model under several different sample sizes. For the three-class RLCAs, the
selected sample sizes were 200, 500 and 1,500, which gave roughly 6, 16 and 50 individuals per
parameter of RLCA (2), respectively. For the six-class RLCAs, we set N = 500, 1,500 and 3,000,
which gave 5, 15 and 30 individuals per parameter, respectively. The observable measurements
Y; were then generated from each different model structure with 100 replications.

Distributions of the estimated numbers of classes from different model settings are displayed
in Figure 1 (three-class RLCAs), and Figure 2 (six-class RLCAs). The notable features are: first, in
the three-class RLCA, the proposed method tends to give correct class number estimates for ran-
domly selected model parameters but overestimate the number of classes for the equal parameter
setting. The distributions of the estimated numbers of classes are similar between moderate and
rapid parameter settings where the method tends to underestimate the number as the sample size
became larger. In the six-class RLCA, the proposed method is more likely to give the correct esti-
mated values for equal and moderate parameter settings than for other parameter settings. Second,
comparing the estimated numbers of classes among models with different covariate associations,
the estimated numbers are more likely to be accurate for models with independent x; and z; than
for models with correlated x; and z;. Moreover, the higher the correlation, the more likely are
the estimated numbers to be too low. We also found that moderate and rapid parameter settings
and large sample sizes can inflate the underestimation created by the violation of independence
assumption. Third, as the sample size per parameter increases, the proposed method’s tendency to
underestimate the number of classes increases. This tendency becomes more apparent when the
association between x; and z; is stronger. Nonetheless, the proposed procedure gives a reasonable
prediction of the number of classes to fit, in all cases, only rarely overestimating the number of
classes at N > 200 or underestimating the number by more than one. Generally speaking, our
proposed approach under the settings of the equal or moderate parameter structure, independent
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x; and z;, or small sample sizes per parameter tends to give a more accurate class number estimate
than under other types of settings.

4.2. Comparison to Alternatives

We compare our proposed method with the three most frequently used approaches: (a) the
standard approach, where the RLCA model is fit under different numbers of classes and the
selected class number is the lowest number of classes that yield acceptable fit under the likelihood
ratio goodness of fit test; (b) the AIC criterion, where the estimated number of classes is fixed at
the class number J that minimizes —2log L +2-T withlog L = ZlNzl log Pr(Y;|x;, ;) being the
log likelihood function and T the total number of parameters in the RLCA model; and (c) the BIC
criterion, where the estimated number of classes is fixed at J that minimizes —2 log L 4-log(N)-T
with N being the total number of observations.

In this simulation, we focus on comparing the performances of different approaches under
“ideal” conditions. Therefore, we limited the simulation to models that fit the required assump-
tions of each approach. To meet the independent assumption (C5), the covariates associated
with conditional probabilities and the covariates associated with latent prevalences were cre-
ated independently. To avoid sparse response patterns that might invalidate goodness of fit test,
all incorporated covariates were binary. Each approach was applied to observed measurements
Y;, generated by two different RLCA (2) models. One was a three-class RLCA with M =
5, Ki =--- = Ks =2,P = L = 1, and the other was a six-class RLCA with M = 5,
Ky =---= K5 =3,P = L = 1. For both models, all parameters were randomly generated
from U(0,1) (the “random” parameter setting described in the previous subsection), and the binary
covariates associated with conditional probabilities z;;,1,m = 1,...,5 and latent prevalences
x;1 were mutually independent (the “independent” covariates following the Bernoulli distribution
described in the previous subsection). As we discuss in the introduction, the standard approach
is sensitive to sparse response patterns. We therefore used large enough sample sizes to avoid the
sparseness problem. For the three-class RLCA, the selected sample sizes were 500 and 1,500,
which gave 16 and 47 individuals per response pattern of measured indicators, respectively. For
the six-class RLCA, we set N = 3,000 and 6,000, which gave 12 and 25 individuals per response
pattern, respectively. 100 replications were performed for each generated RLCA model.

Results of the simulation are shown in Figure 3. In the three-class model, our approach per-
forms best and the BIC performs worst among all approaches for the sample size 500. As a sample
size of 1,500, all four approaches perform almost equally well; in fact, our approach is a bit more
likely to underestimate the number of classes than other approaches. When the true number of
classes is six, our approach tends to underestimate the number of classes by one. Our approach’s
performance is the best among all approaches for the six-class model, and the outperforming is
more apparent for N = 3,000 than for N = 6,000. The standard approach and the BIC criterion
are likely to underestimate the number by more than two. The AIC criterion can overestimate the
number of classes as the sample size becomes larger. In summary, our approach is able to provide
a good number-of-classes estimation and tends to underestimate the number by one as the sample
size per response pattern became larger. The standard approach and BIC criterion require very
“unsparse” data to obtain correct estimates. The AIC criterion may overestimate the number of
classes for large sample sizes. Our approach can outperform existing methods more when the data
become sparse.

5. Example

To illustrate the proposed selecting method, we use data from the Salisbury Eye Evaluation
(SEE) project. The SEE project is described in detail in West, Munoz, Rubin, Schein, Bandeen-
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FIGURE 3.

Comparison among four different approaches in estimating the number of classes. In each plot, black bars are based on
the standard approach, light bars the AIC criterion, dark bars the BIC criterion and white bars the proposed approach.
Clockwise from top left, plots describe results from: the three-class model with sample size 500, three-class model with
sample size 1,500, six-class model with sample size 6,000 and six-class model with sample size 3,000.

Roche, Zeger, German, and Fried (1997). Briefly, SEE is a population-based, prospective study
of how vision affects functioning in older persons. An age- and race-stratified random sample of
Salisbury, Maryland residents between the ages of 65 and 84 years was drawn from the Health
Care Financing Administration (HCFA) Medicare Database. Twenty-five hundred and twenty
persons agreed to participate in both home interview and clinic examination.

The analysis we report in this paper aims to describe the association between functioning in
activities that require seeing at a distance (far vision functioning) and psychophysical measures
of visual impairment, adjusting for potential confounding variables. In the SEE project, far vision
functioning was determined using the self-reported difficulty on doing five activities: reading
street signs in daylight, reading street signs at night, walking down steps during daylight, walking
down steps in dim light, and watching TV. Here, we measured difficulty as a binary indicator
(1=having difficulty; 2=no difficulty) for each activity, except for reading street signs at night
which was measured as a three-level categorical indicator (1=extreme or moderate difficulty; 2=a
little difficulty; 3=no difficulty). Visual impairment was determined using multiple psychophys-
ical vision tests (Rubin, West, Munoz, Bandeen-Roche, Zeger, Schein, and Fried, 1997). Our
analysis includes five tests: visual acuity, contrast sensitivity, glare sensitivity, stereoacuity, and
central visual field.

Three latent class models for self-reported far vision functioning (measured indicators) were
fitted. We started with an LCA model, which did not incorporate any covariates. Then, two differ-
ent RLCA models (2) were fitted as a function of visual impairment variables, the number of
reported comorbid diseases, and the following personal demographic characteristics: age, Mini-
Mental State Examination score (Folstein, Folstein, and McHugh, 1975), years of education,
gender, race, and General Health Questionnaire depression subscale score (Goldberg, 1972). The
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first RLCA model (RLCAL1) treated the vision and disease variables as primary predictors of
latent class membership (x;) and modelled the personal characteristics as having direct effects
on measured indicators themselves within classes (z;). x;’s would help us obtain the effect of
visual impairment on the underlying far vision functioning. We adjusted for z;’s, which were
identified as extraneous influences (other than the underlying far vision functioning) that affected
the individual’s reporting in the questionnaire, hence hopefully could yield a more accurate latent
class. It is arguable that age seems a good predictor of the underlying latent class. The second
RLCA model (RLCA2) allowed age to affect both class membership and measured indicators
themselves. Notice that, in RLCA2, two sets of covariates x; and z; are not independent. The
analysis was applied to the subsample of participants who rated each far vision item and also had
no missing covariates (N = 1, 641). While estimating each model, several sets of starting points
were used to ensure global maxima.

The proposed method, standard approach, AIC criterion and BIC criterion were used to deter-
mine the appropriate class numbers of different latent class models. For the LCA model, where no
covariates were incorporated in predicting conditional probabilities, the proposed method used
measured indicators as pseudo-residuals. Various elements of the covariance matrix of measured
indicators are

Pr(Yimk =1) —Pr(Yimx = D Pr(Yigs = 1) ifm=q and k=s
COV(Yimk’ Yiqs)z _Pr(yimk = ])Pr(Yiqs = 1) ifm:q and k;és
Pr(Yime =1, Yiqx =1) = Pr(Yjmk = I)Pr(Yiqs =1 ifm?éQ-

These variances were estimated by replacing the probabilities with the sample averages. Eigen-
values of the estimated correlation matrix are 2.69, 1.02, 0.81, 0.70, 0.40 and 0.38. Therefore, the
proposed method estimates the number of latent classes equal to three. The goodness-of-fit tests
for LCA models with 2-, 3-, 4- and 5-class result in p-values < 0.001, 0.02 and 0.07 respectively.
The standard approach gives a five-class model. Results of AIC and BIC for LCA are shown in
Table 1. Both AIC and BIC criteria result in four classes.

TABLE 1.
AIC and BIC criteria for selecting the number of latent classes: the SEE-project far vision functioning data

Model/Method AIC BIC
LCA
2-class 6579.69 6649.93
3-class 6490.46 6598.52
4-class 6390.71 6536.60
5-class 6392.96 6576.66
RLCAT1*
2-class 6309.38 6606.55
3-class 6153.87 6521.28
4-class 6061.47 6499.11
5-class 6064.29 6572.18
RLCA2*
2-class 6308.87 6611.44
3-class 6157.80 6536.02
4-class 6064.98 6518.84
5-class 6067.56 6597.06

Note: RLCA1 = the regression extension of latent class analysis model with age effect only on conditional probabilities;
RLCA?2 = the regression extension of latent class analysis model with age effect on both latent prevalences and
conditional probabilities.
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Because continuous covariates were incorporated in the RLCA models, sparseness of re-
sponse patterns failed x2 approach and the standard approach was thereby invalid. For RLCA1,
the sample correlation matrix of pseudo-residuals as defined in Step 2 of the proposed algorithm
has eigenvalues 3.10, 1.03, 0.70, 0.52, 0.40 and 0.26, and, thus, the estimated class number based
on the proposed method is three. AIC and BIC both estimate the class number of RLCA1 as
four (Table 1). Because RLCA?2 has the same incorporated covariates on conditional probabilities
as RLCA1, the sample correlation matrices of pseudo-residuals for both models are the same,
therefore, the proposed method estimates a three-class RLCA2 model. From Table 1, AIC and
BIC criteria select the four-class RLCA2 model.

All selection criteria give consistent class number estimates across LCA, RLCA1 and RLCA2.
The number of dimensions needed to characterize self-reported far vision functioning does not
confound with adjusted factors. Huang and Bandeen-Roche (in press) analyzed the SEE far vision
data and adopted a four-class RLCA1 model based on AIC and BIC criteria. The model diagnosis
revealed an appropriate fit to the data. A similar diagnostic approach is applied to the three-class
RLCA1 model (not shown) and shows a reasonable model fit. Comparing the estimated latent
classes of three- (not shown) and four-class models (Table 1 of Huang and Bandeen-Roche, in
press), we find that the three-class model maintains the able and severely disabled classes in the
four-class model, but combines the reading-signs difficulty and descending-steps difficulty classes
as one class. The failure of separating out the descending-steps difficulty class using the proposed
method may be due to high correlation between two types of covariates x; and z; (e.g., the sample
correlation was 0.27 between age and visual acuity, 0.34 between age and contrast sensitivity)
and relatively large sample size per parameter (30, 24, 20 and 17 individuals per parameter for
2-, 3-, 4- and 5-class model, respectively). As seen in the simulation study, these factors might
cause the proposed method to underestimate the number of classes.

When implementing the proposed method in analyzing the SEE data, we did the following:
(1) We started with a three-class RLCA model and performed the model diagnosis. (2) Diagnostic
results revealed a reasonable fit with mild model violation; thus, we augmented the class num-
ber and refit a four-class model. (3) The same diagnostic approach was applied and showed an
improved and satisfied model fit. (4) We consulted with the SEE scientists to ensure the resulting
four classes having meaningful interpretation.

6. Discussion

In this article, a computationally simple method was proposed to choose the number of
classes to fit. A connection between finite mixture models and factor analysis was built, such
that commonly used rules for determining the number of components to retain in factor analysis
could be applied to select the number of classes to fit in finite mixture models. We then used the
marginalization technique to reduce the complexity of latent class models with covariate effects
on both latent prevalences and conditional probabilities to the level of latent class analysis, so that
the built connection could be applied to the marginalized models. A computer module of imple-
menting the RLCA model (2) is created using statistical package S-PLUS (Statistical Science
Inc., 1995) and programming language C. It provides initial values for the estimation, parameter
and variance estimates, model identifiability checking, the number of latent classes selection,
and graphical displays for model diagnosis. This computer module is available from the author
(e-mail: ghuang @stat.nctu.edu.tw).

The proposed procedure does not require repeatedly fitting RLCA model as in traditional
goodness-of-fit methods, and can provide an estimate of the number of classes when a prior
knowledge does not mandate the class number. A simulation study showed that this method pro-
vides a reasonably accurate estimate of the class number and performs better than other existing
approaches. The proposed method tends to give a lower class-number estimate when there is high
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correlation between covariates for latent prevalences and covariates for conditional probabili-
ties and large sample sizes. In practical use, we suggest that readers select an initial estimate of
the class number by combining the proposed procedure and scientific considerations (e.g., prior
knowledge about the class number and enhancing the interpretability of the resulting latent class).
The inferences of RLCA may be done by fixing the number of classes at the selected number, and
the analyst may then diagnose the model fit. If a poor fit is found, the implications for inference
and interpretation must be elucidated. For descriptive analyses, the analyst might augment the
class number and re-estimate the model.

From the simulation results, the proposed methods were more likely to underestimate the
number of classes at larger sample sizes. This differs from the phenomenon seen in determin-
ing the number of components in principal component analysis, where the trend is toward more
accurate estimates as the sample size increases (Humphreys, 1964; Francisco and Finch, 1979).
The possible reasons for this difference may be: (a) From Theorem 1, the proposed method is
actually based on a lower bound. When the sample size gets larger, population and sample cor-
relation matrices become closer; therefore, we are more likely to obtain the lower bound. (b)
The proposed method must marginalize the covariate effects from conditional probabilities, and
large sample sizes inflate errors from the marginalization process. The simulation study shows
that in most cases, the proposed method underestimated the number of classes by less than
two.

We adopted Guttman’s (1954) criterion to choose a class number that approximates (24) rea-
sonably well. This criterion is the most commonly used rule in factor analysis, and several studies
have found that it often leads to accurate results when the eigenvalues of the correlation matrix are
high and the number of measured variables is moderate (Humphreys, 1964; Francisco and Finch,
1979). However, many authors have pointed out that Guttman’s criterion can grossly overestimate
the number of factors and be inconsistent in cases with low eigenvalues and a large number of
variables (Cattell and Vogelmann, 1977; Linn, 1968). One alternative method for choosing the
number of factors is the scree test (Cattell, 1966). This test successively plots the eigenvalues of
the correlation matrix from large to small, and picks the estimated number of factors as the low-
ermost point that contributes to “substantive” down of the plot (Cattell, 1966). Unlike Guttman’s
criterion looking at the absolute value, the scree test provides the distribution of eigenvalues,
and researchers can then incorporate scientific considerations to choose the number of factors.
In our selecting procedure, the scree plot might be useful in cases where several eigenvalues are
closed around one, and the plot can provide useful information to modify the estimated number
of classes.

In developing our method of selecting the number of classes to fit, we derived a margin-
alization technique and a connection between finite mixture models and factor analysis. These
two properties are applicable to many applications besides ours. First, in ordinary linear regres-
sion, graphical diagnostic displays have proven very useful for detecting lack of fit of a model
to data. The discreteness of categorical outcomes makes it difficult to interpret such displays.
Several authors (Landwehr et al., 1984; Wang, 1985, 1987; O’Hara Hines and Carter, 1993) had
developed residuals under the generalized linear model framework, and successfully implemented
these residuals in creating diagnostic plots. In marginalizing covariate effects of RLCA, we pro-
vided a formula for residuals of categorical responses, which were a “vector’-version extension
of previous residuals, and could be applied broadly. Second, the link between finite mixture and
factor analysis has another important implication. The method of fitting used in factor analy-
sis could be used to estimate Q and ¥ in (13), and then the estimated conditional expectations
i, (j) and variances ﬁm (j) could be obtained through (10) and (11). These estimated condi-
tional expectations and variances could help to determine the structure of latent class model.
By appropriate transformation, they might provide alternative estimates for model parameters in
LCA.
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Appendix A: Justification of the Marginalization Procedure for z;

To formally justify the marginalization procedure for z;, let’s treat S;,;, as one FIXED matrix
(i.e., the class memberships of all individuals are pre-determined). We first estimate y,, and a,,
from (15). By IRLS, the (¢ 4+ 1)th iteration can be written as

},;’"(t—kl) = S v c - S X7a a
[ o (t + 1) }‘( [ Z, ] Vo [ST @)t ] ) < [ ze ] Vi, () Yo 0) )

where an () refers to the value of V,, evaluated at 7,,(t) and &, (¢), and Y% () = STp,,(¢) +
(Z5) & (1) + Vi () Yo = ft, (0] with 15, (1) = EYnlSu. Z5Dly (1300, =t )+ SINCE
SW,,(Z)T = 0 ((C4)), then

[ Pt +1) ] 3 [ (SVE40ST) "1 SVE (1) Y4 (1)) }
G+ 1) |~ | @ V0@ N ZEVE(OYS () |

m

Also, the (¢ + 1)th iteration estimate of y, from linear model (20) is
P+ 1) = SV, 08D SV (0OR,) = SV, 08N T SV, ()Y},

where \7;; () is defined as its counterpart above but evaluated at , (). Suppose that both variance
estimates are very close to the true variance (i.e., an (1) ~ \7;; (t) =~ V,,). Then, )7:‘,, from (20) is
close to p,, from (15) if the difference between Y2, and Y, is negligible. The difference between
Y! and Y}, can expressed as

YO —YE = [(S"P,, + (ZE) T am) — @) &k — Vi [l — ikl

The first part of right-hand-side is the difference between pseudo-fitted-values from (15) and (16),
and the second part is the difference of pseudo-residuals between two models. This negligible
assumption assumes that S,, contributions on fitted values and residuals are almost the same.
Under ordinary linear models (i.e., identical link and identity correlation matrix), two differences
are the same. Therefore, it is reasonable to make such an approximation.

Appendix B: Proof of Theorem 1

For simplicity, we assume K| = --- = Kjy = K (i.e., the levels of items are all the same)
in the following proof. Extension to allow the levels being different is straightforward.
From (10, 11, 12),

RR!, ... ,RI) =V 2LLTV1/2 L v=129y~1/2 — GGT +E, (A1)
where

V = diag(Var(R})), ..., Var(R!))) =: diag(D11, ... , Dym),

1 1 1

D /ln Dyfla - Dylhy G
_1 _1 _1
| | | G-M

DAt DA - DA
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J _1 _1
E =V '/2WV~2 =diag | Y (niD ' Ti()D; ), - Z{n*D 4 (O]
j=1

Let
B=R®R/, -, R/ —Lx_1m. (A2)
where [(x 1)y isa (K — 1)M x (K — 1)M identity matrix. From (A1) and (A2),
GG" =B+ (x_nu — E). (A3)

Since E is a block diagonal matrix, the eigenvalues of (Itxk —1ym — E) are equal to the eigenvalues
of each of the blocks (Ig—1 — E1) , Ix—1 — Ep), where

E, = ijl{nj Z (])Dmm} m =1,..., M. Notice that, from (A1),

E,=Ig 1 —G,Gl, m=1,..., M. (A4)

Since J/ — 1 > K — 1 (assumption (C6)) and conditions (C7) and (C9), the rank of G, is equal
toK —1.(Ixg—1 —E1), ..., (Ig—1 — Ep) are then all positive definite (Graybill, 1983, Theorem
1.7.6 and 1.7.7). So, (I(x—1y)m — E) is positive definite and symmetric. Therefore, there exists a
non-singular matrix F such that I(x_1)ys — E) = FFT (Strang 1976, p. 253).

Let GF = F-!GGT(FT)~! and By = F~'B(FT)~!. Then premultiplying both sides of (A3)
by F~! and postmultiplying by (FT)~! yield

Gr =Br + L(k—1)m. (AS)

From (AS), the eigenvalues of G are the same as those of By each increased by one. So, if gr
is the number of positive eigenvlaues of G and b is the number of non-negative eigenvalues of
B, it must be that

gr > br. (A6)

From Sylvester’s law of intertia (Strang 1976, p. 259), the number of eigenvalues of Gy of a given
sign is the same as for GG™. The same invariance holds between the signs of eigenvalues of B
and By. By Theorem 1.7.6 of Graybill (1983), the rank of GG is equal to the rank of G. Because
of conditions (C8) and (C9), the rank of G is J — 1. GGT is positive semi-definite, and therefore
its rank equals the number of positive eigenvalues of GGT, i.e., gr = J — 1. Also since (A2),
the number of R(Rll, e RipM)’s eigenvalues that are not less than one (i.e., r) is the same as
the number of non-negative eigenvalues of B. Therefore, by (A6), we can get J/ — 1 > r, which
gives the lower bound of the true number of classes.
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